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Abstract—A blockchain is a distributed ledger in which par-
ticipants that do not fully trust each other agree on the ledger’s
content by running a consensus algorithm. This technology is
raising a lot of interest both in academia and industry, but the
lack of tools to evaluate design and implementation decisions
may hamper fast progress. To address this issue, this paper
presents a discrete-event simulator that is flexible enough to
evaluate different blockchain implementations. These blockchains
can be rapidly modeled and simulated by extending existing
models. Running Bitcoin and Ethereum simulations allowed
us to change conditions and answer different questions about
their performance. For example, we concluded that doubling the
number of transactions per block has a low impact on the block
propagation delay (10ms) and that encrypting communication
has a high impact in that delay (more than 25%).

Index Terms—Blockchain, simulation, Bitcoin, Ethereum

I. INTRODUCTION

Blockchain is a promising new technology, generating
widespread interest, and receiving considerable attention in
the research community [1], [2]. This interest started with the
success of Bitcoin [3], [4], but took speed with the promise
of smart contracts [5] and a vast number of applications [6].

A blockchain, or distributed ledger, consists of an append-
only data structure that stores an ordered list of transactions
(operations, data items), replicated in several nodes connected
by the Internet. Blockchains typically assume that these nodes,
which do not fully trust each other, may behave in a Byzantine
manner, i.e., may fail arbitrarily [7]. At the same time, they
need to reach a consensus on the order of transactions, which
has to tolerate Byzantine faults. New transactions can be added
to the blockchain but it is not possible to modify those already
listed, ensuring integrity and non-repudiation of transactions.

The original blockchain was the core of the Bitcoin cryp-
tocurrency system, where nodes store unspent transaction
outputs (UTXOs), which are the state of the system. UTXOs
can be transferred from a Bitcoin address to another Bitcoin
address. Ethereum [5] is a blockchain with more complex
states, enabling Turing complete code to be executed within
a transaction. This code implements smart contracts [5], [8].
Bitcoin and Ethereum operate in a public environment, where
nodes can join and leave the network without authorisa-
tion, so they are known as permissionless blockchains. Such
blockchains do consensus using a variant of proof-of-work
(PoW) [3], [5].

While there is a broad interest in developing blockchain
systems for specific use cases, there is a lack of tools to
perform their evaluation. Current evaluations are often based
on emulation, which imitates the behaviour of a system in
a large set of machines [9], [10]. This approach, however,
incurs a large overhead and lacks scalability for real world
deployments. Besides, power consumption of a large-scale
system may have to be taken into account. An alternative
is simulation. Network and distributed system simulators are
important tools to evaluate the performance of protocols and
systems in a large set of conditions. Simulators provide an en-
vironment that simplifies the implementation and deployment
of protocols. With simulation it is possible to study a large-
scale system with thousands of nodes in a single machine and
gather results in reasonable time.

The present paper proposes a blockchain simulator that we
designate BlockSim.1 The objective is to present the design
and implementation of a simulator where blockchains can be
implemented in a simple way and have their performance
evaluated in different conditions. BlockSim provides a frame-
work and a set of base simulations models common to several
blockchains (blocks, transactions, ledger, network). Users can
extend these models to evaluate their own design and imple-
mentation decisions. The framework will then take the created
models and execute them in the simulator, according to a set
of events defined by users. This approach provides a versatile
solution without the burden of implementing a simulator from
scratch, and can be extended to simulate other blockchains.

We used BlockSim to evaluate the tradeoffs involved in four
modifications to Ethereum. These simulations allowed us to
conclude that: (1) when doubling the number of transactions
in a block, it takes on average 10 ms more to propagate
each block; (2) if messages were encrypted (they are not),
there would be an increase of at least 25.8% in the block
propagation time; (3) disseminating the block header and body
together instead of sending them separately, would decrease
the block propagation time by 27.9%; and (4) propagating each
transaction only once, instead of propagating it a second time
in the block, would decrease the block propagation time by
29.2%.

