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Abstract—Humans constantly interact with computing devices.
Many times, these interactions involve sensitive information
and/or sensitive commands, leading to the need for trusted paths
between humans and computers. For computer-to-computer
interactions, secure communication is not an issue thanks to
cryptographic protocols such as Transport Layer Security (TLS)
and the IP Security Protocol (IPSec). However, the same does
not yet apply to interactions between humans and computers due
to the inability of humans to execute non-trivial cryptographic
algorithms. This results in interactions that are vulnerable to
shoulder surfing, man-in-the-browser malware, and web page
spoofing, among other attacks. This consequently puts at risk
the use of sensitive services in uncontrolled environments.

We present TrustGlass, a scheme that uses augmented reality
smart glasses to solve this security problem. TrustGlass uses such
glasses to extend human capabilities, to execute the cryptographic
algorithms needed to establish a trusted path between the user
and the trusted service, which can be executed in a Trusted
Execution Environment (TEE). With this approach, we can
guarantee that only the user equipped with the glasses is capable
of interacting with the service. We implemented TrustGlass using
commercial smart glasses and show experimental performance
and usability results.

Index Terms—Trusted Path, Augmented Reality Smart Glasses,
Human-Computer Interaction, TEE

I. INTRODUCTION

Humans are continually engaging with computing devices
such as computers, cell phones, Point-of-Sale (PoS) devices,
and Automated Teller Machines (ATMs). In general, a person
does these accesses without much thought of whether the
interaction occurs with the real back-end service or with
some malicious intermediary. Similarly, a person may not
take into account the environment in which they are doing
these accesses. This potentially false sense of security is to
be expected, as people do not tend to suspect a service that
operates in a seemingly correct manner or of their environ-
ment. Furthermore, computer-to-computer communication is
generally considered secure thanks to established protocols
such as Transport Layer Security (TLS) [1] and Internet
Protocol Security (IPsec) [2].

In human-to-computer communications, users tend to expect
that the data they insert or receive in/from a service will not be
revealed. Similarly, users expect that the commands they issue
on a service will not be modified. However, these expectations
are sometimes not met, as the risks associated with using
computing devices are still present. In particular, we highlight
the risks associated with using computing services in unsafe

environments, through unsafe devices, or unsafe servers. In
these situations, users are at risk of attacks such as man-in-
the-middle (where the attacker intercepts the communication
and masquerades as one of the two entities [3]) and shoulder
surfing (spying on the input of the victim). These attacks target
the communication path between a user and a device/server,
which is currently poorly protected.

If we look at the established protocols for secure computer-
to-computer communications, we notice that the element they
share is the use of cryptography. For computer-to-computer
communications, cryptography is used mainly to ensure that
the data is authentic, not modified, and not read by an
adversary (authenticity, integrity, confidentiality). However, in
human-to-computer communications, the use of cryptography
is cumbersome, as a regular person is not able to perform cryp-
tographic operations by themselves, using standard algorithms
and key lengths [4].
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Fig. 1. Overview of the TrustGlass entities. The service can run in a local
server, a cloud server, be an ATM, etc., which we designate server. The UI
device can be a terminal (with screen and keyboard), and the TEE an SGX
enclave.

In this paper, we present TrustGlass, a solution to secure
human-to-computer communications (cf. Fig. 1). By using
augmented reality smart glasses – smart glasses or glasses
for short – [5], we equip the user with a tool that can
bridge the gap between the server and the user’s eyes, as
well as perform cryptographic operations on their behalf. The
glasses are trusted (they are not connected to any network
or peripheral) and are considered to be an extension of the
user’s capacities. Using smart glasses, TrustGlass establishes a
trusted path between the user and the service with which they
are interacting. With this trusted path, TrustGlass gives the
user the ability to both communicate securely with the remote
service, regardless of the environment or malicious code in
the server, and to independently recognize whether the path is



trustworthy or not via the path’s trust signals. Some examples
of applications for our trusted paths would be ATM machines,
PoS devices, enclaves inside untrusted servers, web or cloud
applications accessed through a browser, and remote digital
wallets (that store keys to access Blockchain assets).

