
MIRES: Intrusion Recovery for Applications based
on Backend-as-a-Service

Diogo Vaz, Student Member, IEEE, David R. Matos, Member, IEEE, Miguel L. Pardal, Member, IEEE,
and Miguel Correia, Senior Member, IEEE

Abstract—The Backend-as-a-Service (BaaS) cloud computing
model supports many modern popular mobile applications be-
cause it simplifies the development and management of services
such as data storage, user authentication, and notifications.
However, vulnerabilities and other issues may allow malicious
actions on the client side to have impact on the backend, i.e., to
corrupt the state of the application in the cloud. To deal with
these attacks – after they occur and are successful – it is necessary
to remove the direct effects of malicious requests and the effects
derived from later operations on corrupted data.

We introduce MIRES, the first intrusion recovery service for
mobile applications based on the BaaS model. MIRES uses a two-
stage recovery process that restores the integrity of the mobile
application and minimizes its unavailability. MIRES provides
multi-service recovery for applications that use more than one
data store. We implemented MIRES for Android and for the
Firebase cloud-based BaaS platform. We did experiments on 4
mobile applications which showed that MIRES can revert hun-
dreds to thousands of operations in seconds, with an associated
unavailability of the application also in the range of seconds.

Index Terms—Intrusion Recovery, Backend-as-a-Service,
Cloud, Mobile Applications.

I. INTRODUCTION

For many years now, mobile applications have played an
important role in our lives, as they provide daily-use services
like message chats, social networks, online banking, and file
storage, just to name a few [1], [2]. Due to the inherent
benefits of mobile applications, such as portability, usability,
and connectivity, companies are convinced to use mobile appli-
cations as client interfaces for their services [3]. Recently, even
personal health monitoring has gained adoption with COVID-
19 contact tracking applications [4]. A mobile application is a
program that runs on a mobile device, typically smartphones or
tablets, but also smartwatches or car dashboards. Most mobile
applications rely on remote services and resources provided
by servers, often designated clouds, to support their normal
operation [5].

Recently, several frameworks and platforms appeared with
the objective of supporting the implementation and execu-
tion of mobile applications. A highly successful case is the
Backend-as-a-Service (BaaS) cloud model [6]–[8] that allows
developers to configure the backend of a mobile application
without implementing it from the ground up. In fact, today
many popular mobile applications are based on BaaS, e.g., the
Duolingo platform for learning languages, the Lyft car sharing

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Lisboa,
Portugal. E-mail:diogo.vaz@tecnico.ulisboa.pt

platform, The Economist magazine’s portal, and AliBaba’s
messaging service.1

Despite our increasing reliance on these applications, they
are complex software systems that often contain vulnerabili-
ties, e.g., due to improper user input validation and other errors
made by developers in designing and/or writing code [9], [10].
These vulnerabilities can be exploited by malicious actors with
the intent of corrupting the state of the application stored on
the backend, leading to intrusions. A recent study found that
2-out-of-3 mobile application vulnerabilities are medium/high
risk and that 60% of them are on the client-side [10].

This paper presents the first intrusion recovery approach
and service for mobile applications based on the BaaS model.
In a nutshell, intrusion recovery is the problem of reverting
the effects of an intrusion on the state of an application.
The classical, simplistic, intrusion recovery solution is to
periodically backup the application state – creating snapshots
– and, when the state is compromised, to replace it with
the most recent snapshot. This basic solution leads to data
loss, as backups are almost always outdated, e.g., hours or
days, depending on their frequency. This data loss is the first
problem we aim to solve. Some recovery mechanisms provide
a finer-grained approach by considering not only snapshots but
also the operations since the last snapshot, which are stored
in a log [11]. However, the logged operations or data are
hard to associate to higher-level operations, i.e., it is hard
to understand which parts of the data were tainted by the
intrusion even when the malicious high level operations were
identified. This is the second problem we aim to solve.

To solve these problems, in this work we present the
Mobile Applications Intrusion Recovery Service (MIRES), an
intrusion recovery service for mobile applications based on
BaaS. To solve the first problem – loss of operations issued
after the most recent snapshot – MIRES logs all operations,
and, when an intrusion occurs, it does rollback of the state
of the system and selective re-execution of the transactions,
omitting those that were malicious. To solve the second
problem – difficulty of associating logged data/operations
to higher-level operations – MIRES stores both types of
data/operations/events and causality information, allowing the
identification of which log entries have to be undone. This
intrusion recovery approach is based on recent research that
considers different contexts but not mobile applications or
the BaaS model: email services [12], web applications [13],

1More examples at https://firebase.google.com

1

https://firebase.google.com

[14], databases [15], [16], operating systems [17], and cloud
computing [18], [19].

MIRES has a set of interesting features. The recovery is
done online, mostly in parallel with the normal functioning
of the application, to increase availability, on the contrary
of what offline recovery mechanisms do. Moreover, although
most applications still use a single backend data store (e.g., a
database), many recent applications are starting to use more
than one (e.g., a database and a file store), so MIRES supports
multi-service recovery. Finally, MIRES also supports a form
of client-side recovery in the mobile device to allow users to
recover from mistakes.

The security objectives [20] of the intrusion recovery ap-
proach for mobile applications is to regain integrity after an
intrusion and to do so with low impact on availability; the
objective is not to achieve confidentiality as MIRES operates
after the intrusion has happened. Confidentiality protection
requires run-time mechanisms that are out of the scope of
this paper [21], [22]. Our work also does not focus on
intrusion detection, that is orthogonal to intrusion recovery;
many existing and research mechanisms can be used for this
purpose [23]–[25].

The design of MIRES had to deal with a set of challenges.
First, with mobile applications it is not practical to have a
proxy intermediating all client-server communications, unlike
what is done in previous works. Second, the BaaS model sup-
ports multiple services in the backend, unlike previous works
that support a single one (e.g., a database or a file system),
so the recovery service has to support multi-service recovery.
Third, MIRES is constrained by an environment that is not
fully programmable, in the sense that is limited to the ser-
vices and degrees of freedom provided by the BaaS model,
especially in the backend.

We implemented a prototype of MIRES for the Android and
the Firebase [26] platform – this implementation is available
online2 – and evaluated it experimentally using 4 mobile
applications: a social network, a messaging app, a shopping
list app and a contact tracing app. MIRES was able to recover
1000 operations in less than 1 minute, leaving the mobile
application unavailable just for less than 15 seconds.

The main contribution of this paper is the first intrusion
recovery service for the BaaS model, focused on mobile
applications. Moreover, this service (1) provides online re-
covery to increase the availability of the system, (2) supports
multi-service recovery; and (3) includes a client-side recovery
mechanism.

II. BACKGROUND AND RELATED WORK

This section provides some background on intrusion recov-
ery and presents related work.

A. From Intrusions to Recovery

The term intrusion is often used to designate unautho-
rized activities that affect the integrity, confidentiality and/or
availability of a system [20]. However, in this work we use

2https://github.com/diogolvaz/MIRES

the term in a broader sense to include also authorized but
erroneous activities that someone later wants to undo. As
already explained, the objective is to restore integrity after an
intrusion with low impact on availability, but does not include
confidentiality.

The process of dealing with an intrusion is divided into three
main phases: intrusion detection, vulnerability remediation and
intrusion recovery.

The first phase, intrusion detection, consists of monitoring
the events in a system or network and analyze them for signs
of suspicious activities, being an important procedure to deal
with unpredictable attacks. Previous works resort to Intrusion
Detection Systems (IDS) [11], [23]–[25] to help in analyzing
and detecting suspicious events. Some of these systems need
human configuration to deal with precision issues, like false
positives, to initiate the recovery process.

The second phase, vulnerability remediation, is concerned
with fixing the application or its configuration, if needed. This
phase consists of classifying and mitigating the vulnerability
that originated the intrusion, by configuration adjustments
or applying security patches – uploading code developed to
resolve the specific vulnerability in the software [27], [28].
The goal is to prevent similar intrusions from happening again.

The last phase – and the scope of this work – is intrusion
recovery. This process aims to remove the effects of the
intrusion and return the application to a state where those
effects are neutralized or mitigated, restoring the integrity
of the system. To handle intrusion recovery, there are two
common approaches that can be used: selective re-execution
and compensation.

Selective Re-execution is based on changing the state of
the system up to some point back in the past. This includes
removing all activity, desirable and undesirable. For example,
row versioning and snapshots [11] are two techniques that
follow this approach. Then, the system re-executes all the
requests not related to the intrusion, a process called roll
forward, in order to bring the system to the present. MIRES
adopts this technique, selective re-execution, to reconstruct the
documents affected by the intrusions.

Compensation is based on undoing malicious intrusions and
their direct and indirect effects without necessarily restoring
the data state to appear as if the malicious intrusions had never
been executed. For example, compensating transactions [29]
is a technique that implements this approach in the context of
databases.

B. Related Work

Intrusion recovery has been studied considering different
systems or services: email servers [12], [30], databases [15],
[16], [31], hypervisor-based virtual machines [32]–[34], files
and file systems [17], [35]–[40], web applications [13], [14],
[41], and cloud computing service models [18], [19], [42]. This
section introduces some relevant intrusion recovery works and
briefly discusses their relationship with MIRES.

The first presentation of the broad intrusion recovery ap-
proach we follow is due to Brown and Patterson [12]. They
present Undo for Operators, a tool that allows operators to

2

https://github.com/diogolvaz/MIRES

recover from their own mistakes, from unanticipated software
problems, and from intentional or accidental data corruption.
As an example, the paper extends an email server with
the recovery mechanism it presents, which eventually was
influential in a related mechanism used in Google’s GMail.
The model for Operator Undo is based on 3 events, introduced
in the paper as the three R’s: Rewind, where all the state of
the system is rolled back in time to a point before any damage
occurred; Repair, where the operator alters the rolled-back
system to prevent the problem from reoccurring; and Replay,
where the repaired system is rolled forward to the present
by replaying portions of the previously-rewound legitimate
requests. MIRES performs recovery in a similar way. First,
it reverts the affected records to a previous point in time, then
it reconstructs them by re-executing the operations that were
logged. MIRES, unlike Operator Undo, does not rollback the
entire state of the application, instead it locks the database so
that the users can only perform read operations. This allows
the application to remain available during recovery.

Another service, Warp [14], assists users and administrators
of web applications to recover from intrusions while preserv-
ing legitimate user changes. The Warp recovery approach is
based on rolling back a part of the database to a point in time
prior to the intrusion and then apply compensating operations
to correct the state of the database. MIRES presents two
similarities with WARP: both require a client-side extension
and both offer a recovery mechanism that partially recovers
only the affected documents, instead of reconstructing the
entire state of the database.

