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Abstract—The number of applications being deployed using
the Platform as a Service (PaaS) cloud computing model is
increasing. Despite the security controls implemented by cloud
service providers, we expect intrusions to strike such applications.
We present Shuttle, a novel intrusion recovery service. Shuttle
recovers from intrusions in applications deployed in PaaS plat-
forms. Our approach allows undoing changes to the state of
PaaS applications due to intrusions, without loosing the effect of
legitimate operations performed after the intrusions take place.
We combine a record-and-replay approach with the elasticity
provided by cloud offerings to recover applications deployed
on various instances and backed by distributed databases. The
service loads a database snapshot taken before the intrusion and
replays subsequent requests, as much in parallel as possible,
while continuing to execute incoming requests. We present an
experimental evaluation of Shuttle on Amazon Web Services.
We show Shuttle can replay 1 million requests in 10 minutes and
that it can duplicate the number of requests replayed per second
by increasing the number of application servers from 1 to 3.

I. INTRODUCTION

Platform as a Service (PaaS) is a cloud computing model
that supports automated configuration and deployment of ap-
plications [1], [2]. PaaS offerings, such as Google App Engine,
Windows Azure, and Force.com, provide an environment in
which clients (fenants) build and run their application on a
managed cloud infrastructure through a set of services. These
services are paid-per-usage and enable tenants to develop,
deploy and scale their applications in production fast.

The number of applications running in cloud computing
platforms, including those based on the PaaS model, is in-
creasing rapidly. Many of these applications are critical for
their companies, so the risk of intrusion is high. The recent
case of the cloud-based Code Spaces service is conspicuous:
hackers deleted most of its data and backups, leading to the
termination of the service [3].

Cloud service providers (CSPs) implement several security
controls. Most of these controls aim to prevent intrusions:
access control, firewalls, intrusion detection and prevention
systems, network access control, vulnerability scanning, etc.
Despite the importance of these mechanisms, applications
often contain design or configuration vulnerabilities that let
intrusions happen [4]. Complexity and budget/time constraints,
weak passwords or bad security policies are also known
causes. The recent case of the bash bug (or Shellshock) shows
that there are other reasons such as legacy software being
used in ways that were unpredictable when it was developed
[5]. Much research has been done on mechanisms to tolerate

Byzantine faults, including intrusions [6]. However, most of
these techniques do not prevent application level attacks or
user mistakes. For instance, if attackers steal legitimate user
credentials, they are able to modify the state of the applications
violating their security policy.

We assume intrusions can happen and their effects need
to be removed from the applications’ state. This removal is
often done manually by system administrators who have to
understand the parts of the state compromised directly by the
intrusion or contaminated by operations that used compro-
mised state, before cleaning the state. This process is error-
prone, often takes long and causes application unavailability
[7]. Intrusion recovery systems aim to automate these steps
and mitigate these issues.

Previous intrusion recovery systems targeted operating sys-
tems [8], [9], [10], databases [11], [12], web applications [13],
[14], [15] and other services [16]. All these works considered
one computer plus, in a few cases, a backend server. None of
them was designed for cloud applications deployed in multiple
servers and using distributed databases. Furthermore, most
cause downtime, which is undesirable in online services.

We present a novel intrusion recovery service for PaaS
systems. Shuttle ! aims to make PaaS applications operational
despite intrusions, helping tenants to recover their applications
from software flaws and malicious or accidentally corrupted
user requests without requiring application downtime during
the process. When an intrusion is detected, tenants can use
Shuttle, provided as a service by CSPs, to remove intrusions’
effects and recover the integrity of their applications. This
paper concerns application availability and state integrity, not
confidentiality.

Shuttle assumes a client-server model in which clients
communicate with the servers in the cloud using HTTP /
HTTPS. For each application deployed in the PaaS system,
Shuttle records the requests issued by clients and creates
periodic snapshots of the application database. After detection
of the intrusion, Shuttle loads the snapshot that precedes the
beginning of the intrusion and replays only the legitimate
requests to recreate an intrusion-free application state. Re-
quests are replayed asynchronously and, whenever possible,
concurrently. The recovery process is deterministic because
accesses to each data item are performed in the original order
of execution.

Dependencies established at database level during the re-

I'The prototype is available at https://github.com/dnascimento/shuttle



quests’ first execution are used to create independent clusters
of requests that can be replayed concurrently. We propose a
branching mechanism to keep the service executing incoming
requests while doing replay.

Unlike previous intrusion recovery systems, Shuttle aims to
be provided as a service to applications deployed in PaaS. Con-
sequently, it can be well-tested and available without depend-
ing on being correctly setup by the application developers. We
also leverage the elasticity of PaaS infrastructures to reduce the
service costs and the recovery period. Specifically, Shuttle is
designed to allocate more servers during the recovery period to
accommodate the throughput of requests being replayed, and
release them at the end, with a proportional impact on service
costs. The rapid and continuous decline in computation and
storage costs in CSPs makes affordable to store user requests,
to use database snapshots and to replay previous requests.

The contributions of this paper are the following: (1) a new
intrusion recovery approach provided as a service integrated
in a PaaS system and taking into consideration applications
running in various instances backed by distributed databases;
(2) a method to order the replayed user requests considering
their accesses to databases; (3) accomplishing intrusion recov-
ery without service downtime using a branching mechanism;
(4) leveraging the resource elasticity and pay-per-use model
in PaaS environments to record and launch multiple clients to
replay previous non-malicious user requests as concurrently
as possible to reduce the recovery time and costs; (5) a
mechanism to do a globally transaction-consistent snapshot
of NoSQL databases.