1Available at: https://github.com/BlockbirdLabs/blocksim
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II. BACKGROUND AND RELATED WORK

A simulation attempts to reproduce the performance of a
system and its progress over time. To do so, simulations run
a model. A model encompasses a set of assumptions about
the operation of the system and can be classified as follows
[11], [12]: a stochastic model receives input values that follow
statistic distributions, leading to probabilistic outputs, whereas
a deterministic model does not use random values; a static
model represents a system at a particular point in time and
a dynamic model over a certain time frame; a discrete-event
model describes the system as a sequence of events, so it is
possible to jump in time from one event to the next, whereas
a continuous model tracks the system states over time.

Simulators like The ONE [13], PeerSim [14], CloudSim
[15] and BFTSim [16] are useful tools in the development
of protocols and systems for opportunistic networks, peer-to-
peer networks, cloud computing and Byzantine fault-tolerant
replication, respectively. There are also simulators created to
perform evaluation on the impact of network-layer parameters
on the security of Bitcoin PoW, such as Bitcoin Simulator
[17], Shadow-Bitcoin [18] and VIBES [19].

All these simulators follow a discrete-event simulation
model. All create a model for certain resources, such as:
network latency, bandwidth, ad-hoc networks and CPU. Each
resource model is described by specific parameters. For in-
stance, a network resource model can adopt two parameters:
a link latency and link bandwidth, and a CPU resource can
model the computation rate.

Bitcoin Simulator, Shadow-Bitcoin and VIBES try to sim-
ulate Bitcoin on a large-scale network running thousands
of nodes, on a single host. However, these simulators are
restricted to a concrete blockchain and thereby they do not
have the flexibility to extend or replace the model, to easily
simulate other blockchain systems following different consen-
sus models or protocols. This is the limitation that we aim to
solve with this work.

III. MODELLING RANDOM PHENOMENA

A phenomenon is said to be random if there is uncertainty
associated to its occurrence, but also an observable pattern.
When creating our models we aim to mimic this observable
pattern. For instance, we know the average time between
blocks during a certain interval on a public blockchain. With
this information, we can predict the next outcome with a
degree of confidence. We do it by extrapolating a probability
distribution for a given phenomena observed in a real system.

In practical terms, we assembled a methodology to measure,
collect, and derive a probability distribution that our models
will use. For instance, in order to calculate the throughput
when sending and receiving messages over TCP between
different geographic locations, our procedure was: (1) setup
two instances on the desired geographic locations with the
iPerf3 bandwidth measurement tool; (2) measure the through-
put between the two instances using iPerf3, at each hour, for
24 hours; (3) at the end of 24 hours, we collect the iPerf3
logs from the two instances; (4) use the Kolmogorov–Smirnov

test [20] to know which distribution best fits the samples
collected in Step 3; (5) the distribution name and parameters
are then consumed by the simulator, to extrapolate the values
of throughput during the simulation.

We use the same procedure to extrapolate values for latency,
by collecting ping traces between different geographic loca-
tions. Similarly, to obtain the time to validate a transaction
or a block we use a real deployed blockchain node. All this
information is then used by our models.

IV. BLOCKSIM ARCHITECTURE

BlockSim is a simulation framework that aims to provide
assistance in the design, implementation, and evaluation of ex-
isting or new blockchains. The simulator follows a stochastic
simulation model, being able to represent random phenomena
by sampling from a probability distribution. Our models are
considered dynamic, as they can represent the system over a
certain interval. A discrete-event simulation model is suitable
to model a blockchain system, since it changes states at
discrete points in time, independently of the real time they
take to happen. Therefore, the simulator can keep track of
thousands of nodes and events that only change states.

BlockSim has the architecture of Figure 1. The figure
shows the main components, connectors and interfaces of the
implementation. The next sections present the components.

Figure 1: BlockSim architecture.