We implemented TrustGlass1 using a set of technologies.
For the client side, we used Epson Moverio BT-35E smart
glasses and an Android application. On the server side,
services are isolated using Trusted Execution Environments
(TEEs), more precisely, Intel Software Guard Extensions
(SGX) enclaves [6]. The server-side uses the C/C++ Intel SGX
trusted library. We evaluated TrustGlass using a mock ATM
application. We performed usability experiments with 21 users.

The main contributions of this paper are 1) a trusted path
architecture and protocol capable of securing communications
directly between a user and a remote service; 2) a new
approach for securing human-computer interactions; 3) and
an experimental assessment of the solution.

II. BACKGROUND

A. Trusted Paths

To define what a trusted path is, we first need to establish
what a secure channel is. A secure channel, according to NIST
[7], is a path between two devices that can ensure:
• Confidentiality: data should be accessible solely by autho-

rized entities.
• Integrity: data has not been tampered with in an unautho-

rized manner.
• Authenticity: each message should be genuine and verifiable.
• Freshness: each response was recently generated.

On the other hand, the term trusted path is defined in RFC
4949 [3] as: “A mechanism by which a user (...) can commu-
nicate directly with the security functions of the information
system [(the service)] with the necessary confidence to support
the system security policy.”

A trusted path ensures the same security properties that a
secure channel does. Furthermore, it informs the user of the
path’s trustworthiness via a trust indicator, e.g., a LED or a
small colored circle on the screen [8]–[10].

A trusted path should be impossible to be replicated by
an attacker and has to span the entire communication path,
from the user to the service [8]. The service is considered
secure, i.e., part of the TCB [11], and can be, for example,
an application or a service hosted on a trusted computer or
running in a TEE. Trusted paths also have to be: 1) effective
in allowing a user to recognize trusted data from untrusted
data with minimal user interaction in the decision-making; and
2) not intrusive in terms of user experience [9].

B. Trusted Execution Environments

The service has to be trusted, i.e., part of the TCB. There-
fore, we isolate it from the rest of the server by running
it in a TEE. A TEE is an isolated processing environment,

1https://github.com/hsven/trust-glass

created with the support of the processor, capable of ensur-
ing the confidentiality and integrity of data from the host
system (server in our case) [12]. An application or service
loaded in the trusted environment provided by the TEE is
designated a Trusted Application (TA), and is guaranteed to
be isolated from the rest of the device’s software, including
privileged software like the Operating System (OS). There
are several TEE implementations, e.g., Intel SGX [6], [13],
AMD Secure Encrypted Virtualization (SEV) [14], and ARM
TrustZone [15].

To obtain isolation, a TEE employs multiple mechanisms,
such as: Secure Boot, to certify that only specified code is
being loaded in the secure environment; Remote Attestation,
so that TEE users can confirm its trustworthiness; Secure
Scheduling, so it operates in parallel with the host OS,
without impacting performance or security; Inter-Environment
Communication, which allows a TEE to interact with the host
system if needed; Trusted Input/Output (I/O) Path, allowing
the TEE to interact with peripherals without the transmitted
data being compromised; and Secure Storage, where data is
stored with the guarantee of integrity, and optionally confiden-
tiality.

Intel SGX [6], [13] is a prominent TEE implementation,
available in a range of Intel processors. An SGX TEE is
designated an enclave, a hardware-protected memory space
in which the TA runs. The TA is part of a host application
that runs in the commodity OS, alongside other applications.
This host can request the TA to perform computations with its
protected code and/or data.

C. Augmented Reality Smart Glasses

Augmented reality is a combination of real-life scenes with
computer-generated images and sound in real time. This can be
obtained with three main kinds of devices: 1) Head Mounted
Displays (HMDs), where computer-generated imagery is dis-
played between the user’s eyes and the real-world scene;
2) Handheld displays, such as smartphones or tablets, which
combine the computer-generated imagery with a real-world
recording in the device; and 3) Spatial Augmented Reality,
which overlays the computer-generated imagery in the real–
world via video-projectors and holograms, foregoing the need
for user equipment [5], [16].

Not all smart glasses support augmented reality (for exam-
ple, some do not have displays), but those that do fall into
the HMD category. These devices take the form of regular
glasses, but with displays embedded in or in front of the lenses.
They are usually equipped with enough computational power
to run an OS such as Android. This, when coupled with their
graphic capabilities, means that these are wearable computers
that can expand the capabilities of the human mind, vision, and
possibly other senses. Smart glasses may have, for example,
front-facing cameras, customizable buttons, and Bluetooth/Wi-
Fi connectivity, depending on the model.