II. BACKGROUND AND RELATED WORK

An application execution is modeled as a set of actions A
on a set of objects D. Actions are described by operations
(read, write, others more complex), the value(s) read/written,
and a timestamp (which defines the order of the actions). Each
object has a state (or value) and a set of operations that can
modify it. We define A;,yusion as the subset of actions of A
whereby the attacker compromises the application during the
intrusion and A;c4q; as the subset of legitimate actions in A,
ie., Alegal = A\Aintrusion-

Intrusion recovery services aim to remove the effects of
malicious actions setting the application state to a state set
only by legitimate actions. A backup mechanism is a basic
recovery service that can set objects to the state they had before
an intrusion began. The new state excludes the effects of the
attacker’s actions, but also the effects of any legitimate actions
performed after the backup was done. This second aspect is
undesirable, so recent intrusion recovery systems aim to avoid
it. This is the case in the works closest to ours: Aire [15], Warp
[14], Akkus and Goel [13], and Undo for Operators (UO) [16].
None of these works handles recovery in cloud environments.

An action is considered fainted at a certain instant if it
depends on a malicious or tainted action, i.e., if it reads an
object written by a malicious or tainted action (called a tainted
object). Since actions are contaminated by malicious actions
through objects, to remove the state written by tainted actions

it is necessary but not sufficient to obtain the state produced
by the legitimate actions. The tainted actions need to be re-
executed to read different values (not imposed by the attacker)
and have a different execution.

There have been different approaches to remove intrusion
effects removing the object versions written by malicious
actions: Akkus and Goel [13] use transaction compensation
(inverting transactions’ effects) to create snapshots, Warp loads
previous data items version and UO loads snapshots. The first
approach does not remove the effects of unknown actions,
the second requires a considerable storage overhead. We
implemented a snapshot mechanism designed for distributed
databases.

There are two distinct replay approaches for setting the ap-
plication to a correct state (setting D to D ccovered): Selective
replay and full replay. The selective replay approach loads only
the versions of the tainted objects, Diqinted, previous to the
intrusion, instead of loading a previous version of every object
[81, [14], [13]. Then, it replays only A;uinted, to update the
objects in D. Further actions are also replayed if their input
is different (tainting via replay).

The other approach, full replay [16], loads a snapshot
previous to the intrusion moment and replays every non-
malicious action executed after the snapshot operation. This
approach is slightly simpler than the other, but takes longer to
execute.

III. ARCHITECTURE

We introduce Shuttle, an intrusion recovery service for
PaaS. Our goal is to help PaaS tenants to recover from the
following problems in their applications:

o Software vulnerabilities: non-authorized persons compro-
mise the state by exploiting software vulnerabilities that
allow requests to be executed. For instance, a hacker does
a SQL injection attack, causing the execution of otherwise
invalid queries to the database.

o Faulty requests: users that are somehow authorized com-
promise the application state accidentally or intentionally
issuing valid requests. For example, a hacker steals users’
credentials then uses them to access their data.

Applications supported by Shuttle can operate in one of
two phases: normal execution and recovery. During normal
execution, Shuttle records the data required to recover the
application’s state: it does periodic database snapshots, logs
user requests and database accesses. When an intrusion is
identified, tenants use Shuttle to recover their applications
starting the recovery phase.

The processes described in Section II lead us to define how
to remove intrusion effects and how to recover a consistent
state. During the recovery phase, Shuttle removes intrusion
effects creating a branch of the system execution in which it
loads a snapshot, which contains the application state before
the intrusion began. It builds a consistent state by replaying
(re-executing) in the new branch, the legitimate requests
logged during normal execution, performing either selective or
full replay (Section V). In the meantime, the incoming requests



are executed in the previous branch. When ready, it sets the
new branch as the single execution branch.

PaaS platforms offer services to build, deploy and manage
applications. Shuttle aims to be integrated by CSPs into their
PaaS platforms as a novel service. We assume a minimal PaaS
architecture to let Shuttle as generic as possible. We consider a
client-server model in which clients access applications using
the HTTP protocol®>. HTTP requests are received by a load
balancer that forwards them to web/application servers, which
access a shared database. PaaS components are represented
with dashed line in Figure 1, while Shuttle components
are represented with solid line. The components of a PaaS
platform with Shuttle are:

e Proxy: Logs every HTTP user request, adds a new field
to its header, and forwards it to the load balancer. The
proxy functionality might be part of the load balancer but
conceptually it is a different component.

e Load balancer: Routes requests to different application
servers taking into account their load (part of the PaaS
platform).

e Application servers: The application (or web) servers
are the components of the PaaS platform that run the
application logic. This logic uses a library to access the
database service. Shuttle uses a database client inter-
ceptor mechanism in this library to log the data items
accessed per request.

e Database instances: A set of database servers used to
store the application persistent state. Shuttle includes in
each instance a database proxy that logs the requests that
accessed each data item and determines the dependencies
between requests.

o Shuttle storage: A scalable storage component that stores
requests, responses and metadata.

e Manager: Retrieves dependencies and coordinates the
TeCOVery process.

o Replay instances: A set of instances with HTTP clients
that read previously executed requests from the Shuttle
storage and invoke the application servers to re-execute
the requests during the recovery process. These worker
instances are coordinated by the manager.

PaaS offerings are supported by a computing infrastructure,
often provided as a service (IaaS model), able to scale the ap-
plication allocating new instances on-demand or automatically,
to maintain the quality of service despite demand oscillations.
This elasticity allows to allocate replay instances and to
scale the application to attend the requests issued by them
during the recovery process. With the pay-per-usage model,
these resources become a cost only when there is a recovery.
The remaining cost of the service comes from storing client
requests and database snapshots. Our design aims to optimize
the available resources to reduce the recovery period and costs.