Shuttle [19] is an intrusion recovery service for Platform-as-
a-Service (PaaS) applications. PaaS is a popular cloud model
that provides an execution environment for web applications.
Shuttle was designed to help administrators recover their
applications from software flaws and malicious or acciden-
tally corrupted user requests. MIRES and Shuttle present a
similarity: both save read accesses to the database, in order to
identify dependencies between transactions. However, Shuttle
considers a different system model in which the applications
are hosted in a PaaS and they hold their state in a SQL
database, while MIRES aims to recover a BaaS, which can
serve different types of applications.

Rectify and Sanare are two other intrusion recovery ser-
vices for PaaS applications [18], [42]. They consider that the
application is a black box, i.e., that it cannot be modified to
implement the intrusion recovery service. Therefore, these ser-
vices monitor HTTP requests and DB statements and find the
relations between them without looking into the application
code or requiring modifications to that code. The relations
between HTTP requests and DB statements are derived us-
ing a supervised machine learning scheme in Rectify and a
deep learning scheme in Sanare. The architecture of MIRES
is based on Rectify’s: in both cases the service is executed on
a different container from the application container. However,
MIRES is for BaaS-based mobile applications, which is not
the case for the other two.

NoSQL Undo [16] is a recovery approach and tool that
allows administrators to automatically remove the effect of
intrusions, that is, of faulty operations done on data stored in

TABLE I
COMPARISON OF INTRUSION RECOVERY WORKS.

System Approach Type Target User Recov.
[classical backups] Rollback, loosing all updates Offline Files 7
Undo for Operators [12] Selective re-execution Offline Mail server 7
Bezoar [33] Selective re-execution Offline Virtual Mach. 7
SHELF [34] Rollback Online Virtual Mach. 7
Taser [17] Selective re-execution Offline File System 7
Retro [17] Selective re-execution Offline File System 7
RockFS [43] several Online Cloud Store 3
Warp [14] Selective re-execution Offline Web App 3
Shuttle [19] Selective re-execution Semi-online Web App 7
Rectify [18] Selective re-execution Online Web App 7
Sanare [42] Selective re-execution Online Web App 7
NoSQL Undo [16] Selective re-exec./Compens.trans. Online NoSQL DB 7
MIRES Selective re-execution Semi-online Mobile app 3

NoSQL databases. To the best of our knowledge, this is the
only work that focuses on recovering NoSQL databases. The
MIRES reconstruction phase is based on one of the algorithms
provided by NoSQL Undo.

There are some intrusion recovery mechanisms for recov-
ering files from a file storage service. Examples are Retro,
Taser, Back to the Future, RockFS and others [17], [35]–
[40], [43]. Most of these works consider file systems [17],
[35]–[40]. The exception is RockFS that considers files stored
in a cloud store service or a cloud-of-clouds [43]. MIRES
supports recovery when data is stored both in databases and
file stores (multi-service recovery), but is closer to mechanisms
for recovery of web applications backed by databases than
to file system recovery mechanisms (Retro, Taser, etc.) or to
cloud data storage services like RockFS.

There are a set of older works that are related to ours but
have very different concerns and focus. An example is ITDB,
a self-healing database that detects attacks and recovers from
them [44]. Another example is a large literature on distributed
checkpointing, which has the objective of obtaining a consis-
tent view of the state of the (distributed) system to support
recovery [45]–[47]. All these works are concerned with the
recovery of low-level events (e.g., database operations), not
with recovery of high-level events as we are in this work.

This paper extends a preliminary version of MIRES [48]
in many ways: with a solution for multi-service recovery,
more details about the service and a formalization of the
dependencies that lead to recovery, an additional application,
and a more extensive experimental evaluation.

Table I summarizes the main literature presented above.
MIRES is based on some of the ideas shared in these works.
However, MIRES is the first that considers mobile applications
and the BaaS cloud model. Moreover, it introduces a online
recovery process divided in two phases, which improves the
availability of the system. MIRES also introduces a multi-
service recovery approach and provides a new short-term
recovery mechanism to mobile applications that allow users
to recover their last action that is an enhancement welcome in
most applications where end-users can commit mistakes.

III. THE BACKEND-AS-A-SERVICE MODEL

As already explained, Backend-as-a-Service (BaaS) [6]–[8],
or the subcase of Mobile Backend-as-a-Service (MBaaS) [49],
is a cloud service model that has been increasingly adopted to
implement mobile apps.

3

A. The Model

The BaaS model provides a set of ready-to-use application
logic services and features that automate and speed up the
backend development process of mobile applications. BaaS
platforms are also used to build web applications, but our
focus is on mobile applications. BaaS aims to provide scalable
and optimized backend infrastructures, outsourcing the respon-
sibilities of running and maintaining these infrastructures to
the BaaS vendor and leaving only the development of the
mobile application to the user of the platform. This simplifies
the job of the programmer, but is a challenge for the design
of MIRES, as it cannot arbitrarily modify the application,
unlike previous intrusion recovery schemes. There are many
BaaS platforms today, e.g., Firebase, Back4App, Parse, AWS
Amplify, Backendless, Kinvey, and Cloudboost.

The BaaS service model provides a set of common appli-
cation services to the programmer, including: data and file
storage for storing structured data and files; push notification
to send notifications to the application; user management to
authenticate the users; application analytics to, e.g., diagnose
crashes and performance of the application; and cloud func-
tions, as in the serverless computing model, i.e., simple server-
side code executed when invoked through HTTP endpoints or
when certain events like database changes occur [50], [51].

A simplified architecture of a BaaS platform is represented
in Figure 1. Each mobile application (e.g., A and B) running
in a mobile device is connected with a virtual environment
called a container [52]. Containers are virtually isolated from
the others and contain all the resources – code, services and
configurations (e.g., database permissions and settings) – used
by the mobile application system. A mobile application system
is identified in the platform by a global unique identifier
that is sent in the mobile application requests and among the
resources inside the containers.

Container 1 Container 2

Backend-as-a-Service cloud service

File
Storage

Data
Storage

User
Auth.

File
Storage

User
 Auth.

Data
Storage

API API API

Associated Associated

BaaS BaaS

Mobile
Application A

Mobile device A

Mobile
Application B

Mobile device B

Fig. 1. Architecture of a BaaS service model.

B. Mobile Applications in BaaS

A mobile application is a piece of software that is executed
on a mobile device, e.g., a smartphone or a tablet, often with
a backend in some type of cloud or server(s) [3], [53].

The state of a mobile application that follows the BaaS
model is divided between the mobile device and the cloud.
This division is coordinated by executing remote services such

as user management, file or data storage. When a user interacts
with a mobile application, e.g., by clicking on a button, a set
of operations are executed on the backend, reflecting the users’
action.

The recovery mechanism we present in this work interacts
mostly with the backend storage service(s), since we assume
that these services reflect the state of the application. In the
BaaS model, such storage services can be a relational database,
a non-relational database [54], or a file store. Some BaaS
platforms allow the integration of external databases (e.g.,
Back4App allows the integration of MongoDB [55]), while
others provide their own database (e.g., Firebase provides
Cloud Firestore3). MIRES does not depend on the specific
file store, but the prototype uses a NoSQL database, Firebase’s
Cloud Firestore.

The term mobile application is ambiguous, so in the rest
of the paper we use mobile application to mean the part
of the application running on the mobile device and mobile
application system to designate the entire system, i.e., both
the parts of the mobile device and the backend.

IV. THE MIRES SERVICE

MIRES is focused on regaining the integrity of the state of
mobile applications by undoing the effects of intrusions, i.e.,
of malicious actions. For a mobile application based on the
BaaS model to benefit from MIRES, it has to be configured to
use this service. The design of MIRES follows an important
design principle: the changes made to the application logic
should be minimal. The rational is that this simplifies setting
up MIRES with an application.

A. Assumptions

We assume that the system is composed of mobile devices
and a cloud, as well as of a mobile application system that
runs both in the mobile devices and in the cloud, following
essentially the architecture presented in Figure 1.

We use the term system administrator to designate the
persons that manage the MIRES service and the term user
to mean the persons who use the mobile application system
that MIRES protects. We assume that the system administrator
is trusted. We assume that the application has legitimate users
that are also trusted. However, malicious users can do actions
on the mobile application system that we may want to recover
from. These actions can be done locally, by gaining access to
the device, or remotely, using attacks such as SQL injection,
cross-site scripting (XSS), or cross-site request forgery (CSRF)
[9], [56].

Our main objective is to recover the backend state of
the mobile application system, not the local state of mobile
devices, for two reasons: first, this is more relevant and more
challenging as the backend is accessed and modified by many
different users, while the local state is only accessed in the
mobile device; second, many applications already support
mechanisms for local recovery, e.g., the restore from backup
process supported by WhatsApp and the implicit recovery

3https://firebase.google.com/docs/firestore

4

https://firebase.google.com/docs/firestore

done by many applications simply by logging out and in again.
We assume that the cloud backend state is the authoritative
state of the application, i.e., that mobile applications always
use data based on the backend state. This is true for arguably
all nontrivial mobile applications.

We consider that the state of the mobile application can
only be corrupted by transactions originated by user actions.
A transaction t ∈ T is composed by a set of operations
Ot ⊂ O, where T and O are respectively the sets of
all possible operations and transactions. In that sense, an
intrusion occurs when a malicious action performed by a user
explores a vulnerability on the mobile application, originating
a malicious transaction tm. A malicious transaction contains
one or more malicious operations Om, and zero or more
non-malicious operations Onm. However, when recovering a
malicious transaction, all operations that depend on these have
to be reverted, both malicious and non-malicious. Similarly to
all intrusion recovery systems in the literature, e.g., [12]–[19],
we assume that adversaries cannot corrupt the computational
infrastructure of MIRES, the mobile application, or the BaaS
platform. This assumption does not mean that such problems
cannot occur, but only that they are outside the scope of the
solution presented in this paper. They are the subject of a large
literature and even the work of organizations such as the Cloud
Security Alliance (CSA).

When mentioning the storage service(s), we use the termi-
nology of document-oriented NoSQL databases, without lack
of generality. We do not assume such a database; we only use
the corresponding terminology (alternative options would be
using the terminology of SQL, file stores, key-value stores,
or NoSQL columnar databases). This means that we refer
to data items as documents (D = {d1, d2, ...}), organized in
collections. These documents may contain properties, i.e., keys
associated with values.

This also means that the data stores support CRUD op-
erations: Create, Read, Update and Delete, but we often
summarize them in just two: writes that modify the content
(i.e., creates, updates, and deletes) and reads that do not.

Modern databases support transactions that provide the
ACID properties4 allowing applications to perform writes –
and in some cases reads – atomically in different documents.
We assume that transactions are performed correctly and atom-
ically, as our focus is not on recovering the inconsistent states
of applications due to incomplete transactions. In other words,
this work is not concerned with fixing broken applications, but
with recovering from intrusions in correct applications.