III. TRUSTGLASS

TrustGlass is our solution for creating trusted paths between
users and the services they are accessing. TrustGlass leverages
the use of smart glasses with support for augmented reality
(HMDs with at least one front-facing camera). Services may
be protected by running inside TEEs.

A. Threat Model and Assumptions

The TCB of TrustGlass consists exclusively of the TEE,
the TrustGlass libraries, and the smart glasses. We do not
trust any other element, such as the user’s environment, the
user interface (UI) device, the host device of the TEE, or
anything in-between. Side-channel attacks (e.g., [17], [18])
and denial-of-service attacks are out-of-scope. We assume that
neither the user nor the TEE are impersonated during the setup
registration and setup phase (Section III-C), i.e., their public
keys are correctly exchanged.

Cryptographic schemes: We assume the existence of an
IND-CPA and IND-CTXT Authenticated Encryption with
Associated Data (AEAD) scheme [19]. In practice, we con-
sider this primitive to be the Advanced Encryption Standard
in Galois/Counter-Mode (AES-GCM) algorithm [20]. This
AEAD scheme is used to guarantee the confidentiality and
integrity of the plaintext sent from the TEE to the user. It
also guarantees authenticity, as the protocol ensures that only
the user and the TEE have the session key. We also assume
the existence of a key-exchange protocol secure against eaves-
droppers and that ensures perfect forward secrecy. We use the
Elliptic Curve Diffie-Hellman (ECDH) scheme with ephemeral
secrets [21], [22]. Finally, we assume a Key Derivation Func-
tion (KDF), specifically HMAC-based KDF (HKDF) [23] with
pseudo-random nonces, for generating session keys.

Functions: The AEAD scheme [24] provides the
functions Encrypt(K,N,P,A, IV ) → C, T and
Decrypt(K,N,C, IV ) → P or FAIL, where K is a
secret key, N is a nonce, P is the plaintext to be encrypted,
A is data included in the integrity check but not encrypted,
IV is the initialization vector, C is the ciphertext, T is the
authentication tag, and FAIL is an error code that occurs
when the input text is not authentic. HKDF provides the
function HKDF (KIn, S) → KOut, where KIn is the input
key, S is a unique salt, and KOut is the resulting key. ECDH
provides the function ECDH (K−

A ,K+
B ) → KA,B , where K−

A

is the private key of entity A, K+
B is the public key of entity

B, and KA,B is the key shared between A and B.

B. Architecture and Overview

The objective of TrustGlass is to provide a trusted path,
i.e., a secure human-to-computer communication protocol that
ensures the four properties listed in Section II-A: Confidential-
ity, Authenticity, Integrity, and Freshness. It needs to provide
these properties bidirectionally, between the user and the TEE.
However, as explained later, the confidentiality and integrity
guarantees provided in the two directions are different (lower
in the user to TEE direction).

The solution involves four core entities (cf. Fig. 1): the
user, their smart glasses, a UI device, and the TEE with
which the user wishes to communicate. The UI device is any
device with an input peripheral (e.g., keyboard or touch screen)
and a visual output peripheral (screen), that can work as a
terminal to the TEE. The UI device can be, for example, the
computer where the TEE runs, or a terminal/smartphone that
allows access to the TEE’s server. The glasses work as the
trust indicator of the trusted path, as they only show the data
provided by the TEE.

The arrows in Fig. 1 represent the different steps of the
TrustGlass operation loop. In step (1), the UI device sends a
user message to the TEE. In step (2), the TEE sends back a
response that the UI device renders as a QR code [25]. We
opted to use QR codes because they serve our purposes well:
they provide a machine-readable optical data format that is
efficient and includes error correction (the data is acquired
correctly even if there are errors in the reading).

The smart glasses scan the rendered QR code in step
(3), decodes and decrypts the content, before displaying the
resulting plaintext in step (4). The smart glasses are unable to
send user input to the TEE so, instead, the TEE’s messages
prompt the user to input on their UI device, as represented in
step (5).