Unlike previous works, our design encompasses distributed
databases. We assume without loss of generality that appli-
cations store their state in distributed key-value stores, such

2Shuttle also supports HTTPS by ending the connections at the proxy.
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as Dynamo [17], where the values are accessed using a
create, read, update and delete (CRUD) API. This simple API
reduces the performance overhead to track accesses while the
independence between keys lets Shuttle be elastic. Shuttle can
be extended to support other NoSQL stores.

The Shuttle storage keeps the content of the user requests
and responses. Although we do not consider this aspect in the
architecture, this store can be replicated to a remote site to
allow tolerating catastrophic failures in a datacenter.

We consider the Shuttle components to be part of the trusted
computing base since their integrity and availability are critical
to recover the application. We assume that intrusions tamper
the application data, which is stored in the database.

IV. NORMAL EXECUTION

Shuttle logs the data it needs to recover applications during
the normal execution phase: user HTTP requests, application
HTTP responses, database items accessed by each request and
sequence of operations to each database item (Figure 2). In this
section, we describe the normal execution phase following the
path that a request takes to be processed.



A. Proxy

The proxy intercepts all user HTTP requests, except those
to static contents (e.g., images), and adds a new header field
named Shuttle Request Data (SRD). SRD contains a few
subfields: Request ID (RID), an unique timestamp; branch and
snapshot that define the database branch and snapshot of the
request (Section IV-C); a restraint flag used to support runtime
recovery (Section V-H).

The proxy also intercepts every application response, as-
sociates the response with the original request and adds a
new timestamp to track the ending of the request execution.
Requests, responses and their timestamps are stored in the
Shuttle Storage using asynchronous I/O, which permits the
operations to proceed before the transmission has finished.

B. Application server and database instances

In order to associate every database operation with the
HTTP request that caused it, we propose to modify the
application server adding it an interceptor. This component
is invoked by the database client library before and after the
request processing: before, the interceptor gets the SRD and
logs the accessed data items; after, it stores the log of accessed
data items in the Shuttle Storage. This avoids having to modify
the tenants’ applications.

Every database operation involves calling the database
proxy. The proxy logs the operation’s RID and type (put, get,
delete) and uses its branch and snapshot subfields to select
the correct data item version. The sequence of operations
to a data item defines its operation list. The access order
is ensured by a read-write lock that serializes the access to
the value of the data item allowing multiple reads but only a
single write concurrently. This pessimistic concurrency control
may decrease the system performance in comparison with a
multi-version concurrency control scheme, in which the RID
would be written among the value and parsed during the read
operation. Nevertheless, we used this form of concurrency
control for the sake of simplicity. The operation list and lock
of each data item are stored in a hash table that supports
concurrent accesses.

Periodically, each database instance iterates the operation
list of every data item to establish the dependencies between
requests. The manager retrieves, asynchronously, the start and
end timestamps of each request, collected by the proxy, and its
dependencies, collected by the database instances, to generate
the dependency graph (Section V-B).

C. Snapshot

A snapshot is a set of versions of every data item in the
database. Our service loads a snapshot to remove the intrusion
effects and replays the later requests to recover an updated
application state.

Performing snapshots in distributed key-value NoSQL
databases like Dynamo is not trivial since snapshots have to
be consistent with the user requests. We consider each user
request may include multiple database accesses, each of them
to multiple database servers, without using transactions. If

Shuttle replays a request on a snapshot that contains part of the
persistent state written by a request during its first execution,
the replay will be inconsistent. Therefore each snapshot shall
be global request-consistent containing either all or none of
the database updates made by every request [18].

The snapshot shall be non-blocking: applications shall not
stop their execution while taking snapshots. For instance,
a straightforward way to take a request-consistent global
snapshot is to stop processing new requests, waiting until the
currently executing requests finish, and then making a copy
of each data item. However, this solution causes application
downtime.

Our solution leverages the existence of a single load bal-
ancer and, consequently, a single proxy that adds the SRD
field to every request. Every SRD contains a RID (the instant
when the request is retrieved). In order to create a snapshot,
tenants define a future instant in time ¢ when the snapshot
will occur. The instant, named Snapshot ID (SID), identifies
the snapshot. The manager passes the SID to every database
proxy.

Database proxies use the SID to define the version of the
data item used by the operations. Operations with Request 1D
(RID) lower than the scheduled snapshot instant (RID < SID)
access the version before the snapshot. Otherwise, the opera-
tions access the latest data item version. This mechanism splits
requests to accomplish a request-consistent global snapshot,
and allows tenants to schedule snapshots without application
downtime.

We avoid blocking the application to copy the versions using
a copy-on-write and incremental method: a new version is
created only when the data is written for the first time in
each snapshot. Since a data item may not be written in every
snapshot, we associate a version list to every data item. This
list tracks in which snapshots the data item has been written.
This mechanism is independent of the key-value store used
because the SID is included in the key of every key-value pair.
Database checkpoints are stored locally and may be replicated
to a remote site (allowing disaster recovery).

A snapshot might become inconsistent if a request with RID
greater than the snapshot instant SID reads a version belonging
to the snapshot SID and a concurrent request with RID lower
than SID overwritten that version. Storing a new version
and adding a flag on the version list solves the problem.
Nevertheless, we expect this to happen only in rare occasions.

V. RECOVERY

Tenants initiate a recovery when they detect intrusions.
We expect recoveries to be typically initiated by a human
operator. When Shuttle enters recovery mode, it generates a
list of requests to replay and asks for the PaaS controller to
launch a set of replay instances. Shuttle may also ask for
additional database and application server instances, or they
may be launched automatically by the PaaS platform when
it detects additional load, in case auto-scaling is supported.
The non-tampered snapshot that precedes the intrusion instant
is selected. The multi-thread HTTP client of each replay



instance fetches requests from Shuttle Storage and sends them
to the application servers, concurrently whenever possible.
After replaying all requests issued before the beginning of the
recovery, the manager sets the proxy state to restraining mode
and commands the replay instances to reexecute the remaining
requests (those issued after recovery began). Then, restraining
mode is disabled. The following sections explain this process
in detail.