A. Discrete Event Simulation Engine

The core of a discrete event simulator is a Discrete Event
Simulation Engine (DESE). The basic functionality of a DESE
is similar in most discrete event simulators, so we did not de-
sign DESE from scratch, but leveraged an existing framework
called SimPy [21]. SimPy is a process-based discrete-event
simulation framework based on Python. Processes in SimPy
are based on Python generator functions and can be used
to simulate asynchronous networking or to implement multi-
agent systems. Generators allow the programmer to specify
a given function to be exited and then later re-entered at the
point of last exit, enabling functions to alternate execution
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with each other. The exit and re-entry are performed using the
Python yield keyword.

The DESE component supports several core functionalities,
such as: scheduling of events; queuing and processing of
events; communication between components; management of
the simulation clock; and control the access of resources by the
entities. The BlockSim user can also use all the functionality
from SimPy when creating new models. However, SimPy is a
framework to build arbitrary models or simulators, whereas
BlockSim provides a more tailored framework to simulate
blockchains by providing additional components (next sec-
tions).

B. Simulation World

The simulation world component (Figure 1) is responsible
for handling the input/configuration parameters of the sim-
ulations. These parameters are necessary for the simulation
models, which are defined using the Blockchain Modelling
Framework (cf. Section IV-F). Many of these parameters
characterize random phenomena (cf. Section III).

These parameters are organised as a set of files: (a) Con-
figuration file: name of blockchain being simulated, node
locations, configurations that depend on the blockchain being
simulated (e.g., probability of orphan blocks, message size,
block size, and gas limit); (b) Delays file: probability distri-
butions for time to validate transactions, time between blocks,
etc.; (c) Latency file: probability distributions corresponding
to the latency between possible locations for nodes; (d)
Throughput received and sent files: probability distributions
of reception throughput and another to sending throughput
between possible locations for nodes.

The user needs to assign these files to the simulation world
and also specify the simulation start time and duration. This
component then returns a variable world that will be passed to
different components, making available all the attributes which
characterise the world of the simulation.

C. Transaction and Node Factory

The transaction factory is responsible for creating batches
of transactions, which are again modelled as a random phe-
nomena. These transactions are broadcasted by a random node
on a list, when the simulation is running. The node factory
creates nodes that are used during the simulation. The user
can specify the location, number of nodes and identifier.

D. Programmatic Interface and Simulation Example

The programmatic interface is the main interface available
to the user. Using Python language and SimPy [21], users can
write their own models, use the existing ones to define their
own blockchain system, or modify aspects of models already
implemented. This interface is also responsible for starting the
simulation. When started, the DESE will consume the events
and entities before initialising the simulation, to know which
models will be used.

Listing 1 shows how the user can define a simulation,
starting by creating the simulation world. The simulation world

world = SimulationWorld(
7200, # Duration: 2 hours
int(time.time()), # Current time
"input/config.json",
"input/latency.json",
"input/throughput-received.json",
"input/throughput-sent.json",
"input/delays.json")

net = Network(world.env, "ETH Network")
miners = {

"Ohio": {
"how_many": 0,
"mega_hashrate_range": "(20, 40)"

}
}
non_miners = {

"Tokyo": {
"how_many": 3

}
}
factory = NodeFactory(world, net)
nodes = factory.create_nodes(miners, non_miners)
world.env.process(net.start_heartbeat())
for node in nodes:

node.connect(nodes)
trans_factory = TransactionFactory(world)
trans_factory.broadcast(7, 6, 300, nodes_list)
world.start_simulation()

Listing 1: Example definition of a simulation.

is then instantiated with the simulation duration in seconds,
timestamped when the simulation starts and finally the file path
to each input parameter. After creating the network, the user
uses the node factory to create the nodes for the simulation.
The user then starts the network heartbeat and connects all
nodes with each other. Using the transaction factory, the user
broadcasts a batch of 6 transactions every 5 minutes, 7 times,
in a total of 42 transactions broadcasted during the simulation.
Finally, the function gives the order for DESE to start the
simulation.

E. Monitor and Reports

The goal of the monitor is to capture metrics during the
simulation. Examples are: number of transactions each node
broadcasts or receives; transactions added to the queue; blocks
processed; time to propagate transactions and blocks. It should
be easy for the user to update metrics wherever needed, and
have them automatically collected and stored in the Reports
component.

