A Framework for Monitoring and Auditing the Activity of
Cross-Chain Mechanisms

Jorge Santos
INESC-ID, Instituto Superior Técnico,
University of Lisbon — Lisbon, Portugal
jorge.m.santos@tecnico.ulisboa.pt

André Vasconcelos
INESC-ID, Instituto Superior Técnico,
University of Lisbon — Lisbon, Portugal
andre.vasconcelos@tecnico.ulisboa.pt

Abstract

Blockchain interoperability presents complex challenges regarding
transparency and accountability. This paper proposes a modular
framework for monitoring and auditing cross-chain systems by
capturing, correlating, and visualizing telemetry data, namely logs,
metrics, and traces produced during execution. The proposed so-
lution provides real-time observability and post-incident auditing
through customizable dashboards and automated data aggrega-
tion. The framework maintains high throughput, low latency, and
scalable performance while introducing negligible operational over-
head. By allowing stakeholders to perform root-cause analysis and
track performance indicators, the system improves cross-chain
transparency, operational resilience, and trustworthiness.

CCS Concepts

« Applied computing — Enterprise interoperability; « Soft-
ware and its engineering — Software design engineering.

Keywords

Blockchain, Monitoring, Auditing, Interoperability, Evaluation

ACM Reference Format:

Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia. 2026.
A Framework for Monitoring and Auditing the Activity of Cross-Chain
Mechanisms. In The 41st ACM/SIGAPP Symposium on Applied Computing
(SAC °26), March 23-27, 2026, Thessaloniki, Greece. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3748522.3779917

1 Introduction

The ability to monitor and conduct audits represents a crucial com-
ponent for inferring conclusions about the execution of a system.
Software systems are statistically bound to fail at some point [14];
however, damage can be minimized by continuously improving
these systems and addressing detected flaws. To effectively miti-
gate the impact of failures, flaws should be identified as quickly as

This work is licensed under a Creative Commons Attribution 4.0 International License.
SAC °26, Thessaloniki, Greece

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2294-3/2026/03

https://doi.org/10.1145/3748522.3779917

André Augusto
INESC-ID, Instituto Superior Técnico,
University of Lisbon — Lisbon, Portugal
andre.augusto@tecnico.ulisboa.pt

Miguel Correia
INESC-ID, Instituto Superior Técnico,
University of Lisbon — Lisbon, Portugal
miguel.p.correia@tecnico.ulisboa.pt

possible through systematic monitoring of system behavior and sub-
sequently analyzed during audit processes to identify root causes
and prevent recurrence [15].

Blockchain interoperability is a relatively new branch of study
within the field of blockchain systems [12, 10]. Its importance arises
from the need to address the increasing fragmentation of blockchain
ecosystems, where independent networks often operate in isolation
due to differences in architecture, consensus mechanisms, and data
models [9, 10]. Interoperability enables seamless communication
and asset exchange between heterogeneous blockchains, thus im-
proving scalability, fostering innovation, and supporting the wide
adoption of decentralized technologies [9, 12]. Thus, from the late
2010s to the early 2020s, research began to shift focus: as individual
blockchain systems matured, the central challenge evolved from im-
proving isolated platforms to enabling interaction and integration
across heterogeneous blockchains [12]. An early and influential ref-
erence to the concept of blockchain interoperability in the Semantic
Scholar! database of academic works dates back to 2014, in a work
by Back et al. [7], where the authors propose a sidechain capable
of bridging different blockchains. Their proposal garnered signifi-
cant attention from the blockchain research community, inspiring
subsequent research on cross-chain communication and ways of
securely transferring assets between distinct blockchains.

The growing pursuit of interoperability has sparked the develop-
ment of numerous cross-chain systems and applications. According
to the DefiLlama database?, there are currently at least 134 oper-
ational cross-chain protocols [16], many of which manage total
locked values in the millions or even billions of dollars. However,
these interoperable technologies are not flawless, especially in the
early stages of production, resulting in bugs and vulnerabilities
that, from 2021 to 2024, have caused reported losses of nearly 4.3
billion dollars [36]. These incidents reveal deeper challenges in the
operational reliability and observability of interoperable systems.
Specifically, existing approaches often lack systematic monitoring
practices to promptly detect abnormal behavior [5, 13], provide
limited support for rapid root cause analysis following incidents
[26, 32, 33], and offer few visualization tools capable of presenting
cross-chain data in a meaningful and accessible manner [9, 35].
Addressing these issues is critical to improving the transparency,

! Available at https://www.semanticscholar.org/.
2 Available at https://defillama.com.

https://orcid.org/0009-0005-9239-3220
https://orcid.org/0000-0001-7020-2087
https://orcid.org/0000-0003-0038-7199
https://orcid.org/0000-0001-7873-5531
https://doi.org/10.1145/3748522.3779917
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3748522.3779917
https://www.semanticscholar.org/
https://defillama.com

SAC ’26, March 23-27, 2026, Thessaloniki, Greece

resilience, and trustworthiness of cross-chain protocols, underscor-
ing the need for enhanced monitoring and auditing capabilities in
blockchain interoperability research.