A. Intrusion Identification

The recovery process starts when an intrusion is detected.’
Intrusions may tamper the database or the application server
instances. In order to fix the vulnerabilities that may have lead
to intrusions, Shuttle supports the following actions: 1) update
the application software; 2) identify a set of tampered database
items; 3) add, modify or remove logged requests; 4) launch
cleaned database and application server instances.

If tenants update the application software, they have to
ensure that the application’s interface remains compatible with
the requests that will be replayed. If the database is tampered
using user requests, tenants have to identify the malicious
user requests. For instance, a tenant can provide the set of
suspicious database items to Shuttle and it will resolve the
set of requests that accessed the suspicious items after the
estimated intrusion moment. Knowing the suspicious requests,
the tenant shall use Shuttle to add, modify or remove the past
accidental or malicious requests.

B. Dependency Graph

A dependency graph consists of nodes that represent re-
quests and edges that establish dependencies between them
(Figure 4). Dependencies between requests are established
using the following rules: 1) a request Rp is dependent upon
request R4 if there is a data item x such that Rp read x
and R4 performed the latest update on z; 2) dependencies
are transitive except when requests perform blind writes (i.e.,
when requests write items without reading them first [11]).

Previous solutions for relational databases extract the depen-
dencies using a pre-defined, manually-created, per-transaction
type template [11], or change the relational database man-
agement system code to extract read dependencies [12]. In
contrast, Shuttle uses the database proxy to log the database
accesses. Periodically, each database proxy traverses, in back-
ground, the operation list of each data item to collect the new
accesses and to generate the dependencies between requests.
The Shuttle manager processes the dependencies to update
the dependency graph. An alternative approach is to pull
the dependencies from each database node only before the
recovery process and generate the dependency graph when
needed. The dependency graph is implemented as a hash table.
The keys of the hash table are the RID. Each value of the
hash table contains the requests that depend on the associated
request, i.e., the requests that execute after this one. A scalable

3The way in which this detection is specifically done is out of the scope
of the work as we focus on recovery, not detection.

implementation can use a distributed hash table or a graph-
oriented database. Operations that precede the oldest snapshot
available are garbage collected.

The above method may lead to false positives, i.e., to flag
dependencies that do not exist. For instance, a request may
read a data item but not use it to compute the written value, so
there is no real dependency. Although tracking variables used
by each request during its execution might solve this particular
case [13], it would require modifying the code interpreter (e.g.,
Zend Engine for PHP), which would constrain Shuttle to a set
of specific languages. As our approach uses dependencies just
to group the requests that can be executed concurrently, false
dependencies imply a performance penalty but do not cause
data loss or inconsistent state.

Complex queries on a relational database may lead to false
negatives. For instance, if a data item is deleted and afterwards
there is an attempt to read it, the read fails and is not logged
(as operations that return an error are not logged); if during
replay the item is not deleted there is a false negative. [19].
In contrast with SQL queries that access the data items that
match a query, the CRUD interface of most key-value stores
specifies, in a deterministic and apriori manner, the data item
that will be accessed. Shuttle logs every access, even when
the data items do not exist, keeping the operation list of the
deleted data items to track further operations.

C. Replay

Shuttle aims to support a large range of applications in
which the user requests access a distributed database without
using transactions. This assumption contrasts with previous
recovery systems that set the order of requests based on the
semantics of the application they consider (e.g., [16]) or the
serialization provided by snapshot isolation (e.g., [13]). More-
over, requests executed concurrently during normal execution,
may depend on each other (e.g., the first reads an item written
by the second and the second reads an item written by the
first).

We propose a new approach to order the requests for replay-
ing that consists on sorting the requests per start-end order,
instead of using a dependency graph. Requests are replayed
ordered by their start instant. Moreover, if a request starts
before the end of another request, then they were executed
concurrently and they are also re-executed concurrently. Yet,
re-execution of concurrent requests is not deterministic, e.g.,
due to multi-thread servers, messaging systems, etc. Therefore
our novel approach uses the operation list to make parallel
replay deterministic, by forcing operations on a data item
during replay to follow the order established by its operation
list (Figure 3a).

Modifications to the application code or to the sequence
of requests may cause the application not to access the same
sequence of data items or read/write the same content during
the replay phase (Figure 3b). If an operation contained in the
operation list is not performed, the following operations to
the data item are blocked. To address this problem, at the end
of each request execution, the interceptor fetches the list of



data items accessed by the request on its first execution and
compares them against the ones accessed during the replay
process. The database client library invokes the database proxy
with the keys that have not been accessed to unlock the
remaining requests.

During replay there may be non-deterministic situations,
whenever an access is not contained in the operation list.
Consider the case of Figure 3. Figure 3a represents the first
execution of two requests. During the recovery period, the in-
trusion was removed hence requests access different data items
than in the first execution. If req. 2 started after the end of
req. 1, the replay would be consistent with the first execution
(Figure 3c). An approach using only the dependency graph
would have inconsistent results because the new dependency
happens at recovery time.

The problematic scenario is two requests being executed
concurrently in the original execution: the start-end order
defines that req. I and req. 2 are replayed concurrently (Figure
3d). The access to A remains consistent with the first execution
(req. 2 after req. I), since the accesses are constrained by
the operation list of A. However, the final value of B is
unpredictable because req. I may write B before or after
req. 2. Since both requests did not access the data item B
during their execution, the operation list does not establish an
access order. Therefore, the req. I and req. 2 may execute in a
arbitrary order. The order of these requests is as deterministic
as during the first execution: the operation of req. I can execute
before, between or after req. 2.