F. Blockchain Modelling Framework

To be able to simulate arbitrary blockchains, we have to
consider different layers. We can identify the following major
layers in a blockchain system: the Node layer specifies the
responsibilities and how a node operates when being part of
a given network; the Consensus layer specifies the algorithms
and rules for a given consensus protocol; the Ledger layer
defines how the ledger is structured and stored; the Transaction
and block layer specify how information is represented and
transmitted; the Network layer establishes how nodes commu-
nicate with each other; and the Cryptographic layer defines
what cryptographic functions will be used and how. Models
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Figure 2: Class diagram of the modelling framework.

such as Node, Transaction, Block, Consensus, and Network are
available as classes that can be extended by the user. These are
then used by the DESE to create blockchain system entities,
which interact within events defined in the models.

Figure 2 represents the classes available in the framework.
The basic models in grey are presented in the following
sections. They can be extended to simulate specific blockchain
implementations.

1) Chain Model: Reproduces the behaviour of a chain. In
this model, we implement an abstract functionality that works
across different blockchains. The most important functionality
is adding a block to the chain. The chain model first checks
if the block is being added to the head (previous hash of the
block points to the head of the chain); if this is the case, it
simply adds the block to the chain. Otherwise, the block is
added to a parent queue that will be consulted every time a
new block is being added, checking if the new block points to
a block on the parent queue. This solves the problem of when
a node receives the child before the parent due to network
delays. When a block is not being added to the head, but
the previous hash points to an old block, the model creates a
fork on the chain by instantiating a secondary chain. Then, it
checks if the block should be the new head by calculating the
difficulty of the chain [3], [5]. If this is the case, it accepts the
secondary chain as the main chain.

2) Consensus Model: Provides the rules applied when
validating blocks and transactions. In the abstract model, we
opted for not performing validations; on the other hand, the
model adds a delay that simulates the validation process
and we assume all blocks and transactions are valid. The
consensus model also defines the rules to calculate a difficulty
of a new block (for PoW). In this base model we opted
for using a simple calculation of the difficulty, considering
Pd as the block parent difficulty, BTS as timestamp of new
block, and PTS as timestamp of parent block. The new
block difficulty is calculated using the following expression:
difficulty = Pd + (BTS − PTS). This expression is inspired
by the mechanisms used in Ethereum [5] and Bitcoin [3]
for incrementing the difficulty of a block when it is created

in less time that the target they consider (e.g., 10 min. in
Bitcoin). The difficulty represents the minimum amount of
effort required to mine a new block on top of the current chain
head. The consensus model can be extended and equation
difficulty changed accordingly.

3) Network Model: The network model is responsible for
knowing the state of each node during the simulation, estab-
lishing the connection channels between nodes, and applying
a network latency on the messages being exchanged. The
network latency delay applied depends on the geographic
location of the destination and origin nodes. The simulation
framework gives the user the freedom to choose what nodes
to connect; it does not implement a specific peer-to-peer (P2P)
discovery protocol [22]. It is possible to define an additional
model to simulate a particular P2P discovery protocol.

The mining process of a new block, i.e., the solution of a
cryptopuzzle to obtain a PoW (in blockchains that use this con-
sensus approach), is in part simulated by the network model,
because it knows and can interact with any node. Hence,
during all the simulation, the network entity selects one node
to broadcast its candidate block. The interval between each
selection, which we call the network heartbeat, corresponds to
the time between blocks, depending on the blockchain system
being simulated. Each node has a corresponding hash rate. The
greater the hash rate, the greater the probability of the node
being chosen.

The network model also simulates the occurrence of orphan
blocks, i.e., of blocks that have to be discarded due to a fork
in the chain of blocks due to the probabilistic nature of PoW
[4]. The network model simulates this behaviour by selecting
two nodes to broadcast its candidate blocks. This event only
occurs with a predefined probability [22], [23], set in the
configuration.