This overview shows that communication is asymmetric: the
TEE sends data to the user through the glasses, while the
user sends data to the TEE without directly using the glasses.
The way the data is protected in each direction is different.
Protecting user input from an eavesdropper is not trivial, as
it cannot be encrypted. The interaction can be divided into
three phases that we explain below: registration and long-term
setup, trusted path establishment and user-TEE interaction.

C. Registration and Long-Term Setup

This initial registration and setup phase is represented in
Fig. 2. The figure decomposes the TrustGlass server-side into
three software components: 1) a Server App that runs outside
the TEE and that is needed because the TEE is passive, i.e.,
runs only when called; 2) the Service that runs inside the TEE
and provide its functionality, whatever it is; 3) the TrustGlass
library that runs the TrustGlass server-side code, inside the
TEE.

This phase exchanges public keys between the TEE and the
glasses, then establishes a shared key using the ECDH scheme.
Unlike TrustGlass’ normal operation, this setup requires a
connection between the smart glasses and the server (e.g., a
TLS connection through a network or USB cable).

The process works as follows. The user U prompts the smart
glasses SG to connect to the TEE T , providing their ID, IDU .
The smart glasses start by establishing a connection to the TEE
via the server app. Next, the smart glasses generate a pair of
Elliptic Curve (EC) asymmetric keys and then send the public
key K+

SG and IDU to the TEE. The TEE generates its own
pair of EC asymmetric keys and uses both its private key K−

T

and the received K+
SG to generate the long-term shared secret

key KSG,T using ECDH. This key is stored by the TEE, before



sending its public key K+
T and ID IDT to the smart glasses.

The smart glasses then generate their copy of KSG,T . At the
end, the glasses and the service delete their asymmetric key
pairs, as they have no further purpose.

D. Trusted Path Establishment

This phase creates a trusted path (a session) between the
user and the TEE (see Fig. 3). It is performed whenever the
user wants to use the service, any number of times. The phase
begins with the user connecting to the TEE on the UI device
and introducing IDU . With this ID, the TEE selects the long-
term shared secret key, KSG,T . The TEE then generates a
nonce, which it uses, along with KSG,T , to derive the shared
key for the session KsessionSG,T , using HKDF. Then, the
TEE sends the user the nonce and ID IDT through the UI
device. Once the UI device receives this message, essentially
a number, it renders it as a QR code for the smart glasses to
scan. The glasses scan the QR code, retrieve KSG,T with the
help of IDT , and use the received nonce to derive their copy
of KsessionSG,T .

The session is established and data can be exchanged
with confidentiality and integrity ensured. However, the user
and the service are not mutually authenticated. The user
authenticates the service when the service shows knowledge of
KsessionSG,T . The TEE must send to the glasses a message
encrypted with this key, that can then be decrypted with AES-
GCM, as explained in the next section. If the session key
each endpoint had was different, then the trusted path was not
established. How the service authenticates the user is explained
at the end of the next section.

E. User-TEE Interaction

With the trusted path established and both endpoints authen-
ticated, the user can now exchange messages with the TEE.
This phase is represented in Fig. 4.

TEE to user: For the TEE to send a message to the user,
it follows these steps: 1) the TEE prepares the message; 2) to
prevent replay attacks, a freshness token is included; 3) a
random Initialization Vector (IV) is generated; 4) the message
is encrypted with AES-GCM, KsessionSG,T , and IV; 5) the
ciphered message and the IV are sent to the UI device.

When the UI device receives the message, it renders it as
a QR code to be scanned by the glasses. An example of this
interaction, in which the glasses display the result of scanning
a QR code, is represented in Fig. 5. The glasses are responsible
for ensuring that the message received is trustworthy before
displaying it to the user. After scanning the image with its
front-facing cameras, it decodes it into text, decrypts and
checks its integrity with AES-GCM and KsessionSG,T , and
checks if the freshness token is recent. If the message passes
these steps without error, the plaintext result is rendered in
the glasses for the user to read. Otherwise, an error message
is displayed.

The plaintext shown depends on the application. One option
is data that allows the user to send their next input to the
service securely, as explained next.

User to TEE: Protecting user input to be sent to the TEE
is not trivial, as users insert input in an untrusted UI (e.g.,
type it on an untrusted keyboard) and cannot encrypt data in
their heads (we assume no interface for users to give data
to the glasses for encryption). TrustGlass supports two input
mechanisms with different security guarantees:
• Randomized Strings (RS): the TrustGlass library gen-

erates strings of any desired size and provides the
user with the (bijective) mapping between those strings
and some meaningful input (e.g., QWert123ty means
Confirm, WEqwet123 means Cancel).