In order to turn the replay process more consistent with the
first execution, we leverage semantic reconciliation, as in Dy-
namo [17]. The case represented in Figure 3d is equivalent to
a concurrent update, where two parallel writes are performed
on distinct database instances. Each request writes a distinct
version resulting in conflicting versions of an item. Developers
use the application-assisted conflict resolution interface to
merge the versions. In this case, the following read operation
would access the values written by the latest operation. In
Figure 3d, req. 2 could choose between 5 and 1.

A related issue is the determinism of the application, i.e., the
issue if two subsequent executions with the same initial state
and requests can be guaranteed to have the same final state
and outputs. In the general case, we want replay to produce
the same state with the same requests, so applications shall be
deterministic. Five of the main sources of non-determinism
are: shared memory, thread concurrency, random number
generation, timestamps, and message exchanging. We assume
requests to be independent thus they do not share memory,
and that concurrent threads are independent. The API provided
by Shuttle provides deterministic random number generation
and timestamps using the RID as timestamp and pseudo-
random number seed, so the replay of a request will use the
same random numbers and timestamp (we consider a single
timestamp per request to be enough for most applications).
This mechanism is language independent. User requests and
database accesses are ordered in a deterministic way using the
operation list.

D. Clustering

We want recovery to take a fraction of the time elapsed
since the snapshot from which it starts (e.g., minutes). We
address this problem by grouping requests in clusters that can
be executed concurrently. A cluster is a set of requests that
have dependencies between them but not from/to requests in
other clusters.

Clusters are created when the recovery is about to start by
inspecting the dependency graph. Since clusters are indepen-
dent, they can be executed concurrently by different replay
instances without synchronization between them. Requests
within the same cluster, are performed in start-end order
(Section V-C). Given that more requests are executed concur-
rently, Shuttle launches more application servers and database
instances to process the replayed requests. Therefore, the
replay phase throughput is greater than during first execution
and the recovery time is minimized. This mechanism requires
that the dependencies remain unchanged during the recovery
phase.

E. Full and Selective Replay

We propose two approaches for intrusion recovery: full
replay and selective replay. Full replay consists in replaying
every request done after the snapshot. Executing many requests
takes considerable time, so this approach is adequate for
intrusions detected reasonably early after they happen, e.g., a
few days. Selective replay re-executes only part of the requests
so it is faster than full-replay. However, it requires tenants to
provide a set of malicious actions (i.e., requests) A;ptrusion-
This set is used to deduce the set of tainted requests A;qinted-
A request is said to be tainted if it is one of the attacker’s
requests or if it reads objects written by tainted request [8],
[11], [12]. The selective replay process is as follows (full
replay is simpler so we skip it):

1) Determine the malicious requests A;nirusion. Based on
initial data such as user session compromised or data items
accessed, the tenant determines the requests A;pirusion Used
by the attacker to compromise the application. For instance,
Aint’rusion = {R4} (Figure 4).

2) Use Aintrusion 1o determine the tainted requests
Atqinteq- For each request in A ¢rusion, traverse the depen-
dency graph in causality order and add these nodes to Aiginted
(in the figure Aiginted = {R.5, R.6, R.T}).

3) Get the requests needed to obtain the values read by
Atginteq- Instead of storing the input and output of every action
or versions of every data item, Shuttle replays the actions
which Aiginteq depends on. The data item value is known
at the snapshot instant so the algorithm transverses the graph
in inverse causality order from each request in A;qipnieq and
stores the requests in Ayepiay (Arepiay = {R-2} U Arainted)-
Apreplay is expanded by traversing the graph from each of its
elements in causality order to determine the requests which can
be affected by the re-execution of A,epiay = Areplay J{R.3}.
Requests subsequent to the snapshots posterior to the latest
malicious request may not be repeated if all their read opera-
tions read values contained in the snapshot.
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Figure 4. Dependency graph: R.1 precedes snapshot A; R.3 depends on
R.2, which is replayed to get the read values; R.4 is a malicious request;
R.5, R.6, R.7T are tainted.

4) Determine the replay order. The set A,¢piqy is sorted in
start-end order (no clustering possible).

5) Load the previous data item versions. Loads the version
in the selected snapshot of the data items read by the requests
in Areplay and written by A7nalicious~

6) Replay the requests. Requests in A,¢pqy are replayed.
If an access is not contained in an operation list, then a new
dependency is established and the requests that accessed the
data item during the first execution are also replayed as in [9].

FE Consistency

An important aspect of a recovery system like Shuttle is the
application consistency seen by users. For instance, if a user
does an action based on data written by a malicious action,
which result of the user action replay is consistent? Since users
have a non-deterministic behavior, they may have to be notified
if a recovery took place and their data was modified.

Shuttle does not execute requests that returned an error in
the first execution. Similarly to other works in the area [16], we
assume that these cases were compensated by the user when
they happened. As only requests that did not return an error are
replayed, Shuttle considers an inconsistency when a request
returns an error (e.g., a status code from the range 400-499)
or a response is different during replay. Shuttle provides the
following API for the application programmer to define how
inconsistencies are dealt with (Shuttle calls these functions in
case they are defined by the tenant):

1) preRecover(): invoked before the beginning of the re-
covery process.

2) handlelnconstency(request, previous response, new re-
sponse, previous keys, new keys, action): invoked when
there is an inconsistency.

Different re-executions of two requests.

3) postRecover(statistics, old version, new version): in-
voked after the end of the recovery process.