4) Node Model: The node model is responsible for simu-
lating the functionality of a node operating in a P2P network.
When a simulation starts, a node connects to a list of nodes.
When a connection occurs, the origin node starts listening for
inbound communications from a destination node during the
simulation. On the other hand, a node can send a message to
a specific neighbour or broadcast a message to all neighbours.
In the context of the simulator, an event is being scheduled
to be processed by other entity, the destination node. The
node model is also responsible for applying a delay when
receiving and sending messages. This delay depends on the
message size. The size of each message is specified depending
on the blockchain system being simulated and the throughput
correspondent to where the node pretends to send or receive
the message. For the first connections between nodes, we
apply a three-times latency delay corresponding to the TCP
handshake. After that, the following communications only
apply to one latency delay, which is referenced in the network
model.

All these basic models can be extended to support different
blockchain systems by creating higher level models, something
that we will explore in the next two sections respectively for
Bitcoin and Ethereum.
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Figure 3: Messages exchanged in Bitcoin to get a new block.

V. MODELLING BITCOIN

Using the Blockchain Modelling Framework, we can easily
model the Bitcoin blockchain by reusing the base models
represented in Figure 2. We configure the simulation world
with the block size limit and the probability distribution of the
number of transactions per block, extrapolated from the last
two years of the public Bitcoin network [24]. As the block
size limit in Bitcoin is 1 MB [3], we take from the probability
distribution the number of transactions; however, if the user
chooses to simulate an environment with a 2 MB block, we
multiply by 2 the average number of transactions. With this,
we can assess the performance with different block size limits.

The Bitcoin network protocol [25] defines the messages
that are exchanged between nodes. For each message, the
name, payload, and size are defined. We define the following
messages in our model: inv to advertise knowledge of new
transactions or blocks; getdata to retrieve the content of a
specific block or transaction; tx to send a single transaction;
block to send a specific body of a block; headers to send block
headers; getheaders to request block headers. The user can
easily modify the message sizes in the configuration file. The
model then reads configurations through the world variable
(cf. Section IV-B) to calculate the size of each message. The
sizes are taken from the Bitcoin documentation [25].

The Bitcoin Node model inherits the base node model,
as shown in Figure 2. With a predefined functionality to
operate a node in a P2P network, inherited from the base
node model, we can focus on building a specific model
for the Bitcoin protocol. Bitcoin nodes can be divided into
two major groups (reality is more complicated, with nodes
implementing a sets of roles [4]): a miner node or a non-miner
node (or full-node). A non-miner node only needs to wait and
validate new blocks that appear in the network or validate
and broadcast new transactions. A miner node validates and
collects each new transaction in a transaction queue. The
creation of a candidate block is the process of collecting the
pending transactions and fitting them in a block. The node only
broadcasts its candidate block to the network, when selected
by the Network base model; this process simulates the mining
of a new block. The simulator does not execute cryptographic
operations or validations; it only applies a delay corresponding
to the process of validation in a real system, which is measured
beforehand (cf. Section III).

The process of announcing a new block is shown in Figure
3, starting by Node A announcing a new block to its neigh-

Figure 4: Messages exchanged in Ethereum to get a new block.

bours with an inv message. When Node B receives this inv
message, it calls Node A using a getdata message to send
the entire block it announced. Node A receives the getdata
message and sends the entire block to Node B using a block
message. When Node B receives this message, it validates the
block and adds it to its chain (if valid). The same process
works for new transaction(s) announced by a node on the
network. When a miner node receives a new transaction in
a tx message, it adds it to a transaction queue.

VI. MODELLING ETHEREUM

The process of modelling Ethereum using the Blockchain
Modelling Framework is similar to Bitcoin’s (Figure 2). The
simulation world in this case is configured also with the block
gas limit and the start gas for every transaction. The start gas
(or gas limit) is the maximum amount of gas the originator of
the transaction is willing to pay. For instance, if we configure
our environment to have a block gas limit of 10,000, and a
transaction gas limit of 1,000, in our simulation we will fit 10
transactions per block. With this we can see the performance
in different block gas limits. Gas is consumed by the execution
of Ethereum virtual machine (EVM) instructions. The value of
gas consumed per instruction varies from 1 to 32,000 [5].