B. Supported forms of Recovery

We consider two recovery scenarios:
1) Administrator recovery: transactions are recovered by

the system administrator, typically due to the detection
of an intrusion;

2) User recovery: a user makes a mistake and wants to
undo an action moments later.

4MongoDB transactions https://www.mongodb.com/transactions; Cloud
Firestore transactions https://firebase.google.com/docs/firestore/manage-data/
transactions

An interesting scenario happens when the user loses control of
his device – and consequently of the application – during an
interval of time, e.g., because the device was stolen but later
recovered. This scenario is handled mainly with Administrator
recovery, but also implies a manual process for convincing the
administrator that the recovery should be done, e.g., showing
a police certificate that the phone was stolen and recovered.
We do not present a specific solution for this manual process
as it is outside of the technical scope of the solution.

C. Architecture

MIRES is composed of a set of resources running on the
frontend (mobile application) and backend (BaaS platform).
The BaaS platform provides a set of components and APIs
that allow the communication between the mobile application
and the BaaS services. These components and APIs are what
simplifies the implementation of applications based on BaaS,
but also place constraints on how MIRES interplays with the
application and does its job. The architecture is represented in
Figure 2.

In the Mobile application (top-right of the figure), on the
mobile device, the MIRES package provides the framework
needed to configure the mobile application.

Admin Console
module

Database Service

Legend:

Application
Database

MIRES user
flags

MIRES user
recovery

Users Recovery
module

MIRES container

Cloud Functions Service

Application container

Transactions
Log

 Mobile
 application

MIRES
package

Permitted
access

Snapshot
CreatorDocuments'

Snapshots

Cloud
Logger

File
Logger

frontend

File Operations'
Log

backend

MIRES user
tokens

Fig. 2. MIRES architecture. The MIRES components are shown in orange
and the resources of the mobile application system are shown in blue.

In the Application container (right of the figure), the Ap-
plication Database takes three new collections (in relation to
those used by the application itself): the MIRES user tokens
collection to store the information that allows MIRES to
communicate with the application (pairs of user identifier and
token generated by the BaaS platform to identify the user’s
requests); the MIRES user recovery collection for storing data
necessary for undoing mistakes done by users (see Section
VIII); and the MIRES user flags collection for storing data

5

https://www.mongodb.com/transactions
https://firebase.google.com/docs/firestore/manage-data/transactions
https://firebase.google.com/docs/firestore/manage-data/transactions

(flags) needed for tracing the mobile application normal exe-
cution (Section V). Additionally, three types of cloud functions
are executed in the Cloud Functions Service (bottom): the
Cloud Loggers for logging all the requests made to a database
and updating the Transactions Log; the Snapshot Creators for
creating snapshots of the database documents, stored on the
Documents’ Snapshots; and the File Loggers for logging all
the file operations made into a file storage service and updating
the File Operations’ Log (Section VII).

On the MIRES container (left of the figure), there are two
modules: the Admin Console module, that allows the system
administrator to interact with the MIRES service and recover
intrusions; and the Users Recovery module, responsible for the
user recovery mechanism (see Section VIII).

The MIRES architecture provides intrusion recovery with-
out placing a proxy between the mobile device and the
backend, on the contrary of what happens in many related
systems [12]–[14], [18], [19], [41]. This is important because
it avoids creating a performance bottleneck (see, for example,
the negative impact of Shuttle’s proxy in [19]) and allows
preserving the functional and security properties provided by
the BaaS service API.

V. NORMAL EXECUTION

During normal execution, MIRES captures data of each
transaction performed in the BaaS that, later, can be used in
a recovery process. Figure 3(a) shows the normal function of
a mobile application system when using MIRES. This section
explains the steps performed to handle a transaction during
the normal execution of MIRES.

In this section, for simplicity, we consider that the applica-
tion is backed by a single data store: a database. In Section
VII we generalize for the case of more, and other, data stores.

A. Mobile Application Configuration

Actions done by the user in the mobile application may
cause the execution of transactions in the backend database
(operation R1 and R2 in Figure 3(a)).

MIRES configures each write operation to carry additional
properties associated with the document that is being written:
an operation ID representing the operation itself; a locked
property used in the recovery process (see Sections VI and
VIII-B); and an ignore property, used by MIRES to perform
requests on database documents without activating the Cloud
Loggers. On create/update operations, this extra data is carried
by the operation and stored in each document, while on delete
operations the extra data is carried by a message containing a
flag.

For read operations, MIRES configure the application to
forbid reads on locked or blocked documents, i.e., during
recovery (details later).

B. Logging Write Operations

For each CRUD operation that modifies the state of the
database, MIRES logs the type of the operation, the associated
timestamp, the document changed, the data associated with

the operation, a transaction ID, that associates all requests of
the same transaction (e.g., R1 and R2 in the figure) and the
operation ID generated by the MIRES package (see Section
V-A).

MIRES logs each operation executed by the backend by
resorting to two mechanisms: Flags and Cloud Loggers. Flags
is additional information about operations, i.e., information
about operations that is not sent automatically by the BaaS
platform (Section V-B1). Cloud Loggers are cloud functions
that log the requests made by the mobile applications (Section
V-B2). We now explain how Flags and Cloud Loggers allow
MIRES to log each operation made to the database.

1) Flags: For each write operation made in the database
(arrow ~a in Figure 3(a)), the mobile application sends an
additional request (arrow ~b) with what we call a Flag.

Flags have two roles. The first role is to send to the
backend additional information – in relation to the information
sent by the BaaS platform – that MIRES needs to log the
operation, more precisely, the transaction ID, the timestamp
and the data structure of the operation. Notice that it would
be possible to change the application requests to take this
additional information. However, this would violate the design
principle of minimizing the changes to the application logic.
Moreover, it might create problems with the specificities of
some BaaS platforms (e.g., Firebase supports at most 100
fields in messages, so adding fields for MIRES might be
incompatible with some applications). Moreover, an operation
that writes data can create or update a document, depending
on if the document exists or not; instead, an operation that
deletes data is necessarily a delete in the database. Flags are
used to disambiguate these cases.

The second role of Flags is to indicate when it is possible to
start the recovery process. As Cloud Functions are executed in
containers, the first execution of such a function experiences
the delay associated to the launch of the container, a phe-
nomenon known as cold start [57]. Due to cold starts, on rare
occasions Cloud Loggers take some time to activate and log
the operations. However, MIRES can only start the recovery
process when it contains the entire log of all operations made
to the database. To circumvent this case, since each flag
represents an operation made to the database, the recovery
process can only begin when all flags are processed and the
flags resource of the MIRES users is empty.

Flags are atomic in relation to the operation they are
associated to. This means that each flag is stored in the MIRES
user flags collection only if the associate operation is also
performed.

2) Cloud Loggers: Cloud Loggers are cloud functions [50],
[51] that are activated by two types of events: create/update op-
erations on the Application Database (arrow ~c in Figure 3(a)),
and delete operation flags on the MIRES user flags collection
(arrow ~d).

When a create/update operation is performed, a Cloud
Logger is activated. Then, the Cloud Logger accesses the
MIRES user flags collection to get the flag associated with
the operation. Then, it obtains other information needed to
log the operation: the type and data handled by the operation.

6

Admin Console
module

Database Service

Trigger

Legend:

Application
Database

MIRES user
flags

MIRES user
tokens

MIRES user
recovery

Users Recovery
module

MIRES container

Cloud Functions
Service

Application container

Transactions
Log

Action
Performed

 Mobile
 application

MIRES
package

Documents'
Snapshots

File Operations'
Log File Storage

Service

...

Cloud
Logger

File
Logger

(a)(b)

(l)

Snap.
Creator

(c)(d)
(e)

(f)

(g)

(h)

(i)

(j)

(k)

F1

R1R2

F2

(a) Normal execution

Admin Console
module

Database Service

Legend:

Application
Database

MIRES user
flags

MIRES user
tokens

MIRES user
recovery

Users Recovery
module

MIRES container

Cloud Functions
Service

Application container

Transactions
Log

Locking Phase

 Mobile
 application

MIRES
package

Documents'
Snapshots

File Operations'
Log File Storage

Service

...

Cloud
Logger

File
Logger

Snap.
Creator

(b)

(b.1)

(c.1)

(e)

(e.2)

(e.1)

(f)

(f.1)

(a)/(c)/(d)

Reconstruction
Phase

(b) Administrator recovery

Admin Console
module

Database Service

Legend:

Application
Database

MIRES user
flags

MIRES user
tokens

MIRES user
recovery

Users Recovery
module

MIRES container

Cloud Functions
Service

Application container

Transactions
Log

Locking Phase

 Mobile
 application

MIRES
package

Documents'
Snapshots

File Operations'
Log File Storage

Service

...

Cloud
Logger

File
Logger

Snap.
Creator

Reconstruction
Phase

(a)(b)

(c)

(d)

Trigger

(c) User recovery

Fig. 3. MIRES architecture and interactions. The MIRES components are in orange and the components of the mobile application system are in blue.

Obtaining this information may be simple or not. In the
case of the Firebase BaaS, the data modified by an operation
is not stored explicitly, so it has to be inferred. Specifically,
to gather the data written by the operation, the Cloud Logger
compares the document before and after the operation. There
is a challenge: this solution does not allow obtaining the data
written by an update in case it is equal to the content of the
document (e.g., updating to 1 a field that already contains
1). For that reason, MIRES sends to the backend a flag
with the operations’ data structure, i.e., with the properties
of the document changed by the operation. Interestingly, this
process has an advantage: Cloud Loggers can capture the
direct and indirect effects of an operation. For example, an
update that replaces the entire document by new data produces
a direct effect; on the contrary, data overwritten in a document
without this being explicitly indicated is an indirect effect. By
having access to the versions of the document before and after
the operations execution, Cloud Loggers can compare both
versions and log the described effects, which allows rebuilding
the documents independently from the type of update made.

In delete operations, the logging process is performed
differently: when a new flag is added to the MIRES user flags
collection, a Cloud Logger instance is activated in order to
access the flag and see if it is a delete operation flag. This is
the only case, in which a delete operation is directly logged.
Delete operations do not generate new data on the database,
which means that flags are the only way to provide information
about delete operations. Thereby, delete operation flags always
contain all the information needed.

After analyzing the flag and/or the operation performed, the
Cloud Logger creates the operation log record (arrow ~e) and
deletes the flag from the MIRES user flags collection.

The system administrator can use the Admin Console to
access the log of operations and recover the state of the
application. Arrows ~f , ~g relate to snapshots and are explained
in Section VI-B2; arrows ~h, ~i relate to user recovery and are
explained in Section VIII-A; and arrows ~j, ~k and ~l relate to

multi-service recovery, explained in Section VII.

C. Logging Read Operations

The state of the mobile application system is changed by
the write operations executed on the database, so they must
be logged, as explained in the previous section. Instead, reads
do not modify the state, so they do not have to be logged for
that reason. However, some reads do have to be logged for
the following reason: the data carried on a create or an update
(two types of writes) may come directly from the user or may
have been taken from the database itself. In the latter case,
the data comes from one or more read operations, so there is
a dependency between the write and the read(s).