• Randomized Keyboard (RK): the TrustGlass library creates
a random bijective mapping of keys to characters (e.g., the
digit 7 should be typed as 5). Fig. 5 shows an RK example.
More rigorously, for both mechanisms RS and RK:

1) The TEE sends the glasses two sets: the input set Si

and the encoded set Se, and a bijection between them
f : Si → Se, everything encrypted using AEAD and
KsessionSG,T . We assume that every bijection is ran-
dom and used only once, so there is indistinguishability;

2) The user inserts in the input device (e.g., a keyboard)
a sequence of encoded inputs i1, i2, ... (possibly only
one) with ∀ii : ii ∈ Se. This is the step that may be
eavesdropped or tampered by the adversary;

3) The TEE receives the input and accepts it if it contains
only strings in Se (∀ii : ii ∈ Se); if accepted, it uses the
bijection to obtain the input the user wanted to provide
(∀i : inpi = f−1(ii);

RS: RS might be (but is not) implemented by sending
the user options obtained by encrypting the real inputs with
the AEAD scheme and some random key K used only once
(and that does not leave the TEE), then converting the strings
to a typeable format (e.g., base 64). This would provide
confidentiality and integrity (without K, it is not possible to
obtain or generate the input). However, that solution would be
constrained to the number of bits of the input sent, nb, being
a multiple of the size of an AES block (nb = k × 128bits).
Therefore, we generalize it to sequences of characters of
arbitrary length nl, with charsets with an arbitrary number of
characters nc. This leads to the probability that the adversary
guesses an input that is valid to be Pg = no/n

nl
c , where no

is the number of valid options. For example, with 2 options
and 10 characters in base 64, Pg = 2/(6410) = 1.9 × 10−9.
Therefore, the confidentiality guarantees are identical to those
provided by the scheme based on AEAD; integrity depends on
the number of characters sent, but can be as high as needed.

RK: RK provides lower guarantees. Confidentiality is pro-
vided if the input has just a few characters, as the characters
sent are opaque to an eavesdropper (indistinguishable from
any other). However, in general, it is ensured only if the input
is not long enough for frequency attacks or other cryptanalysis
methods to be viable. Integrity is not provided if the input can
be an arbitrary sequence of characters. However, if the service
expects a specific input, such as a PIN code, then integrity can
be stated as a probability as for RS: the probability that the
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Fig. 3. UML sequence diagram of the trusted path establishment.

adversary guesses a valid input becomes Pg = 1/nnl
c . With

the PIN example, with one valid sequence, the 10 digits and
a 4-digit PIN, Pg = 1/104 = 0.0001.

User Authentication: The service can authenticate the user
by providing an RK to request the user’s password, then
comparing it with a stored password. An alternative is to
authenticate only the glasses (not the user directly), using the
RS mechanism to present the user with a string that they have
to introduce back; if the string is correctly inserted, the service
has a high probably to assume that the user is using glasses
that have access to KsessionSG,T , so were registered with
KSG,T . If the smart glasses require user authentication to be

used, then this alternative option would also authenticate the
user.

F. TrustGlass Implementation

Our TrustGlass prototype has two parts: an enclave trusted
library (executed in the TEE) and a smart glasses application
(executed in the glasses). Both parts of the system implement
the three cryptographic schemes: AEAD, ECDH, and HKDF.
However, for AEAD, the TEE library implements only AEAD
encryption, and the glasses implement only AEAD decryption.
The server-side TrustGlass library was implemented in C and
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Fig. 5. Example result of a QR code scan, as seen by the smart glasses user.

C++, using the Intel SGX SDK2 and the Intel SGX SSL3

library [13].
The smart glasses part is an Android application written in

Java that runs in Epson Moverio BT-35E glasses, coupled with
an Epson BO-IC400 controller (the cheapest commercially
available option that provides the functionality we need). For
QR code scanning, it leverages the scanning API of ML-Kit4;
for cryptography, it mainly uses functions from Java’s default
libraries, except for the Bouncy Castle API5 for the HKDF
operation. The main task of this application is to scan QR
codes, check security properties, decrypt messages, and then
render the plain text to the glasses’ lenses.