The Ethereum Network protocol (PV62) [26] messages are
defined in our model as following: Status informs a node of its
current state, sent after the initial handshake and prior to any
other message; NewBlockHashes advertises one or more new
blocks that have appeared on the network; Transactions sends
one or more transactions; BlockBodies sends block bodies;
GetBlockBodies are used to retrieve specific block bodies using
block hashes; BlockHeaders sends block headers to a node;
GetBlockHeaders requests block headers. The sizes are taken
from the documentation [26].

The Ethereum Node model inherits the base node model.
Thus, we can focus on building a specific model to the
Ethereum protocol. Ethereum nodes can also be divided into
two classes – miner node and non-miner node –, providing
the same functionality as the Bitcoin node model.

The process of announcing a new block is shown in Figure
4, starting with Node A announcing a new block to its neigh-
bours (NewBlockHashes message). When Node B receives
such a message, it calls Node A sending a GetBlockHeaders
message with the block header of the block it announced. Node
A sends the block header to Node B using a BlockHeaders
message. Node B then calls Node A to obtain the transactions
and uncle blocks, using the GetBlockBodies message. Finally,
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Node A responds by sending the block body in a message
BlockBodies. When Node B receives the block body, it starts
a validation process and adds it to its chain. The process
of announcing a new transaction has less overhead than
announcing a new block. Node A receives a new transaction,
validates it, then uses the Transactions message to broadcast
the full transaction to its neighbours. When a miner node
receives a new transaction, it adds it to a transaction queue.

The Ethereum Transaction model extends the base transac-
tion model only by adding new attributes, such as the gas
price and start gas. The product of this two attributes is
used to calculate the transaction fee. The Ethereum Block
model extends the base block model only by adding the same
attributes.

VII. EVALUATION

The goal of BlockSim is to provide an accurate repre-
sentation of the performance of a real blockchain system.
Therefore, Section VII-A does a validation of BlockSim and
Section VII-B evaluates four use cases with BlockSim. All the
BlockSim executions were conducted on a PC with a 2 GHz
Intel Core i7 processor and 8 GB RAM.

A. BlockSim Validation

In order to validate that BlockSim provides realistic results,
we compare simulations of Ethereum models with values
obtained in a private Ethereum network. We follow the usual
steps for a simulation study: (1) Clearly identify the question
to be answered, in our case “how long it takes to propagate
a block and a transaction from one node to another?”; (2)
Conceptualise the underlying models needed to answer the
question, in this case block, transaction, network, messages,
node, and consensus models; (3) Determine the input param-
eters for the models, here block and transaction gas limit,
message size, distribution of delay to validate a block and
transaction, distribution of latency and throughput between
each node geographic locations; (4) Collect data from existing
deployments for each input parameter (explained in Section
III); (5) Code the conceptual models of Step 2, in this case we
used the BlockSim Modelling Framework to create the specific
Ethereum models for our study; (6) Perform a verification of
the models to understand if they are performing properly (if
not repeat Step 5); (7) Check if the conceptual model is an
accurate representation of the Ethereum system, by comparing
the simulated results with the measurements taken from a
private Ethereum network.

We started by capturing block interval on the Ethereum
mainnet. Next, we changed the Ethereum client reference
implementation, to get the instant when a block or transaction
is sent to its peers and when it is received.

We then deployed a private Ethereum network using the
modified Ethereum client in Amazon Web Services (AWS).
The private network had two instances, each one with 2 virtual
CPUs, 4 GB RAM with 8 GB SSD. The goal was to replicate
the same environment during the simulation with two nodes,
in which one node is a miner. At the end of the execution

Table I: Input parameters for the probability distributions

Distribution Location Scale Other parameters

Block validation delay Log-normal 0.229 s 0.002 s -
Transaction validation delay Log-normal 0.004 s 0.00005 s -

Time between blocks Normal 15.79 s 3.00 s -

Latency Ohio-Ireland Normal 73.70 ms 0.09 ms -

Throughput Ohio-Ireland Beta 39.13 Mbps 59.02 Mbps α = 0.463
β = 0.461

Latency Ireland-Tokyo Normal 105.42 ms 0.23 ms -

Throughput Ireland-Tokyo Beta 51.33 Mbps 89.06 Mbps α = 0.512
β = 0.914

Table II: Block/transaction propagation times (ms) in a real
Ethereum network deployment and simulated by BlockSim.