Therefore, MIRES logs the read operations that create
dependencies between transactions (see Section VI-A). To
achieve this, the MIRES package in the client-side is used
to make the mobile application send information about the
read operation. Thereby, this package offers the possibility
to send the information about the read operation through the
operation’s flag: the name of the document read, the field-
values read (a document can contain both legitimate and
illegitimate data, and so it is important to know the data
accessed), and the operation ID present on the document.
MIRES cannot define a timestamp for when the read operation
occurred, so the operation ID keeps track of which version of
the document was accessed; each write operation performed
creates a new version of the document.

After gathering the data related to the read operation,
that information is passed to the Cloud Loggers through the
operations’ flag of each operation that is influenced by the read
operation, in order to be logged alongside with the operation
affected.

Besides the read operations made to the database, sometimes
dependencies are not explicit in the mobile application code.
BaaS platforms can provide native function calls that remove
the necessity of performing a read operation, e.g., Firebase’s
incrementValue() call, where there is a dependency on

7

the value incremented. In this occasion, the dependency exists,
so it is necessary to configure these special cases, e.g, by
adding a new property to the normal operation to be analysed
by the Cloud Logger in these scenarios. Since Cloud Loggers
have access to the version of the document before the operation
is executed, these components can log the read dependency,
increasing the recovery accuracy of MIRES.

VI. ADMINISTRATOR RECOVERY

The approach followed by MIRES is to directly remove
the intrusions and their effects by rolling back the state
of the application and doing selective re-execution of the
transactions, i.e., re-executing those that are safe, but not
those that are malicious. Figure 3(b) presents the recovery
process implemented by MIRES. This process is divided in
two phases: (1) the locking phase, responsible for identifying
the malicious and compromised transactions; (2) and the re-
construction phase, responsible for reconstructing the affected
documents. This section explains both.

A. Phase 1: Locking Phase

A system administrator initiates the recovery process when
he decides to do so, after becoming aware of an intrusion.
As previously explained, detection is orthogonal to recovery
and out of scope of the paper. We assume that the intrusion is
detected in some way5 and that the set of malicious operations
Om = {o1, ..., on} directly compromised by the actions of
the attacker, and malicious transactions Tm = {t1, ..., tn′}
that include these operations, are identified. For example, if
the attacker only pressed a button that caused the operation
om(d) that deleted a document d belonging to a user, then
Om = {om} and Tm = {tm}, where om ∈ tm. Needless to
say, the recovery process will have to remove the direct effects
of these malicious operations from the state of the system.
However, it will also have to remove their indirect effects,
i.e., the effects of operations that were tainted by the former.
We call tainted operations both the later and the former,
i.e., malicious operations are also tainted. Deducing which
operations are tainted is an important part of the problem.

The system administrator activates the MIRES recovery
mechanism by using the Admin Console, where he selects the
operations that have to be undone, i.e., the operations in the set
Om. The console also allows sending a personalized message
to the online mobile applications, e.g., to explain to the users
the reason behind the recovery process. MIRES messages are
received by the application and shown to the user through
notifications.

When the recovery is initiated, the locking phase begins:
MIRES locks the database (arrow ~a in Figure 3(b)), forbidding
writes but allowing reads. Then, MIRES analyzes the log since
the moment the first malicious transaction occurred (arrow ~b),
in order to identify dependencies between later transactions
and, consequently, identify and lock all the affected documents

5Two options would be: (1) to have a host-based IDS that analyzed the
logs created by MIRES and alerted the administrator for possible intrusions;
or (2) to have a network-based IDS like Snort configured to detect attacks
and activate recovery, similarly to what was done in NoSQL Undo [16].

(arrow ~c), i.e., all documents where both read and write are
forbidden. MIRES locks a document by changing the locked
property of the document to true.

During the locking phase, MIRES analyses the log in
order to identify dependencies between operations. MIRES
implements this process by simulating the propagation of
corrupted data in memory and comparing the operations made
on the database with the tainted data, to identify operations
that were later tainted. From this analysis, two possible de-
pendencies can result: read-write dependencies and structural
dependencies.

We define these dependencies using Lamport’s happened
before relation, which expresses the order in which two oper-
ations were executed [58]. This relation, written →, satisfies
three properties: 1) If a and b are events in the same process
and a came before b, then a → b; 2) If a is the event of
sending a message and b is the event of receiving that message
in another process, then a → b; 3) If a → b and b → c, then
a→ c (transitivity). In our case we leverage the first and third
properties, as the events that matter to us are local operations
in the database.

A dependency is also a relation. We write that operation
O2 depends on operation O1 in the following way: O1 O2.
This relation also satisfies transitivity: if a b and b c,
then a c.

Notice that if O1 O2 then O1 → O2, but the contrary is
not true: O3 → O4 does not imply that O3 O4 because the
two operations may be unrelated. The operations C(d), R(d),
U(d, v), and D(d), correspond to the four CRUD operations,
and respectively create the document d, read its contents (or
part of it), update its content (or part of it) with data v, and
delete it.

1) Read-Write Dependencies: When the data written by
a transaction is based on data retrieved by a previous read
request to the database, there is a read-write dependency. For
this reason, when an intrusion occurs, read operations can
propagate the effects of the intrusion by reading corrupted data
on the database and, consequently, generating new corrupted
data. Rigorously, for an update U we have (where ⇒ means
“implies”):

R(d)→ U(d′, v) ⇒ R(d) U(d′, v) (1)

This means that if d is tainted, then d′ is also tainted. It
also means that MIRES can revert the spread of tainted
data based on the data gathered about read operations during
normal execution (see Section V-C). When analysing a write
operation influenced by a read operation, MIRES compares
either the full document or a part of of it (e.g., values of
properties in the case of a document database), depending on
the implementation and the level of granularity desired.

We have similar dependencies for the other writes, i.e., for
creates and deletes:

R(d)→ C(d′) ⇒ R(d) C(d′) (2)

R(d)→ D(d′) ⇒ R(d) D(d′) (3)

8

2) Structural Dependencies: Besides read operations, write
operations can also create relations between transactions,
which we designate structural dependencies. They can occur
in two scenarios: when a write operation is performed on
a document that should not exist; or when a document that
should already exist is (re)created.

The first scenario happens when a malicious transaction
creates a new document, then all subsequent operations on
that document depend on the first. During recovery, these
operations have all to be undone until the document is finally
deleted. Rigorously:

C(d)→ U(d, v) ⇒ C(d) U(d, v) (4)

The second scenario happens when a malicious transaction
deletes a document, then a create operation creates the docu-
ment again. In the recovery, the second operation has to be
undone, since the document should already exist. Rigorously,
the dependency is:

D(d)→ C(d) ⇒ D(d) C(d) (5)

B. Phase 2: Reconstruction Phase

After executing the locking phase, MIRES has to undo the
effects of the tainted operations. Given the set of malicious
operations Om previously defined, the set of tainted operations
is given by:

Ot = {ot : ot ∈ Om ∨ ∃om ∈ Om : om ot}

Given the set of tainted operations, the set of tainted
transactions is given by:

Tt = {tt : ∃ot ∈ Ot : ot ∈ tt}

After executing the locking phase, MIRES knows all the
tainted operations Ot and tainted transactions Tt, and has
the documents involved locked in the database. Then, MIRES
unlocks the database (arrow ~d in Figure 3(b)), allowing users
to interact again with the backend. With the locking phase
finished, MIRES starts to reconstruct the affected documents
(arrows ~e and ~f); the corrupted documents are locked, so users
can normally interact with unaffected documents within the
database while MIRES reconstructs the corrupted documents.

1) Operations Model: The reconstruction of documents in
the database is inspired by the Focused Recovery algorithm of
[16]. This algorithm reconstructs the affected documents by
replaying all write operations that affected them, except the
malicious operations.

Rigorously, the process consists in re-executing, in the order
defined by the happened before relation, all operations in the
following set:

Or : {o : ∀t ∈ Tt, o ∈ t ∧ o /∈ Om ∧ o /∈ R}

The set R above represents all read operations executed in
the system. It is an artefact to simplify the definition and never
actually exists in the system before, during, or after recovery.

However, this reconstruction model presents a drawback:
the time to reconstruct the document grows with the number
of versions of a document and, consequently, the number of

operations to re-execute. In MIRES, this phase is performed
concurrently with user interactions with the backend, so the
system continues to operate; only the infected documents are
temporarily unavailable.

2) Snapshots Model: The operations model of the previous
section can be improved using snapshots [59] (arrow ~e.2),
i.e., sets of versions of the documents at certain instants in the
past. Snapshots are used by MIRES to mitigate the time to
reconstruct the entire document by starting the reconstruction
of the document using a document snapshot free of corruption.
The creation of snapshots is done during the normal phase
based on the operations made per document. This process is
supported by the MIRES package, used to configure each write
operation – similar to Section V-A – by adding a snapshot
property, that stores the number of operations performed
upon the document; and a timestamp property, that stores the
operation’s timestamp. On the backend, the Snapshot Creator
module listens for database changes (arrow ~f of Figure 3(a))
and stores a document snapshot after N operations made to
the document (arrow ~g of Figure 3(a)), e.g., store a version of
a document after each 1000 or 10000 operations made. This
is a non-blocking process, i.e., the mobile application system
is not stopped during the creation of a snapshot.

VII. MULTI-SERVICE RECOVERY

The state of a web or a mobile application is generally
stored in a single storage service, usually a database. As a
consequence, work on web application recovery so far has
focused on recovering state stored in a single database [13],
[14], [16], [18], [19] (there is no previous work on the recovery
of mobile applications). However, the complexity of mobile
(and web) applications is increasing and they are starting to
store their state in more that one data store. An example is
the action of posting a picture in a social network application,
where the image itself is stored on the file storage service and
additional data about the post, e.g., the username of the poster,
the timestamp and the picture URL is stored in the database
service.

For recovering these actions involving several backend data
stores – i.e., for multi-service recovery –, it is necessary to
recover both the database and the file storage services in a
synchronized way. We do not make assumptions about the
existence of support for transactions involving both database
and file store operations, i.e., about the atomic execution of
operations in more than one data storage service. This is the
case in most BaaS platforms and an important challenge we
have to face in the solution.

Next we explain what changes in relation to single-service
recovery (presented before) in normal execution (Section
VII-A) and in administrator recovery (Section VII-A). We
assume there is a database and mostly explain how to add
a file store. We present multi-service recovery as if there was
one database and one file store without lack of generality,
i.e., without limiting the number of databases and file storage
services.

9

A. Normal Execution

In normal execution (Figure 3(a)), in terms of the file store,
mobile applications can create, read, update, and delete files.
We group the write operations in two types: upload operations
that create and update files, and delete operations that remove
them.