IV. EVALUATION

This section presents the evaluation of TrustGlass. We aim
to answer three questions: 1) Does TrustGlass ensure the four
security properties? 2) How does TrustGlass perform? 3) Is
TrustGlass viable in a real-world scenario?

2https://github.com/intel/linux-sgx
3https://github.com/intel/intel-sgx-ssl
4https://developers.google.com/ml-kit
5https://www.bouncycastle.org/

TABLE I
TRUSTGLASS ANALYZED AGAINST THE STRIDE METHODOLOGY.

Attack Category Associated Property Property Ensured?
Spoofing Authenticity, Freshness Yes
Tampering Integrity Yes
Repudiation Non-repudiation Out-of-scope
Information Disclosure Confidentiality Yes
Denial of Service Availability Out-of-scope
Escalation of Privilege Authorization Out-of-scope

We evaluate the security of TrustGlass using the STRIDE
model [26]. For performance, we present several micro-
benchmarks. Usability is evaluated using an empirical method,
with real users (21 participants), and a demonstration applica-
tion that emulates an ATM, with a questionnaire inspired by
the widely adopted System Usability Scale (SUS) question-
naire [27].

A. Security Evaluation

STRIDE allows us to analyze TrustGlass against a set of
attack categories. As shown in Table I, TrustGlass ensures
the core security properties of trusted paths (confidentiality,
integrity and authenticity).

Confidentiality in the TEE to user direction is ensured by
encrypting the data with an IND-CPA AEAD scheme, with
the shared key KsessionSG,T , between the smart glasses and
the TEE. This key guarantees that the data sent can only be
accessed by the glasses and the user after the TEE sends it.
Under the established assumption of no impersonation during
setup (cf. Section III-A) and the security of the ECDH scheme,
the long-term shared secret key KSG,T established in the setup
phase is not disclosed to adversaries. As such, an attacker
would not be able to obtain valid session keys to decrypt



the TEE-sent data. In relation to confidentiality in the other
direction (user to TEE), if the input mechanism RS is used, the
input data is confidential because it is encoded in a way that is
indistinguishable from any other data (the encoding/bijection
is random and changed every time).

Integrity in the TEE to user direction is ensured by
encrypting data with an IND-CTXT AEAD scheme, with
KsessionSG,T , between the smart glasses and the TEE. In-
tegrity in the user to TEE direction is ensured when RS is used
because the adversary has no knowledge of the bijection, so
it cannot provide a valid input with probability Pg = no/n

nl
c .

This probability can be as high as needed by increasing the
number of characters introduced nl. RK provides the same
level of integrity if the TEE expects a specific input, as
explained in Section III-E.

Authenticity is ensured due to long-term secret KSG,T .
During the setup, both entities use ECDH to establish the
long-term shared secret, binding it to the ID of the other. With
this, there is an implicit authentication of both entities when
the trusted path is established, as they need to have the same
long-term shared secret to establish a shared session key.

Freshness is achieved in the TEE to user direction by adding
a freshness token, given the integrity and authenticity of the
communication proved above. This freshness token allows the
glasses to verify whether a message is recent, guaranteeing
that there is no replay attack. Freshness for the user to TEE
direction follows the same principles as was mentioned for
integrity. If the integrity of user input is ensured, then the fact
that the user was authenticated and can input according to the
TEE’s instructions means that only the expected user could be
sending the messages.

Non-repudiation, Availability and Authorization are not
ensured by TrustGlass, but they are also not goals.

B. Performance Evaluation

We evaluated the performance of TrustGlass in terms of
several micro-benchmarks. Measurements were obtained in a
brightly lit environment, and QR codes were displayed on a
22-inch display, as shown in Fig. 6. The results depend on the
lighting of the environment and the noise of the image.

Regarding the number of characters that can be sent to the
glasses, the bottleneck is the number of characters that can be
encoded in a QR code. In the conditions we had, we managed
to use QR code version 40, which is the version that allows
us to send the most amount of data [25]. That version uses
a 177 × 177 grid and low error correction level. With this
version, we managed to encode 2127 8-bit characters. As the
freshness token used in the prototype is a counter, this limit
decreases slightly over time as the counter may require more
bits.