Average Standard deviation
Real BlockSim Real BlockSim

Block Ohio and Ireland 634 634 9.2 8.28
Ireland and Tokyo 836 836 6.51 6.17

Transaction Ohio and Ireland 93 93 1.22 1.12
Ireland and Tokyo 98 98 1.01 0.81

we collected the time measurements from the two nodes and
calculated the propagation time for a block and transaction (the
difference when a block or transaction is sent and received).

We configured the simulation with the parameters in Table
I, for an Ethereum network with one miner and one non-
miner nodes. Following this process we validated the Ethereum
models and also verified if BlockSim operates properly, by
comparing the results from the simulation with a real net-
work. At the end of the simulation study, we have collected
from the simulation and from the real Ethereum network the
propagation time for a block and transaction. At this stage it
is possible to evaluate if BlockSim and the Ethereum models
are valid by comparing the times.

For lack of space we present only a very brief summary
of our results in Table II. We can observe identical results
for average propagation time and slightly different standard
deviations. Thus, we can conclude that BlockSim is able to
obtain results according to those obtained in real systems.

B. BlockSim Use Cases

In this section we present four use cases for BlockSim. For
each, BlockSim was configured to create 8,000 transactions
with a total of 400 nodes: 100 non-miner nodes in Tokyo, 100
in Ireland and 100 in Ohio; 25 miner nodes in Ireland, 25 in
Ohio and 50 in Tokyo. We used the parameters of Table I.

1) Different Block Gas Limits: A standard transaction in
Ethereum has a 21,000 gas limit [5]. The block gas limit
represents the maximum amount of gas allowed in a block;
it determines how many transactions can fit into a block. For
instance, in the public Ethereum the block 6441886 [27] has a
block gas limit of 8 million, so with the standard transactions,
we might fit 380 transactions into that block. Additionally, the
miner can adjust the block gas limit by 1/1024 (0.097%) in
either direction [5].

In our simulation, we set the transaction gas limit to 21,000
during all executions, but changed the block limit from 2.1
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Table III: Block propagation time with different gas limits
(between Tokyo and Ireland).

Trans. gas limit Block gas limit Trans. per block Block propagation time Block size

21000

2,100,000 100 847 ms 20.045 KB
4,200,000 200 858 ms 40.045 KB
6,300,000 300 869 ms 60.045 KB
8,400,000 400 879 ms 80.045 KB

Table IV: Block propagation time with different block encryp-
tion and decryption delays (between Tokyo and Ireland).

Encrypted Trans. per block Encrypt / decrypt delay Block propagation time

No
100

- 847 ms
Yes 50 ms 1297 ms
Yes 100 ms 1747 ms

million to 8.4 million. The simulation took 36 minutes and 21
seconds. Table III shows the block propagation time, when
increasing the number of transactions per block. We can
observe an expected growth of 20 KB block size between
each execution, corresponding to an additional number of 100
transactions. Additionally, an increasing raise in propagation
time of 10 ms was observed. This is a low increase.

2) Encrypted Network Messages: In this use case we used
BlockSim to assess the impact in performance when nodes
encrypt and decrypt all network messages, something that
Ethereum and Bitcoin does not do. To simulate this behaviour
we have added to our basic node model a fixed delay when
receiving and sending a network message. Table IV presents
the impact in block propagation for two different delays to
encrypt and decrypt each message: 100 ms and 50 ms. Table
IV shows a 25.8% increase in the block propagation time when
encrypting and decrypting messages with a delay of 50 ms and
a 51.6% increase with a delay of 100 ms.