When the mobile application performs an upload file op-
eration (arrow ~j of Figure 3(a)), MIRES configures the file
metadata by adding: the transaction ID of the transaction, al-
lowing the File Logger to log the file operation associated with
a specific transaction; an ignore property, when MIRES wants
to recover the file without activating the logging process; and
a locked property, to lock the file. This metadata, specifically
the transaction ID, is the main mechanism to circumvent the
lack of atomic transactions involving both database and file
operations. However, there are cases in which this mechanism
fails. For example, in Firebase, delete operations take as
a single parameter a reference to the file, not allowing to
send any additional information to the backend. Moreover, a
solution based on flags, i.e., on sending a flag with additional
information about the operation, would not work as it is not
possible to achieve atomicity, i.e., the file flag could be created
without the file operation being executed, or vice versa. For
these reasons, in the case of Firebase, it is not possible to
correlate database operations with file delete operations, only
with file upload operations.

Then, the File Logger captures the file change (arrow ~k) and
stores on the File Operations’ Log (arrow ~l) the information
needed to recover the file: transaction ID, file path, timestamp,
operation type (delete or upload), and file generation ID
(version of the file).

As discussed in Section V-B1, this logging process has a
problem: cold starts may lead File Loggers to take some time
to activate and log the file operations. This can lead to MIRES
initiating the recovery process without the log being stable.
Flags cannot solve this problem due to lack of atomicity,
as refered above, but there are workarounds to mitigate this
scenarios, e.g, waiting for a short period of time before the
recovery is initiated.6

B. Administrator Recovery

When the administrator identifies an intrusion, the recovery
process is initiated as explained in Section VI. However, in
this case, both the database service and the file storage service
are recovered. Figure 3(b) represents the process of recovering
multi-service transactions.

1) Locking Phase: When the locking phase begins, the
database service(s) is(are) locked, but not the file storage
service(s). The reason for this difference is that we opted
not to track read-write dependencies involving files, on the
contrary to what we do with database data. The rationale for
this decision is that, in mobile apps, databases often store
data used in the logic of the application, whereas file stores
are used to keep data that is stored, retrieved, and presented,
but not used to take decisions. This means that data read

6https://cloud.google.com/functions/docs/bestpractices/tips

from the database often affects data subsequently written in
the database, whereas the same does not happen with files.
Therefore, there is usually no dependency and there is no point
in tracking it.

Not locking the file system is beneficial in terms of appli-
cation availability. However, it also raises two issues: broken
transactions, since applications can write on the file storage
service when the database service is locked; and normal file
operations, since users can continue to interact normally with
the file storage service through the application. Nevertheless,
we assume that mobile applications can deal with broken
transactions and, since we do not analyse dependencies on
file operations, users can interact normally with the file storage
service until the moment that files are locked specifically for
being recovered (only the files, not the whole file store).

After the locking takes place, MIRES analyses the database
log to search for the malicious transactions Tm (cf. Section
VI-A) and the affected database documents. After locking
the affected documents, MIRES analyses the File Operations
Log in order to know if that malicious transaction interacted
with the file storage (arrow ~b.1 in Figure 3(b)). If so, MIRES
locks the infected file (but not the whole file storage service),
similarly to what it does with database documents (arrow ~c.1).
Similarly to the process of database documents, files need to
be locked, forbidding any upload action on the file, for MIRES
being able to analyse the operations performed and rebuild the
file, during the normal execution of users.

2) Reconstruction Phase: With the Locking Phase finished,
additionally to the malicious transactions and the infected
documents known by MIRES, the service also knows the
infected files. Both database documents and files are locked on
their corresponding storage service. Finally, the Reconstruction
Phase is initiated, in which MIRES reconstructs both locked
database documents (see Section VI-B) and locked files. To
reconstruct the files, MIRES analyses the File Operations Log
to find the correct version of the file (arrow ~e.1 in Figure 3(b))
and uses the generation ID to retrieve that version from the
cloud service (arrow ~f.1).

VIII. USER RECOVERY

The main goal of MIRES is to support the recovery from
intrusions that have an impact on the main state of mobile
application systems: the data stored in the backend data storage
services. This was what was presented in the previous sections.
However, MIRES also provides a client-side mechanism to
allow users to recover from their last action, the topic of this
section.

A. Normal Execution

In normal execution, to provide the user recovery mecha-
nism, each operation requires an additional configuration, sup-
ported by the MIRES package and similar to those mentioned
previously (Sections V-A and VI-B2). Each write operation
is configured to carry extra data: a blocked property, used to
generate blocked documents (blocked documents are invisible
to the users, i.e., reads are forbidden except for the user that

10

https://cloud.google.com/functions/docs/bestpractices/tips

TABLE II
MIRES IMPLEMENTATION LINES OF CODE (LOCS).

Client-side LoCs Server-side LoCs
Tokens 47 Cloud Logger (flags) 26
Notifications 52 Cloud Logger (collection) 63
Transaction configuration 181 File Logger 51
Undo recovery mechanism 198 Snapshot Creator 122

Users Recovery module 558
Admin Console module 1119

performed the last write on the document); and a user ID,
representing the user that performed the transaction.

When there is a transaction that can be recovered, its
operations are saved by the MIRES package. Moreover, write
operations block the affected document, i.e., lead MIRES to
set the blocked property in those documents to true. This is
not permanent, but for the interval of time Tu during which
user recovery is possible (Tu = 30 sec. in the experiments).

When a transaction that can be recovered finalizes, MIRES
generates a notification with a button that allows undoing the
last operation. This option becomes inactive after the time
interval Tu, or when the mobile application performs another
transaction. While the option is active, the user can use it to
activate the recovery.

On the backend, the Users Recovery module is listening
for operation flags (arrow ~h of Figure 3(a)). When a flag of
a blocked document arrives, the Users Recovery module will
unblock the document after a time interval Tu, i.e., it will
change the blocked property back to false (arrow ~i in Figure
3(a)).

B. Recovery Execution

The users recovery flow is represented in Figure 3(c). When
the user clicks on the undo button, the MIRES package locks
the documents (arrow ~a). More, it sends a recovery request
to the Users Recovery module with the transaction ID to be
recovered and the documents locked (arrow ~b). Both the lock
of the documents and the sending of the recovery request are
made atomically, whereas the recovery request is only sent if
all the documents are locked. Afterwards, the User Recovery
module reads the recovery request from the user (arrow ~c)
and reconstructs the documents affected in a way similar to
the reconstruction phase of Section VI-B (arrow ~d).

By making the documents invisible to the other users
during the period Tu, MIRES can recover the transaction
without the need to analyse dependencies, allowing to recover
multiple transactions from different users at the same time,
without requiring the mobile application system to stop. Also,
since this mechanism aims to recover users’ actions without
affecting the application experience of other users, it must
only be used in transactions where the affected document can
only be changed by a single user, e.g., on a social network
application, posts are only modified by the same unique user.

IX. MIRES IMPLEMENTATION

The MIRES client-side package allows the configuration of
the mobile application to manage: the MIRES notifications,
the locking phase of the user recovery mechanism and the

configuration performed on each operation, where in the
beginning of each transaction, MIRES creates a transaction
state used by the mobile application code to configure each
operation of the transaction. This client-side resource was im-
plemented in Java, which is the default programming language
for Android applications. The number of lines of code of the
implementation are shown in Table II.

The server-side of MIRES was implemented as a two-
layer service: a first layer composed of the Admin Console
module that supports the recovery mechanism of the system
administrator; a second layer composed of the Users Recovery
module that supports the user recovery mechanism. With this,
MIRES offers flexible and adaptable configuration: modules
are deployed depending on the functionality that we want
to use. The Cloud Loggers are needed in both layers to
build the log of transactions. Both modules were implemented
using Node.js and JavaScript and can be deployed to isolated
containers, which provides an important security aspect.

Cloud Loggers, Snapshot Creators and File Loggers were
implemented as JavaScript code deployed on the mobile
application container using the Cloud Functions service. Cloud
Function scripts listen for specific pre-defined collections,
which assures configuration flexibility over the database that
we want to protect. For example, it is only required to deploy a
Cloud Logger, a Snapshot Create or a File Logger that listens
for a collection containing the data that we want to protect and
configure the actions of the mobile application that interact
with that same collection.

The BaaS platform used was Firebase. We used the Firestore
database service to store the log of transactions, the log of file
operations and the snapshots. With this service, and the Cloud
Functions mechanism, we can assure automatic scaling on the
creation of logs and snapshots. Moreover, since Firestore is a
NoSQL database, it offers a flexible storing process with a set
of personalized read queries for the recovery process.

The MIRES user flags, user tokens and user recovery
were implemented using database collections on the mobile
application container: this allows reusing the security rules
and settings that allow only the authenticated users to interact
with the three collections. Moreover, it is possible to define
specific security rules, allowing to isolate the three collections
from the rest of the application database. By following this
implementation, we applied an atomic model – using Firebase
transactions – on the operations and their flags, and also on
the locking phase of the user recovery mechanism, allowing
us to mitigate possible synchronization problems.

A. Example Applications

To evaluate the MIRES service, we used four open-source
Android applications:

1) a social network application, Hify 7, where users can
post images or text, comment and like other posts;

2) a messaging application 8 for 1 to 1 conversations;

7Google Play store: https://play.google.com/store/apps/details?id=com.
amsavarthan.social.hify; and Source code: https://github.com/lvamsavarthan/
hify version of 06/07/2020

8https://github.com/ResoCoder/firebase-firestore-chat-app version of
19/08/2020

11

https://play.google.com/store/apps/details?id=com.amsavarthan.social.hify
https://play.google.com/store/apps/details?id=com.amsavarthan.social.hify
https://github.com/lvamsavarthan/hify
https://github.com/lvamsavarthan/hify
https://github.com/ResoCoder/firebase-firestore-chat-app

TABLE III
APPLICATIONS AND THEIR CONFIGURED ACTIONS USED TO TEST MIRES.

Applications Configured Actions
Social Network Create Account

Post, Comment and Like

Messaging Create Account and Chats
Create, Change and Delete messages

Shopping Lists Create Accounts
Add, Change and Delete lists and
products

Contact Tracking Create account
Store user’s contacts

3) a shopping list application, ShoppingListApp 9, to cre-
ate shopping lists, by adding, changing and removing
products;

4) a contact tracking application, CovSense 10, used to
track contacts between their users and manage the
COVID-19 spread.

The social network and messaging applications were chosen
based on the high number of dependencies of transactions
of different users created on the backend, and because they
represent the logic of 4 out of 5 of the most downloaded
apps of 2019 [60]. The shopping list was chosen due to its
different logic, since it is a personal application, not social. The
CovSense application was chosen due to the actual pandemic
context that humankind is facing. All applications use Firebase
as BaaS and the Firestore database.