We measured the scanning and decryption speed of QR
codes, across three code sizes (77, 733 and 2733 characters).
For each size, we scanned 20 QR codes consecutively, for a
total of 60 scans. We obtained, on average, a 274 millisecond
wait time between a successful QR code scan and its content
being displayed to the user, regardless of the code’s size.

Smart
Glasses

Controller

UI Device

Glasses-to-Controller
connector

Fig. 6. Usability test setup.

For each size, we measured the maximum distance the
glasses could stay away from the screen and still reliably scan
a code. For 77 and 733 character codes, the glasses could
reliably scan at around 60 and 53 centimeters, respectively.
However, for 2733 characters, the distance was reduced to 25
centimeters, due to the limited image quality of the glasses’
camera.

C. Usability Tests Setup

To test the usability of TrustGlass, we tested our ATM
demonstration application with a group of 21 participants (17
men and 4 women). Of these participants, 18 were between
18-24 years old, a participant was between 25-39 years old,
and 2 participants were between 40 and 59 years old. Ten
participants use prescription glasses regularly; the others do
not. Regarding their formal educational background, there
were 9 participants with a Bachelor’s degree or equivalent,
7 participants with complete high school, 4 with a Mas-
ter’s degree, and 1 with middle school-level education. 18
participants completely agreed that they are used to modern
technology, while the 3 remaining participants were evenly
divided between slight disagreement and slight agreement with
the statement. When it comes to being used to mixed reality,
16 participants responded between neutral and not being at
all used to the technology, while only 5 responded with being
either slightly or completely adept with it. The experiment was
carried out in Oeiras, Portugal, on a university campus.

The test was structured to take 10 to 15 minutes, including
filling out questionnaires, and each participant was asked to
follow a short script of steps that simulate a simple balance
check and a money withdrawal operation in an ATM. The test
was supported by a demonstration application that included
these features, implementing an enclave application that uses
TrustGlass in its workflow, and the glasses to host the Trust-
Glass client-side app. The test setup can be seen in Fig. 6.

Before the test, each participant was asked to complete a
consent form. The participant was then told that they would
play the role of an ATM user, and an explanation of how to
use the system was given.



After the test, each participant was asked to complete a
questionnaire. This questionnaire asked for demographic data
and then some questions regarding the system and protocol.
Our goal with the questionnaire was to evaluate the usability of
the protocol itself. This means that we focused on evaluating
the mechanisms employed in TrustGlass, such as the RS and
RK mechanisms, and less so on the demonstration application.
As such, we decided on four aspects of the protocol which we
wished to evaluate with the questionnaire:
• Effectiveness: whether the tasks were doable;
• Efficiency: how difficult were the tasks are;
• Satisfaction: how comfortable were the tasks for the partic-

ipant;
• Security: whether the tasks felt secure to the participant.
Our questions were based on the widely-adopted SUS ques-
tionnaire [27], taking care to select questions relevant to our
goals. Aside from these questions, we asked the following
more specific questions:
• I found the presented text in the glasses comfortable to read.
• I found it simple to write text according to the system’s

instructions.
• I feel safer accessing sensitive data when using the system.
• I found the system was clear in its intention of improving

security in communicating with the machine.

D. Usability Results

Regarding how much time it took to complete the test tasks,
we expected the participants to take about five minutes if no
issues occurred. The results confirmed our expectations, with
an average of 5:25 minutes and a standard deviation of 3:23
minutes. Each step (interaction between scanning a QR code
and completing the presented instruction) took on average 1:05
minutes.

Regarding the usability of the system, there was a mildly
positive reception. Participants found the system to be mod-
erately simple, consistent, and not too complex. More impor-
tantly, they felt more secure in interacting with the system.

To analyze our results, we chose to calculate confidence
intervals (CI) for each question, then check where that interval
is positioned compared to a neutral response (i.e., a 3 in the
Likert scale [28]). Since some of the questions are negative-
sounding, a good evaluation in these require the confidence
interval to be lower than 3, while the opposite occurs for
positive-sounding questions.

Fig. 7 presents the results obtained, with each question cat-
egorized. Starting with the effectiveness category, the results
are positive. The participants found that the system was not
too inconsistent (mean of 1.86 and SD of 0.57) and also that
the different functions were decently well integrated (mean of
4.14 and SD of 0.73). However, the participants did have a
more neutral and varied response on whether they would need
technical assistance (mean of 2.48 and SD of 1.21).