The first function allows tenants to perform a set of
actions before the beginning of the recovery process, such
as notifying the operations team or taking a new snapshot.
The second function takes as input the operation that caused
the inconsistency as well as the response and keys accessed
during the normal execution and during the recovery process.
It also takes as argument the action to take. Currently we
consider three possible actions: 1) ignore the inconsistency;
2) notify the user of the inconsistency; 3) execute another
request. This method allows tenants to reduce the impact of
undoing actions with external visibility. For instance, tenants
may send an automatic email to the affected customers. Using
the postRecover function, the tenant has access not only to
the statistics of the recovery process but also to an interface
to compare the database values before and after the recovery
process and the application responses, before exposing the data
to the users.

G. Instance Rejuvenation

Attackers may exploit system vulnerabilities to tamper
application server or database instances, affecting the appli-
cation integrity or availability. Shuttle interacts with the PaaS
controller to rejuvenate instances when they are compromised.
This process terminates the instances and launches new ones.
The PaaS controller initializes the new instances with updated
machine images and deploys an updated version of the ap-
plication code, which may include updates to fix discovered
flaws or prevent future intrusions.

We assume new instances to be intrusion-free as the image
can be updated to fix previous flaws and their persistent state is
renewed. Instances can be launched in a remote site to recover
from catastrophic disasters [20]. Tenants are responsible for
ensuring that request dependencies remain correct and the
updated version API is compatible, or for providing a script
to update each request to the new API. Moreover, the selected
snapshot has to be consistent according to the updated version
specification or every request executed since the application’s
begin shall be replayed.

This process can be used in a proactive manner to renew
instances to remove unknown intrusions [21] or to test new
application versions to compare its results against the previous
version, using the branching mechanism (Section V-H).
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H. Recovery in Runtime

Shuttle is capable of doing recovery in runtime, i.e., without
making the application unavailable during the recovery period.
To do so, each recovery process is considered to be a new
branch, a model inspired in versioning systems such as git
[22]. A branch is a sequence of snapshots (akin to commits
in git). Figure 5 presents an example with 2 branches and 4
snapshots.

Each recovery process creates a new branch forking a
previous snapshot chosen by the tenant, either explicitly or im-
plicitly (by indicating the initial intrusion instant, selecting im-
plicitly the preceding snapshot). Incoming user requests access
only the data of the previous branch keeping the application
available, while replayed requests access the created branch
without compromising the availability of the application. In
addition, tenants can use the branching mechanism to test
their intrusion recovery procedures in background, i.e, without
exposing users to test issues.

Since tenants can select previous snapshots, we define
a branch as a sequence of non-tampered snapshots, named
branch path. For instance, the snapshots A, B, D compose
branch 2 in the figure. Every database instance knows the
branch path of the previous branch and the newly created
branch in use by the requests being replayed.

Since a novel data item version is created only when the
data item is written for the first time during each snapshot, the
data item may not have a version for each snapshot (Section
IV-C). Therefore, the version accessed by an operation is
defined using the branch path and the version list of the data
item: operations read the latest version present in the version
list and in the branch path and write the latest version in
the branch path. A new version is added to the version list
on the first access to each data item during the replay. This
mechanism allows mapping the request to the correct version.
Since the version list keeps a pointer to the latest version and
this reference is updated, the complexity of getting the correct
version is O(1).

At recovery time, the manager sends the new branch path
to every database instance. The new incoming users access
the, perhaps corrupted, old branch while the requests being
replaced access the new branch. Therefore, the application
remains online, perhaps with a degraded behavior, without
exposing downtime to users.

At some point, when the recovery is finishing, the user
requests have to start being issued to the new branch. To do
so, after replaying the requests, the proxy flag restraining is
set and every new request is marked with the restrain flag.
Database accesses marked with restrain are delayed. After

replaying the requests retrieved during the recovery process,
the proxy sets the new branch in the subfield branch of SRD of
the new requests, the restrain flag is disabled and the database
nodes are notified to proceed the accesses. This mechanism
delays the processing of some requests, but this has typically
a duration of seconds, compared with a recovery process that
may take many minutes or even hours.

VI. EVALUATION

In order to evaluate our approach, we integrated a Shuttle
prototype with AppScale and Voldemort. AppScale [23] is an
open-source version of Google App Engine. Voldemort [24]
is an open source implementation of Dynamo [17], developed
and in use by LinkedIn. Shuttle’s prototype has been developed
in Java (1400 lines of code for the proxy, 1800 for the manager,
300 for the interceptor, 900 for the replay instances and 1800
for the database proxy).

A. Application Example: Ask

To evaluate Shuttle we developed a Questions and Answers
(Q&A) web application for Paa$S inspired on Stack Exchange*
(1700 lines of code). The application represents a generic web
application that accepts requests and stores the persistent state
in Voldemort. Its implementation is independent of Shuttle,
i.e., Shuttle does not require the application to be modified.

The application semantics implies the following dependen-
cies: a) questions are independent among them; b) answers
depend on previous answers and on votes to the same question;
¢) comments depend on the commented answer; d) votes
depend on the answer they vote on. We selected subsets of a
dump of the Stack Exchange database to simulate real-world
requests.’

B. Accuracy

We evaluate Shuttle’s ability to correctly recover applica-
tions in different scenarios. We consider three classes of in-
trusion scenarios: malicious requests, software vulnerabilities
and external channels (e.g., SSH connections). The selected
data subset contains 100 000 requests originally performed
from 31 July until 12 Sep. 2008: 6992 questions, 28993 an-
swers, 2220 comments, 61795 votes. Requests were sorted per
date, establishing 92 939 dependencies and 6992 independent
clusters.