Table III provides information about each application and
the actions used to test our recovery service. We now provide
supplementary information about each application.

Hify is an open-source social network application where
users can share updates and photos, engage with friends and
other users worldwide, and stay connect to the world. The
application presents features such as: photo-sharing (up to 7 in
a single post) and updates; get notifications when friends like
and comment on your posts; ask questions in the Hify Forum
and also help others with answers for their questions; connect
with friends and family; and meet new people. In terms of
recovery, the data in the database that MIRES will recover is
related with the user accounts and their main actions on the
application, more specifically, posts, comments and likes.

Chat is a simple messaging application where users can
start 1-to-1 conversations with another user. After creating an
account, users can search for a specific user – by inserting the
username – and start a conversation, with the possibility to
send images or text messages. We have focused our experi-
ments on recovering data related to user accounts, chats, and
messages.

Shopping Lists is an Android application for shopping
list management. Lists and products are created through the
definition of a name for each one. Each user can create, update,
or delete a shopping lists and then add, update or delete
products in each list. Each list is created by a single user but

9https://github.com/alexmamo/Firestore-ShoppingListApp version of
07/07/2020

10https://github.com/saivittalb/covsense version of 27/09/2020

can be shared with other users. MIRES will focus its recovery
on the data about user accounts, the lists managed by the user
and the products in each list.

CovSense is an application for tracking the spread of
COVID-19. The application uses a combination of Wi-Fi,
Bluetooth, BluetoothLE and ultrasonic modem to commu-
nicate a unique-in-time pairing code between devices. This
code can be used to trace contacts between users. Applica-
tion actions are: create account, update the health status –
between “Healthy” and “Diagnosed with COVID-19” – and
store contacts with other users, that is done automatically
by the application. After a user changes his health status to
“Diagnosed with COVID-19”, all users that contacted with
him are notified about a possible infection. In this application,
MIRES will apply its recovery approach on the user accounts
and the contacts stored between different users.

X. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of MIRES
with the four example applications described above. With
this evaluation we wanted to answer the following questions:
%beginitemize What is the performance penalty and cost of
MIRES in run-time, as it requires logging all operations? –
Section X-A; What is the storage space overhead of running
MIRES? – Section X-B; What is the performance of the ad-
ministrator recovery? – Section X-C; What is the performance
of the multi-service recovery process? – Section X-D; What
is the performance of the user recovery? – Section X-E;

We used a mobile device with 3GB of memory and an Octa-
Core Kirin 710 processor connected to a 47.78 Mb/s download
speed and 9.58 Mb/s upload speed network to test each appli-
cation. Both application and MIRES containers were deployed
on Google Cloud in the same region (europe-west2) to
mitigate network delays. Each MIRES module was deployed
on Google Compute Engine, on a N1 generation machine,
with 1vCPU, 3.65 GB of memory and running Debian Linux
10 OS. All results shown in the next sections are averages of
5 executions of the results obtained with the 4 applications,
except when noticed.

A. Logging Performance and Cost

This section evaluates the performance overhead of logging
the operations done in normal execution mode.

1) Mobile Application Performance: MIRES configures
both write and read operations made to the database, resulting
in an additional cost to execute each operation. To test the
imposed cost, we used the actions of the application and
performed a set of 1K CRUD operations per application. Each
block of operations followed a different workflow distribution
for each application: 80/20 read/write distribution for the
social network application, where users tend to actively read
posts from other users, comments and likes, 50/50 read/write
for the messaging application based on read/reply conversa-
tions, a 20/80 read/write for the shopping list application,
since lists tend to be intensively updated, by adding, changing
and removing items, and 0/100 read/write for the CovSense

12

https://github.com/alexmamo/Firestore-ShoppingListApp
https://github.com/saivittalb/covsense

Shop. Messag. Soc. CovS.

20

40

60

80

100

120

Ti
m

e
(s

)

With MIRES Without MIRES

Fig. 4. Time to perform 1000 operations on each application, with and without
MIRES.

TABLE IV
INTRUSION RECOVERY SERVICE OVERHEADS (VALUES TAKEN FROM THE

CORRESPONDING PAPERS).

System - Application Overhead
MIRES - Shopping List App 23.00%
MIRES - Messaging App 18.00%
MIRES - CovSense App 16.00%
MIRES - Social Network App 15.00%
Rectify - Wordpress 17.19%
Rectify - LimeSurvey 18.72%
Rectify - MediaWiki 14.49%
RockFS - Async 14.19%
RockFS - Sync 15.88%
Shuttle - Workload A 13.00%
Shuttle - Workload B 16.00%
Warp - Reading 24.00%
Warp - Editing 26.84%
Retro - Web server (1 core) 55.99%
Retro - Web server (2 cores) 24.89%
Retro - HotCRP (1 core) 25.98%
Retro - HotCRP (2 cores) 1.96%
SHELF - Dbench throughput 7.60%
SHELF - Apache ab transfer rate 7.50%

application since most of the application main logic is based
on writes.

Figure 4 shows the results of the experiment. MIRES
imposes an overhead of 23% on the Shopping List App, 18%
on the Messaging App, 16% on the CovSense App and 15%
on the Social Network App. This difference is due to the
different configurations made on the mobile application: write
operations are configured using a Firebase transaction with
an extra create operation (flag), whereas read operations are
configured by adding a filter to blocked and locked documents,
which leads to a lower cost on read operations. Although
the overhead is noteworthy, MIRES presents a similar perfor-
mance degradation when compared to other intrusion recovery
works (see Table IV) which we consider acceptable, given the
recovery benefit provided by the service. MIRES adds a create
operation for each write operation made on the database (flag
process), which contributed to increasing the cost of running
the service, since Firebase is charged per cluster of operations
(each cluster of 100K operations costs $0.18 at the time of the
evaluation).

2) Mobile Application Performance with File Metadata
Configuration: To test the performance of multi-service trans-
actions, we used the Hify application, through image posts11.
Image posts transactions are composed of 2 operations: a

11We used only the Hify application since it is the only application that
provides database-file transactions.

TABLE V
TIME TO PERFORM A DATABASE-FILE TRANSACTION, WITH AND WITHOUT

MIRES.

Action Time (s)
Post action without file configuration 0.92 +- 0.02
Post action with file configuration 0.96 +- 0.03

TABLE VI
COST OF THE CLOUD FUNCTION EXECUTIONS USED BY MIRES

Cloud Function Time (s) Memory (GB)
Cloud Logger 0.47±(0.06) 0.09±(0.01)
File Logger 0.13±(0.01) 0.08±(0.02)
Snapshot Creator 0.10±(0.01) 0.08±(0.01)

create database operation and an upload file operation. We
executed a flow of 1000 transactions. Table V represents the
results of the experiment. We can see that MIRES imposes
an overhead of 4.3% when configuring the file metadata. We
believe that this is an acceptable overhead given the benefits
that it provides.

3) Cost of Logging Database Operations: Cloud Logger
scripts were deployed on the mobile application container to
listen for database changes and flags. The script was deployed
on the same region of the application container, to minimize
the activation time and assure all necessary triggers. The script
was deployed on a Node.js execution environment with 1 GB
of dedicated memory. Table VI shows the execution results of
the Cloud Loggers, obtained from the workflow made to the
database on Section X-A1. Firebase offers a free quota of 2M
invocations per month. After that, each 1M of invocations costs
$0.40 (however the Cloud Functions service is also priced in
GB/second, CPU/second and the Internet traffic12).

4) Cost of Logging File Operations: File Logger scripts
were also deployed following the Cloud Loggers deployment
model (see Section X-A3). Table VI shows the results of the
execution of File Loggers, obtained from the workflow made
on Section X-A2

B. Space Overhead

This section evaluates the overhead caused by MIRES in
terms of data storage. Notice that MIRES necessarily uses
storage space to keep all the data it needs to undo operations,
so this overhead is intrinsic to this kind of intrusion recovery
approach.

1) Database Overhead: MIRES generate new additional
data that is stored on each database document, which imposes
a storage overhead. Firebase provides full information about
the storage structure of the database13. When using MIRES,
the size of each document is increased by a minimum of
69 bytes and a maximum of 173 bytes – 69 bytes for the
Administrator Recovery, 57 bytes for the Users Recovery
mechanism and 47 bytes for the snapshots creation flow (each
document has a maximum capacity of 1 MB, which means and
occupation between 0.006% and 0.018% of the maximum size
allowed). The data is stored on a minimum of 3 field values

12https://firebase.google.com/pricing
13https://firebase.google.com/docs/firestore/storage-size

13

https://firebase.google.com/pricing
https://firebase.google.com/ docs/firestore/storage-size

and a maximum of 7 field-values – 3 for the Administrator
Recovery, 2 for the Users Recovery mechanism, and 2 for
the snapshots creation flow (each document can only contain
100 fields, which means a minimum occupation of 3% and a
maximum occupation 7%).

Additionally, MIRES creates the three collections men-
tioned before: the MIRES user flags/recovery/tokens collec-
tions. However, only the MIRES user tokens collection stores
data persistently as it is needed for recovery, whereas the other
data does not persist. For this reason, we only assess the space
usage of the MIRES user tokens collection: each user token
is saved on a different document occupying 255 bytes each.
However, the mobile application system can be already storing
the users tokens which allows to mitigate the MIRES user
tokens collection by reusing the information already stored.

In conclusion, the maximum additional data size imposed by
MIRES on the application database is given by the expression
(in bytes): Sdb = 173 × documents + 255 × users where
documents is the number of database documents and users the
number of users. For instance, 1M users and 1M documents
on a mobile application system increase the storage in 0.41
GB.

2) Database Log Records: Each operation made to the
database is logged with specific data (see Section V) given
by the following expression (in bytes): Slog = 215 + doc +
(53 + data) where doc represents the path to the document
affected and data the data sent on the operation; the 53 bytes
are only added if the operation wrote any data, i.e., create and
update operations. For example, an operation that creates a
20-character name document on a collection named Posts will
lead to 26 bytes of doc property ("Posts/" + 20-character
string). If the operation writes 344 bytes, then the log record
of the operation will have 215+26+(53+344) = 638 bytes.

3) Dependencies: When a write operation is influenced by
a read operation, there is additional information logged related
with the read operation (see Section V-C). The dependency
size of an operation is given by the following expression (in
bytes and where D defines the number of documents read and
F the number of field-values read):

Sdep = 91 +

D∑
d=1

(doc+ 1 +

F∑
f=1

(field+ 1))

where the doc property represents the path to the document
read and the field property represents each field-value read.
To exemplify, if a read operation is performed upon the id,
username, name and image fields of the users’ information
document, this will lead to 19 bytes (the sum of the field values
read). If the path of the document read is "Users/" + user
ID, a 28-character identifier, this will result on a doc property
of 34 bytes. Thereby, the read operation would increase the
log record size by 91+(34+1+(19+4)) = 149 bytes

4) File Log Records: MIRES stores the log of the file
operation performed. Each log record size is give by the
following expressions (in bytes): Sdep = 164+file+bucket for
upload operations, and Sdep = 100 + file + bucket for delete
operations. The file property is the file path of the file and
the bucket property is the file storage name where the file is
stored.