The efficiency/difficulty of the tasks received a very neutral
response. Both questions of this category, whether the partic-
ipant found the system cumbersome and whether they were

Fig. 7. Average results of user answers to the questionnaire. 1 = Strongly
Disagree, 5 = Strongly Agree.

confident in their actions, had responses averaging around 3
(mean of 2.9 and 3.43 respectively), and an SD of approxi-
mately 1 for both.

For the satisfaction category, we selected four questions that
show a slight positive response with respect to complexity, but
a more neutral response regarding legibility and comprehen-
sion of the instruction. Participants found the system not too
unnecessarily complex (mean of 2.42, SD of 0.87) and found
it slightly simple to use (mean of 3.33, SD of 0.66). However,
when answering if the text was comfortable to read on the
glasses’ lenses, there was a wide spread of answers, resulting
in a mean of 3.14 and an SD of 1.31. The participants also
responded rather differently regarding whether they found it
easy to follow the presented instructions (mean of 3.33, SD
of 0.97).

Last but not least, regarding the feeling of safety when using
the system, there is a good, positive reception to it. When
asked if the person felt safer accessing sensitive data using
the system, the response was slightly positive, although with
a rather high range of answers (mean of 3.71, SD of 0.95).
When asked if the system was clear in its intention of securing
communications, however, the results are more positive and
less spread out (mean 4.24, SD 0.83).

Overall, these results paint a positive picture of the system:
1) It provides a sense of security to the users. 2) Using the
system is doable, thanks to its consistency and low complexity.
3) However, there is some difficulty in using the system, even
if some practice could mitigate this feeling. 4) Readability can
be problematic.

V. RELATED WORK

There is some work on trusted paths [8], [9], [29], and some
of the most recent considers TEEs [30], [31]. However, none of
these works consider the use of smart glasses or other COST
components to support encryption and the trusted path. On
the contrary, they assume the use of hardware or virtualized
devices for user interaction (e.g., additional displays and
keypads). This is actually what inspired this work.



Andrabi et al. [32] studied visual cryptography used in
smart glasses to decipher singular numbers and letters on a
display. They follow a traditional visual cryptography scheme
[33], but with digital shares. A UI device presents one share
of a pair, while the user’s smart glasses present the other,
allowing the user to visually overlap them to reconstruct the
original message. Lantz et al. [34] also investigated the use
of visual cryptography, specifically to read one-time authen-
tication codes, but proposed a visual obfuscation scheme as
an alternative. These works do not provide a trusted path;
only confidentiality in service to user communication. There
is also no benefit of visual cryptography over TrustGlass’ use
of symmetric cryptography (AES-GCM) and QR codes.

EyeDecrypt [35] takes advantage of smart glasses to per-
form cryptographic operations. Data is encrypted in the ser-
vice, encoded as dataglyphs, then scanned and decrypted by
the user’s smart glasses. Their encoding scheme allows data
to be deciphered in blocks. Something similar is done in Ubic
[36], but using QR codes instead. These works are closer
to ours, but focus on displaying information to the user,
guaranteeing confidentiality in the service to user direction,
not on bidirectional communication. We present and analyze
the RS and RK schemes to provide security when the user
inputs data and its security guarantees. Moreover, we test the
usability of a prototype of our scheme with real users, whereas
these works are more theoretical and focus on the encryption
schemes.

VI. CONCLUSION

This paper presented TrustGlass, a trusted path scheme that
connects a user to a remote trusted application using AR smart
glasses on the client side. The smart glasses have the purpose
of augmenting the user with cryptographic capabilities, as well
as removing the gap between the user’s eyes and the display
to which the data is transmitted. The TEE secures the remote
application, being responsible for encrypting data sent to the
smart glasses and displayed to the user, and preparing the
instructions on how the user should input their next command
to the TEE securely.

We tested TrustGlass’ usability via an ATM demonstration
application with 21 participants, which highlighted some us-
ability issues, but also showcased that the protocol itself could
successfully be applied to protect user-server data exchanges.
We also assessed its security using STRIDE, confirming that
TrustGlass ensures the properties of a trusted path.
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