At intrusion moment, Sep. 2nd, the database contains 4338
questions, 18286 answers, 422 comments and 38334 votes
(61380 requests). The attack is detected in Sep. 12th, as-
suming a pessimistic delay of 10 days. During this period,
the application executed 38 620 requests. Table I presents
a summary of the accuracy tests. It contains the number of
data items tampered by the intrusion (#intrusion) and the
number of user requests that read data items written by
tainted requests or malicious requests (without considering
the intrusion requests). Recovery using full replay requires
to replay every request from the latest snapshot before the

“http://stackexchange.com
5 Available at: https://archive.org/details/stackexchange



‘ #intrusion  #tainted  #replayed (sr)  #replayed (fr)
la 110 0 [0, 605] > 38620
1b 58 14 [0,379] > 38620
Ic 48 52 [0, 253] > 38620
2a 4 338 0 - > 38620
2b 18 286 1278 - > 38620
3 2 000 - - > 38620

Table 1

NUMBER OF REQUESTS REPLAYED DURING THE RECOVERY PROCESS.

intrusion instant until the detection instant: in this example at
least 38 620 requests (#replayed (fr)). Selective replay only re-
executes tainted requests, unless some data item versions need
to be recreated. On the worst case, the system does not contain
any snapshot and every data read by the tainted requests shall
be recreated (#replayed (sr)).

Malicious Requests. In the first class of scenarios, we
consider three cases in which an attacker has stolen an user
credential, then: a) deleted every question created by the user;
b) deleted every user answer; or ¢) modified every user answer.

la) The attacker deletes the user’s 4 questions, performing
4 delete requests that remove 106 associated comments and
answers. The tenant identifies the malicious requests through
the user session and selects a snapshot previous to the intrusion
instant. Users cannot access deleted questions, so no request
is tainted. If Shuttle has a snapshot containing the deleted
questions, then selective replay does not need to replay any
request and merges the deleted questions on the current system
state. If the latest snapshot is previous to the creation of
the 4 questions, then selective replay replays 605 requests to
recreate the deleted questions, their answers and votes. The
result is merged with the current branch, rebuilding the deleted
questions.

1b) Deleting the user’s 48 answers implies that 58 data
items are deleted and 14 answers and comments are tainted as
they execute after the intrusion instant answering and voting
without knowing some answers. If a snapshot containing the
user answers exists, then the selective replay approach replays
only 14 tainted answers and comments. Otherwise, it replays
379 requests: the total number of requests to recreate the
tainted questions and then merge the result.

Ic) 48 data items are modified while 52 requests are tainted
because the users replays, votes and comments the modified
questions after the intrusion instant. For recovery, the 52
tainted requests shall be replayed. If Shuttle does not have
a snapshot containing the questions, then 253 requests have to
be replayed to recreate them.

Software vulnerability. On the second class, we evaluate
intrusion scenarios where software flaws allow attackers to
modify the database without authorization. For instance, a
code update added a flaw that allows SQL injection. We
consider two independent scenarios where the attacker: a)
deleted every question; b) deleted every answer.

In 2a), the deleting of every question removes 4 338
data items. In 2b), the questions are preserved but 1 278
answers, votes and comments are tainted as the user did not

see the deleted answers. Instead of identifying the requests
that explored the vulnerability, the tenant patches the code to
remove the application vulnerability. Tenants use the instance
rejuvenation mechanism to shutdown current application con-
tainers and deploy new application version. After, they use the
full replay to repeat all requests since the beginning of usage
of the software version with the flaw. Requests that explored
the vulnerability fail to execute and a consistent application
state is recovered.

External channel. On the third class, we consider a case
where the proxy does not log the attacker actions. The attacker
might use, for example, a SSH account created exploiting
the ShellShock vulnerability. The attacker stolen the database
credentials and modified at least 2000 data items. Since these
database operations are not logged, the dependencies are not
established and the number of tainted requests is unknown.
However, even without logging the malicious actions, Shut-
tle recovers the application by loading a database snapshot
previous to the estimated intrusion instant (Sep. 2nd) and
performing full replay. The attack effects are removed because
Shuttle loads a database snapshot instead of undoing every
operation. As the malicious actions were not logged, they are
not replayed and Shuttle recovers the application consistency.

The number of requests to replay is defined by the snapshot
instant: on full replay Shuttle replays all requests performed
after the intrusion instant, while on selective replay Shuttle
replays the requests necessary to read the values of the entries
before the intrusion and the tainted requests. While selective
replay seems to have a big advantage comparing with full
replay, which performs, in these scenarios, at least 38 620
requests, some applications have more dependencies thus the
number of tainted requests is bigger. For instance, if the
order between questions with the same tag is considered as
a dependency, the number of dependencies rises from 92 939
to 109 118 and the number of independent clusters decreases
from 6992 to 56.

C. Performance

We evaluate Shuttle’s performance considering the through-
put of the application, the size of the logs and the recovery
time. We also estimate the cost of deployment of Shuttle on
a public cloud provider, Amazon Web Services (AWS). We
run 6 AWS c3.xlarge instances (14 ECUs, 4 vCPUs, 2.8
GHz, Intel Xeon E5-2680v2, 7.5 GB of memory, 2 x 40
GB storage capacity) connected by gigabit ethernet (780Mbps
measured with iperf, 0.176ms round-trip time measured with
ping). We use one client, one instance with Shuttle proxy and
a load balancer (HAProxy), three WildFly (formerly JBoss)
application servers and one Voldemort database. We consider
a large data sample from the data of Stack Exchange with
50 000 write requests (1432 questions, 3399 answers, 8335
comments, 36834 votes) and 950 000 question view requests.
We do not consider a particular scenario or replay scheme
(full/selective), but define instead the number of requests
recovered per experiment.



Update latency (us)

| Workload A Workload B

Shuttle 6325 ops/sec [5.78 ms] 15346 ops/sec [3.62 ms]
No Shuttle | 7148 ops/sec [5.07 ms] 17821 ops/sec [3.01 ms]
overhead 13% [14%] 16% [20%]

Table II
OVERHEAD IN THROUGHPUT (OPS/SEC) AND RESPONSE LATENCY (MS).