3) Simplified Block Delivery: Our Ethereum models use the
PV62 communication protocol [26]. We adapted our model to
make the node request full blocks (headers and bodies) when
a new block is announced, as shown in Figure 5, instead of
requesting headers and bodies individually. We created two
new messages in our model: GetBlocks that requests the full
blocks by the hashes; Blocks that sends the requested full
blocks. This simplified new block delivery is similar to the
Bitcoin protocol (cf. Section V). Also, the PV63 Ethereum
protocol [26] follow a similar design, but is only used when
the node is not synchronized with the rest of the network.
The protocol PV62 is used in Ethereum because when the
node first receives the block header it can perform validations
before requesting the block body, thus protecting the node
from requesting non valid blocks. This characteristic is also
important for light client nodes, which in some circumstances
do not need the full blocks, only the headers.

This use case was simulated in 23 minutes and 8 seconds.
Table V shows a 27.9% decrease in block propagation time
with our simplified new block delivery. We have obtained a
better performance due to the less overhead in the protocol.

4) One Transaction Propagation: Croman et al. [1] iden-
tified an inefficiency in the Bitcoin network that also ex-

Figure 5: Simplified protocol to obtain a new block.

Table V: Block propagation time with simplified new block
delivery (between Tokyo and Ireland).

Protocol Trans. per block Block size Block propagation time

Standard (PV62) 100 20.135 KB 847 ms
Simplified (Figure 5) 610 ms

ists in Ethereum. They observed the network layer protocol
first propagates all transactions, then propagates a full block
when it is mined, that contains the previously propagated
transactions, thus requiring each transaction to be transmitted
twice. To avoid this process, there is the possibility to rely
on a reconciliation protocol in which nodes only fetch the
transactions from the newly minted block that they do not
own [28]–[31].

We used BlockSim to assess the impact on block propaga-
tion without the need to implement a complex protocol. We
do that by simply not delivering the block body (that contains
the previously propagated transactions), as shown in Figure
6. The adapted message exchange protocol simulates the best
scenario of a reconciliation protocol when Node A owns all
the transactions in the newly mined block. This use case was
simulated in 22 minutes and 10 seconds. Table VI shows a
29.2% decrease in block propagation time when simulating
the impact for one transaction propagation policy.

We can observe in the third and fourth use cases a similar
block propagation time, despite the differences of block sizes
(20.135 KB full block and 0.09 KB block header). A full block
transmission only takes approximately 6 ms plus latency; on
the other hand, a block header transmission has no impact
(tends to zero ms). The major overhead on block propagation
time is due to block validation delay (cf. Table I) with an
average of 299 ms. This leads us to conclude that the size of
the messages does not play a big role on the block propagation
time.

VIII. CONCLUSION

The paper presented BlockSim, to the best of our knowledge
the first effort to provide a blockchain simulator that is not
restricted to a concrete blockchain implementation, i.e., that
can be used to model different blockchain systems. This
flexibility became possible because we created abstract models
that gather common parts in different blockchain systems and
made them available, in order to be extended to a specific
implementation. The user has a fine-grained control over the
created models and events, such as the number of nodes,
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Figure 6: Protocol that only delivers the block header.

Table VI: Block propagation with one transaction propagation
(between Tokyo and Ireland).

Protocol Trans. per block Block header size Block propagation time

Standard (PV62) 100 0.09 KB 847 ms
Transaction Propagation (Fig. 6) 600 ms

transactions, or connections among nodes, by using a program-
matic interface. In this matter, input parameters can be easily
modified to enable a good perception of the impact of certain
phenomena. By building a discrete-event simulator, we made
it possible to study Ethereum variants in a short period of time.
An open challenge is to adapt BlockSim for permissioned
blockchains that do not use PoW, but more convencional
Byzantine fault-tolerant consensus algorithms [32].
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protocol evaluation,” in Proceedings of the 2nd International Conference
on Simulation Tools and Techniques, 2009.

[14] A. Montresor and M. Jelasity, “Peersim: A scalable P2P simulator,”
in Peer-to-Peer Computing, 2009. P2P’09. IEEE Ninth International
Conference on. IEEE, 2009, pp. 99–100.

[15] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[16] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe, “BFT
protocols under fire,” in Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation, 2008, pp. 189–204.

[17] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
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