TABLE VII
LOG SIZE.

Mobile Application Database Log (GB) File Log (GB)
Social Network App 0.11 0.25
Messaging App 0.25 -
Shopping List App 0.41 -
CovSense App 0.42 -

0 200 400 600 800 1,000

0

10

20

30

40

Operations

Ti
m

e
(s

)

Locking Phase
Reconstruction Phase

Fig. 5. Time to revert a different number of operations.

Table VII shows the log size needed to store 1M database
operations following the exact workflow performed on Section
X-A on each application, as also shows the capacity needed to
store 1M file operations, following the exact model of Section
X-D, where the file size property is 74 bytes and the bucket
size property is 23 bytes. Firestore offers a free quota of 1GB.
After that, each 1 GB costs $0.18.

C. Administrator Recovery Performance
The total time needed to recover the application, from the

moment when the systems starts the recovery until all effects
of the intrusion are removed, is defined as the Time to Recover
(TTR). In MIRES, the TTR is the sum of the Locking phase
and Reconstruction phase times.

To test the recovery performance, we defined three real
scenarios. In Scenario 1 we have created a user in each appli-
cation and performed a different number of actions resulting
in 1 to 1000 operations to recover. In Scenario 2 we used
the same user and the application actions to perform 1 to
10K operations upon the same document, in order to create
1 to 10K different versions of the document. In Scenario
3 we tested a particular recovery case were intrusions are
not propagated to the database service, but instead malicious
information is broadcast directly to user applications, through
notifications. The rest of the section analyses the MIRES
recovery performance in these scenarios.

1) Scenario 1 – Undoing Database Operations: Figure 5
shows the results of undoing the actions of the user. Both
Locking and Reconstruction phases increase linearly with the
increase of the log size, the dependencies, and the documents
to recover (in this test, there was an average of 45 documents
for each 100 operations on each application). Recovering a
single operation takes less than 1 second, while recovering
1K operations takes 55 seconds maximum. However, in this
latter case, the mobile application system is unavailable for
only 15 seconds.

14

100 101 102 103 104

0

1

2

3

Versions

Ti
m

e
(s

)

Lock. Phase
Rec. Phase (Oper. model)
Rec. Phase (Snap. model)

Fig. 6. Time to reconstruct a document with different versions.

The Locking phase is composed of the load and analysis
of the log to identify the malicious transactions and the
corrupted documents. This phase presents a drawback: MIRES
can lock documents where the state before and after the
recovery process is the same. Thereby, this documents could
be ignored, increasing the locking accuracy. However, we have
not implemented this optimization, since we believe that these
scenarios will be rare.

The Reconstruction phase is composed of the reconstruction
of the locked documents. We can see that this phase performs
worst than the Locking phase: on the Locking phase, MIRES
loads and analyses the log on a single process, while on
the Reconstruction phase, MIRES needs to load, for each
document locked, the operations that affect the document to
reconstruct – for legitimate operations – or update the log –
for malicious operations.

2) Scenario 2 – Reconstructing a Database Document:
Figure 6 shows the results of rebuilding a document with
different versions. By following an operations model, the
reconstruction of a document takes longer with the increase
of the number of versions, since MIRES needs to replay all
the operations required to reconstruct the document. However,
by using snapshots of 1K versions, we could reconstruct a
document with 10K versions in less then 0.5 seconds, instead
of the almost 3 seconds required when using the operations
model.

We made our in-depth analysis only on the last workflow
tested, i.e., the 10k versions. Table VI shows the results
observed on the execution of Snapshot Creators. All tested
applications – Social Network, Shopping Lists and CovSense
applications – stored 10 snapshots of the document – each
with 1000 versions – imposing an additional storage of 0.01
MB on all applications.

As expected, the Locking phase times remained practically
the same, since it was always only one transaction to be
analysed.

3) Scenario 3 – Sending Recovery Notifications: This sce-
nario was focused on a different type of recovery, where the
effects are not persisted in the database. However, some type
of malicious information is generated and shared with the
users. To test this particular scenario, we used the CovSense
application to simulate a malicious health status change that
generated a malicious flow of notifications sent to some

users. MIRES sends recovery notifications to each user. We
tested the notifications mechanism by sending 1, 10 and 100
notifications. We performed each test 5 times, concluding that
sending 1 notification costs 0.06±(0.03) seconds, sending 10
notifications costs 0.81±(0.04) seconds, and 100 notifications
costs 5.80±(0.58) seconds.

D. Multi-Service Recovery Performance

We evaluated MIRES when recovering multi-service trans-
actions (Section VII). We used the Hify application and the
image post action – this action is supported by a transaction
composed of 2 operations: a create database operation and an
upload file operation. We recovered 1 to 1000 transactions, in
intervals of 100 transactions. Figure 7 represents the results
of the experiment. Recovering 1 transaction takes less than 1
second, while recovering 1000 transactions takes 132 seconds
(2 minutes and 12 seconds).

0 200 400 600 800 1,000

0

20

40

60

80

Transactions

Ti
m

e
(s

)

Locking Phase
Reconstruction Phase

Fig. 7. Time to undo a different number of multi-service transactions.

E. User Recovery Performance

The user recovery mechanism is, similar to the administrator
recovery approach, supported by two phases: a locking phase,
where the mobile application locks the documents affected by
the transaction, and a reconstruction phase, where the locked
documents are reconstructed by the MIRES service.

1) Normal Execution: In the course of the normal execu-
tion, each time that an invisible database document appears,
the Users Recovery Module unblocks the document after 30
seconds. To test the unblocking time, we performed three
different flows: we have executed 1, 10 and 100 operations
concurrently, each generating a blocked document. This test
flow was performed for each application, except the CovSense
application. With this experiment, we concluded that, after the
30 seconds, and with the increase of documents to unblock,
the average time to unblock each document is 0.08±(0.04)
seconds.

2) Recovery Execution: The user recovery flow begins with
the direct lock of the documents by the mobile application. We
have measured the locking phase by locking 1 and 10 docu-
ments. This test flow was conducted in each application, except
the CovSense application. We observed that locking a single
database document costs 0.27±(0.01) seconds, while locking
10 database documents costs 1.02±(0.01) seconds. However,

15

since this phase is performed by the mobile application, the
time to lock the documents can be volatile, depending on the
network speed and on the mobile device.

The Users Reconstruction phase follows the same model as
the Administrator Reconstruction phase (see Section X-C).

XI. CONCLUSIONS

We presented MIRES, the first intrusion recovery service for
mobile application systems that use BaaS. The experimental
evaluation shows that MIRES is effective and also efficient, as
it can revert hundreds to thousands of operations in seconds,
with an unavailability period of the application also in the
range of seconds. MIRES introduces a set of new ideas, such
as the two-phase recovery process, that recovers the state of
the mobile application system, minimizes the unavailability of
the system during the procedure, and uses the multi-service
recovery to revert more complex transactions. Other than the
main intrusion recovery functionality, MIRES also presents
a user recovery mechanism, allowing application users to
undo their last activity. We applied MIRES to recover mobile
application systems supporting diverse applications, all of
them based on BaaS. However, given its principled approach,
it is also possible to use MIRES to recover other types of
application, such as web applications.

Acknowledgments This research was supported by national
funds through Fundação para a Ciência e Tecnologia (FCT)
with reference UIDB/50021/2020 (INESC-ID).

REFERENCES

[1] F. F.-H. Nah, K. Siau, and H. Sheng, “The value of mobile applications:
a utility company study,” Communications of the ACM, vol. 48, no. 2,
pp. 85–90, 2005.

[2] D. Gavalas and D. Economou, “Development platforms for mobile
applications: Status and trends,” IEEE Software, vol. 28, no. 1, pp. 77–
86, 2010.

[3] V. Lee, H. Schneider, and R. Schell, Mobile Applications: Architecture,
Design, and Development. USA: Prentice Hall PTR, 2004.

[4] C. Troncoso, M. Payer, J. Hubaux, M. Salathé, J. Larus, W. Lueks,
T. Stadler, A. Pyrgelis, D. Antonioli, L. Barman et al., “Decentralized
privacy-preserving proximity tracing,” IEEE Data Engineering Bulletin,
vol. 43, no. 2, pp. 36–66, 2020.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[6] B. Carter, “Grow your own backend-as-a-service (BaaS) platform,”
in GOCICT 2015 Conference College of Information & Computer
Technology, Nov. 2016.

[7] J. A. L. Ferreira and A. R. da Silva, “Mobile cloud computing,” Open
Journal of Mobile Computing and Cloud Computing, vol. 1, no. 2, pp.
59–77, 2014.

[8] K. Lane, “Overview of the backend-as-a-service (BaaS) space,” API
Evangelist, 2015.

[9] OWASP Mobile Security Project, “OWASP mobile top 10,” 2016,
https://owasp.org/www-project-mobile-top-10/.

[10] Positive Technologies, “Vulnerabilities and threats in mobile applications
2019,” 6 2019.

[11] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database Systems: The
Complete Book, 2nd ed. USA: Prentice Hall Press, 2008.

[12] A. B. Brown and D. A. Patterson, “Undo for operators: Building an
undoable e-mail store,” in USENIX Annual Technical Conference, 2003,
pp. 1–14.

[13] İ. E. Akkuş and A. Goel, “Data recovery for web applications,” in
2010 IEEE/IFIP International Conference on Dependable Systems &
Networks, 2010, pp. 81–90.

[14] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich, “Intrusion
recovery for database-backed web applications,” in Proceedings of the
23rd ACM Symposium on Operating Systems Principles, 2011, pp. 101–
114.

[15] T.-C. Chiueh and D. Pilania, “Design, implementation, and evaluation
of a repairable database management system,” in 21st International
Conference on Data Engineering, 2005, pp. 1024–1035.

[16] D. Matos and M. Correia, “NoSQL undo: Recovering NoSQL databases
by undoing operations,” in 2016 IEEE 15th International Symposium on
Network Computing and Applications, 2016, pp. 191–198.

[17] T. Kim, X. Wang, N. Zeldovich, M. F. Kaashoek et al., “Intrusion re-
covery using selective re-execution,” in Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation, 2010,
pp. 89–104.

[18] D. R. Matos, M. L. Pardal, and M. Correia, “Rectify: Black-box intrusion
recovery in paas clouds,” in Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference, 2017, p. 209–221.

[19] D. Nascimento and M. Correia, “Shuttle: Intrusion recovery for paas,”
in 2015 IEEE 35th International Conference on Distributed Computing
Systems, 2015, pp. 653–663.