Performance overhead. We evaluate the overhead of Shut-
tle by measuring the throughput of the Ask application with
and without Shuttle (Table II). We considered two workloads:
(A) 50% reads, 50% writes; (B) 95% reads, 5% writes. Write
operations insert questions, answers, comments and votes of
the data sample, while the read operations access the latest
inserted questions. Table II shows that Shuttle imposes an
overhead of 13-20%, which seems reasonable considering its
benefits. We believe the main cause of overhead is the current
proxy implementation, which is not very efficient. The current
version written in Java performs considerably better than a
previous version in Python, but we expect to improve it further
by rewriting it in C.

In order to measure Shuttle’s overhead on the database ac-
cesses, we used the Yahoo! Cloud Serving Benchmark (YCSB)
framework [25]. We considered two workloads: (A) 50%
reads, 50% updates; (B) 95% reads, 5% updates. Operations
access 1KB records following a Zipfian distribution (Figure
6). The results show Shuttle has small impact on the latency
of database accesses.
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Figure 6. Performance overhead on database.

Recovery. We measured the recovery time using Shuttle to
replay the sample of 1 million requests. While serial replay
(1 cluster) takes approximately 30 minutes (1717s), recovery
with clusters takes only 9 minutes (544s) (Figure 7a).

We measured the recovery period with different numbers of
instances on clustered mode (Figure 7b). The figure shows that
Shuttle is scalable, in the sense that adding more servers allows
reducing the time of recovery (3 servers allowed recovery in
half the time of 1, ~750s versus ~400s).

We measured the duration of the restrain period considering
two clients with a constant throughput of 400 requests/sec.
The serial replay mode is not capable of fully exploring the
application servers so it takes almost one hour to recover
(2953s total, 1100s in restrain mode) (Fig. 8a). The clustered
mode takes 10 minutes (635s), from which the restrain period
represents 46 seconds (Fig. 8b).
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Space overhead. We measured the memory and storage
overhead of 1 million requests, from which 95% were requests
for reading questions. Table III presents the size of each
component in memory. Requests and keys are stored in the
external database while the dependency graph and the accesses
are kept in the manager and database instances. No snapshot
has been taken and the data is not compressed. In the current
implementation, the SRD represents a fixed overhead of 35
bytes per request.

# objects  size (MB)
Shuttle Storage:
Request 1 million 212
Response 1 million 8 967
Start/end timestamps 2 million 16
Keys 137 million 488
Total 9 684
Database node:
Version List 14 593 1.4
Operation list 9 million 277
Total 282
Manager:
Graph 1 million 718

Table III
STORAGE USED BY SHUTTLE (1 MILLION REQUESTS).

The main overhead are the responses, as we are storing them
complete (full HTML pages), although Shuttle has to store
them only if the tenant uses the API to solve inconsistencies
(Section V-F). The size of the list of keys accessed by the
request depends on the key length and the number of keys
accessed. Each access implies an overhead of 13 bytes to
record the request ID and the operation type in the version
list. The snapshot does not impact the throughput but requires



to track the new version, which implies a storage overhead
of 10 bytes for each data item when it is written by the
first time after a snapshot. This overhead can be reduced
implementing the version list as a bitmap. The total database
storage overhead encompasses synchronization mechanisms.
Since the dependency graph is implemented as a double-
linked graph, each entry in the dependency graph has 765
bytes to store not only the start/end instant of the request
but also the requests which this request depends from and to
(10 on average). Serialization mechanisms and compression
techniques can reduce the storage overhead. For instance,
Cassandra’s /z4 reduces the size of the Shuttle Storage on disk
to 4.9 GB.

Monetary cost. Since the replay instances are allocated on
demand and paid per use, the cost of Shuttle is dominated
by the storage. For instance, consider the extreme case of
20 million requests/day to show that the costs are not high.
We consider tenants to keep the record of the latest quarter
(2 billion requests) and the overhead is proportional to the
values in Table III but the responses are not stored. To store
it Shuttle would need 1.432 TB in Shuttle Storage, 1.436 TB
for the graph and 564 GB in the database. To reduce this
cost in AWS, we could combine DynamoDB with Glacier, a
high latency / low cost storage service. Shuttle might store
the last 24 hours of requests on DynamoDB and the rest on
Glacier. In this scenario, Shuttle generates 35 GB per day
(except the responses), which costs $8.75 per month to store in
DynamoDB and $4.83 per-month for the provisioned capacity.
Glacier would store 3.433 TB with a cost of $34.33 per
month. Since Shuttle performs snapshots, tenants can remove
old snapshots tacking into account that Shuttle needs only
a snapshot previous to the intrusion instant to recover the
application.

Shuttle requires an extra instance to deploy the Shuttle
manager. To recover the application, we used one c3.xlarge
virtual machine as replay instance and two c3.xlarge instances
to run the application servers to replay 1 million requests
during 544 seconds. Considering a full-hour, these instances
have a cost of $0.239 per instance-hour, which means a cost of
less than $1 for the recovery. In this manner, Shuttle leverages
the elasticity and pay-per-usage model of cloud computing to
provide a cost-efficient intrusion recovery solution.

VII. CONCLUSION

The paper presented Shuttle, an intrusion recovery service
for PaaS, with several instances and database servers. We
described the design of a new architecture where a snapshot-
based recovery system is provided as a service for PaaS ten-
ants. Shuttle relies on a distributed database and the resource
elasticity of PaaS environments to reduce the recovery time
and costs. We introduce a novel dependency mechanism based
on request start and end instants and list of accesses to order
the requests during replay. Shuttle uses a branching mechanism
to avoid service downtime during the recovery phase and
permits to undo a recovery process. Our evaluation shows that

11

Shuttle can replay 1 million requests in 10 minutes, with a
cost of less than $1.
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