[20] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, Jan-Mar 2004.

[21] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting Android to protect
data from imperious applications,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, 2011, pp. 639–
652.

[22] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on Android for diverse security and privacy
policies,” in Proceedings of the 22nd USENIX Security Symposium,
2013, pp. 131–146.

[23] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2014, pp. 259–
269.

[24] K. Gai, M. Qiu, L. Tao, and Y. Zhu, “Intrusion detection techniques for
mobile cloud computing in heterogeneous 5G,” Security and Communi-
cation Networks, vol. 9, no. 16, pp. 3049–3058, 2016.

[25] S. D. Yalew, G. Q. Maguire Jr., S. Haridi, and M. Correia, “DroidPosture:
A trusted posture assessment service for mobile devices,” in Proceedings
of the 13th IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications, Oct. 2017.

[26] L. Moroney, Moroney, and Anglin, Definitive Guide to Firebase.
Springer, 2017.

[27] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou, “Intpatch: Automat-
ically fix integer-overflow-to-buffer-overflow vulnerability at compile-
time,” in European Symposium on Research in Computer Security.
Springer, 2010, pp. 71–86.

[28] S. Thomas and L. Williams, “Using automated fix generation to secure
sql statements,” in 3rd International Workshop on Software Engineering
for Secure Systems (ICSE Workshops 2007), 2007, pp. 9–9.

[29] H. F. Korth, E. Levy, and A. Silberschatz, “A formal approach to
recovery by compensating transactions,” University of Texas at Austin,
USA, Tech. Rep., 1990.

[30] A. B. Brown, L. Chung, W. Kakes, C. Ling, and D. A. Patterson,
“Experience with evaluating human-assisted recovery processes,” in Pro-
ceedings of the 34th IEEE/IFIP International Conference on Dependable
Systems and Networks, 2004, pp. 405–410.

[31] P. Ammann, S. Jajodia, and P. Liu, “Recovery from malicious transac-
tions,” IEEE Transactions on Knowledge and Data Engineering, vol. 14,
no. 5, pp. 1167–1185, 2002.

[32] S. T. King and P. M. Chen, “Backtracking intrusions,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 223–236, 2003.

[33] D. Oliveira, J. R. Crandall, G. Wassermann, S. Ye, S. F. Wu, Z. Su,
and F. T. Chong, “Bezoar: Automated virtual machine-based full-system
recovery from control-flow hijacking attacks,” in Proceedings of the
IEEE Network Operations and Management Symposium, 2008, pp. 121–
128.

[34] X. Xiong, X. Jia, and P. Liu, “Shelf: Preserving business continuity
and availability in an intrusion recovery system,” in Proceedings of the
Annual Computer Security Applications Conference, 2009, pp. 484–493.

16

[35] A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara, “The taser intrusion
recovery system,” in Proceedings of the 20th ACM Symposium on
Operating Systems Principles, 2005, pp. 163–176.

[36] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton,
and J. Ofir, “Deciding when to forget in the Elephant file system,”
in Proceedings of ACM SIGOPS Symposium on Operating Systems
Principles, 1999, pp. 110–123.

[37] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and
G. R. Ganger, “Self-securing storage: protecting data in compromised
system,” in Proceedings of the 4th USENIX Symposium on Operating
System Design & Implementation, 2000.

[38] N. Zhu and T.-c. Chiueh, “Design, implementation, and evaluation of
repairable file service,” in Proceedings of the International Conference
on Dependable Systems and Networks, 2003, p. 217.

[39] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su, “Back to the
future: A framework for automatic malware removal and system repair,”
in Proceedings of the 22nd Annual Computer Security Applications
Conference, 2006, pp. 257–268.

[40] S. Jain, F. Shafique, V. Djeric, and A. Goel, “Application-level iso-
lation and recovery with solitude,” in Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems, 2008, pp.
95–107.

[41] R. Chandra, T. Kim, and N. Zeldovich, “Asynchronous intrusion recov-
ery for interconnected web services,” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles, 2013, pp. 213–227.

[42] D. Matos, M. Pardal, and M. Correia, “Sanare: Pluggable intrusion
recovery for web applications,” IEEE Transactions on Dependable and
Secure Computing, 2022, to appear.

[43] D. R. Matos, M. L. Pardal, and M. Correia, “RockFS: Cloud-backed
file system resilience to client-side,” in Proceedings of the 2018
ACM/IFIP/USENIX International Middleware Conference, 2018.

[44] P. Liu, J. Jing, P. Luenam, Y. Wang, L. Li, and S. Ingsriswang, “The
design and implementation of a self-healing database system,” Journal
of Intelligent Information Systems, vol. 23, no. 3, pp. 247–269, 2004.

[45] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Transactions on Computer
Systems, vol. 3, no. 1, pp. 63–75, 1985.

[46] D. B. Johnson and W. Zwaenepoel, “Recovery in distributed systems
using optimistic message logging and checkpointing,” Journal of Algo-
rithms, vol. 11, no. 3, pp. 462–491, 1990.

[47] N. Neves, M. Castro, and P. Guedes, “A checkpoint protocol for an entry
consistent shared memory system,” in Proceedings of the 13th Annual
ACM Symposium on Principles of Distributed Computing, 1994, pp.
121–129.

[48] D. Vaz, D. R. Matos, M. Pardal, and M. Correia, “MIRES: Recovering
mobile applications based on backend-as-a-service from cyber attacks,”
in Proceedings of the 17th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, 2020.

[49] I. Costa, J. Araujo, J. Dantas, E. Campos, F. A. Silva, and P. Maciel,
“Availability evaluation and sensitivity analysis of a mobile backend-as-
a-service platform,” Quality and Reliability Engineering International,
vol. 32, no. 7, pp. 2191–2205, 2016.

[50] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with Hyperflow, AWS
Lambda and Google Cloud Functions,” Future Generation Computer
Systems, no. 110, 2017.

[51] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud
programming simplified: A Berkeley view on serverless computing,”
arXiv preprint arXiv:1902.03383, 2019.

[52] P. B. Menage, “Adding generic process containers to the linux kernel,”
in Linux Symposium, 2007, p. 45.

[53] S. Xanthopoulos and S. Xinogalos, “A comparative analysis of cross-
platform development approaches for mobile applications,” in Proceed-
ings of the 6th Balkan Conference in Informatics, 2013, pp. 213–220.

[54] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain, “A survey
and comparison of relational and non-relational database,” International
Journal of Engineering Research & Technology, vol. 1, no. 6, pp. 1–5,
2012.

[55] K. Chodorow, MongoDB: The Definitive Guide. O’Reilly, 2013.
[56] J. Williams and D. Wichers, “OWASP Top 10 - 2017 rcl - the ten most

critical web application security risks,” OWASP Foundation, Tech. Rep.,
2017.

[57] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing
factors in function as a service,” in 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion, 2018, pp. 181–
188.

[58] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communicatios of the ACM, vol. 21, no. 7, pp. 558–565, Jul.
1978.

[59] J.-L. Lin and M. H. Dunham, “A survey of distributed database check-
pointing,” Distributed and Parallel Databases, vol. 5, no. 3, pp. 289–319,
1997.

[60] Sensor Tower, “Q4 2019 store intelligence data digest,” 2020.

Diogo Vaz has a BSc (2019) and a MSc (2021)
in Computer Science and Engineering by Instituto
Superior Técnico (IST), Universidade de Lisboa,
Portugal. He is a PhD candidate at IST and a junior
researcher at INESC-ID Lisboa. His research inter-
ests are in Cybersecurity and Distributed Systems.

David R. Matos has a BSc (2012) and a MSc
(2013) in Informatics Engineering from the Faculty
of Sciences, University of Lisbon and a PhD (2019)
in Computer Sciences and Engineering from Insti-
tuto Superior Técnico, University of Lisbon. He is
currently a Postdoctoral researcher at FCiências-ID
in the LaSIGE laboratory from Faculty of Sciences,
University of Lisbon. His research interests are in
the area of Distributed Systems and Cybersecurity.

Miguel L. Pardal graduated (2000), mastered
(2006), and doctored (2014) in Computer Science
and Engineering from Instituto Superior Técnico
(IST), University of Lisbon, Portugal. He is an As-
sistant Professor at IST and a researcher at INESC-
ID in the Distributed, Parallel and Secure Systems
Group (DPSS), where he is leading the SureThing
project (FCT) and completed a participation in the
Safe Cloud EU Project (H2020). He is also a Guest
Scientist at the Chair of Network Architectures and
Services at TU Munich. During his PhD, he was a

visiting student at the Auto-ID Labs at MIT. His current research interest is
in Cybersecurity applied to the digital frontiers of the Internet of Things and
Cloud Computing.

Miguel Correia is a Full Professor at Instituto
Superior Técnico (IST), Universidade de Lisboa,
senior researcher at INESC-ID, and member of the
Distributed Systems Group (GSD). He is coordinator
of the Doctoral Program in Information Security at
IST. He has been involved in many international
and national research projects related to Cyber-
security (QualiChain, SPARTA, SafeCloud, PCAS,
TCLOUDS, ReSIST, CRUTIAL, MAFTIA) and has
more than 200 publications. His research focuses
on Cybersecurity and Dependability (a.k.a. Fault

Tolerance) in Distributed Systems, in the context of different applications
(Blockchain, Cloud, Mobile).

17

	Introduction
	Background and Related Work
	From Intrusions to Recovery
	Related Work

	The Backend-as-a-Service Model
	The Model
	Mobile Applications in BaaS

	The MIRES Service
	Assumptions
	Supported forms of Recovery
	Architecture

	Normal Execution
	Mobile Application Configuration
	Logging Write Operations
	Flags
	Cloud Loggers

	Logging Read Operations

	Administrator Recovery
	Phase 1: Locking Phase
	Read-Write Dependencies
	Structural Dependencies

	Phase 2: Reconstruction Phase
	Operations Model
	Snapshots Model

	Multi-Service Recovery
	Normal Execution
	Administrator Recovery
	Locking Phase
	Reconstruction Phase

	User Recovery
	Normal Execution
	Recovery Execution

	MIRES Implementation
	Example Applications

	Experimental Evaluation
	Logging Performance and Cost
	Mobile Application Performance
	Mobile Application Performance with File Metadata Configuration
	Cost of Logging Database Operations
	Cost of Logging File Operations

	Space Overhead
	Database Overhead
	Database Log Records
	Dependencies
	File Log Records

	Administrator Recovery Performance
	Scenario 1 – Undoing Database Operations
	Scenario 2 – Reconstructing a Database Document
	Scenario 3 – Sending Recovery Notifications

	Multi-Service Recovery Performance
	User Recovery Performance
	Normal Execution
	Recovery Execution

	Conclusions
	References
	Biographies
	Diogo Vaz
	David R. Matos
	Miguel L. Pardal
	Miguel Correia