In this work, we propose and implement a monitoring and au-
diting framework capable of capturing, storing, correlating, and
displaying telemetry data—that is, execution information such as
metrics, logs, and traces that describe the runtime behavior of a
system-to enable users to analyze a cross-chain system’s activ-
ity. The proposed solution is modular and adaptable, composed
of several components, including data collectors, aggregators, and
interface managers to facilitate component substitution or addition.
The system receives telemetry data, including metrics, logs and
traces, from a cross-chain mechanism using a telemetry collector,
processes it, and redirects it to the respective data collector. The
information is then processed according to the type of telemetry
and sent to a telemetry aggregator that correlates different types
of telemetry data to find common links to aggregate information.
Finally, the data is ready to be displayed, with the dashboard man-
ager responsible for providing an interface to the end user to create
dashboards to analyze the processed data.

2 Background

This section presents background information on monitoring, au-
diting, observability, and the SATP-Hermes protocol.

2.1 Monitoring and Auditing

Monitoring and auditing are complementary processes that to-
gether ensure the security, reliability, and accountability of complex
systems [29]. Monitoring is primarily concerned with the real time
collection, aggregation, and analysis of telemetry data to identify
abnormal events, performance issues, or security incidents as they
occur [28, 2]. Its role is inherently diagnostic: monitoring captures
signals such as metrics, logs, and traces that indicate when some-
thing has gone wrong or is trending toward failure [31]. In other
words, monitoring identifies what is happening in the system.

Auditing, on the contrary, operates on a different time scale and
with a different purpose. Rather than focusing on immediate de-
tection, auditing provides a retrospective and explanatory account
of system behavior [8, 23]. Through a systematic examination of
past records of events, auditing seeks to explain why an event oc-
curred, whether it aligned with established policies or invariants,
and who or what was responsible for the underlying actions. Thus,
auditing complements monitoring by transforming raw signals into
accountability, assurance, and verifiable evidence of correctness.

When applied to blockchain and cross-chain environments, this
distinction becomes particularly important. Monitoring enables
the timely detection of anomalies, such as unexpected transaction
delays, abnormal transaction fee values, or suspicious cross-chain
message flows. Auditing, in turn, enables detailed investigations
of system activity to verify transaction integrity, ensure that the
cross-chain system operates without faults, and confirm that no
unauthorized or malicious activities occurred [17]. Together, these
two processes provide a comprehensive framework: monitoring
identifies potential risks as they emerge, while auditing explains
their root causes and verifies compliance with security and opera-
tional guarantees [29].

Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

2.2 Three Pillars of Observability

To achieve observability in practice, modern monitoring and au-
diting systems rely on three types of telemetry data, also known
as the “three pillars of observability”: logs, metrics and traces [20,
30]. Logs capture discrete events and contextual information, met-
rics provide aggregated numerical indicators of performance over
time, and traces record end-to-end execution paths across different
components [27]. Each pillar offers a distinct perspective on system
behavior; however, when combined, they provide a strong founda-
tion for monitoring and auditing a system’s behavior and activity
[20]. Table 1 systematizes and compares the information captured,
use cases and limitations of each of the telemetry data types:

Logs are collections of semi-structured or unstructured strings.
They provide fine-grained detailed information along with a rich
system context, serving as audit trails to track user actions and
system events [1]. These trails provide information on what hap-
pened before, during and after an event, making them invaluable
for understanding why unexpected behavior occurred in the system
[24].

Metrics are structured numerical representations of data col-
lected over intervals of time [20, 27]. They provide a simplified and
systematic view of the performance of the monitored system and
resource utilization, allowing the detection of anomalies and the
observation of long-term trends [24]. Monitoring systems collect,
aggregate, and analyze metrics to sift through known patterns that
indicate trends that stakeholders find relevant [27].

Traces capture the end-to-end journey of a request as it propa-
gates through a system, providing detailed visibility into its execu-
tion across components [34, 37]. A trace is composed of a sequence
of spans, where each span represents a unit of work or an interac-
tion between the system components [37]. Tracing allows operators
and developers to identify performance bottlenecks, uncover depen-
dency issues, and detect failures that may not be apparent through
logs or metrics alone.

2.3 SATP-Hermes

The SATP-Hermes project® is a plugin implementation of the Se-
cure Asset Transfer Protocol [22] and the Hermes [11] fault-tolerant
middleware on the Hyperledger Cacti? interoperability framework.
The Secure Asset Transfer Protocol [22] (SATP) is an asset transfer
protocol between two networks, being developed by the IETF, based
on the concept of trusted gateways, a type of hybrid connector [12]
that runs an interoperability protocol capable of connecting het-
erogeneous systems such as private and public blockchains. These
connectors bridge differences in architecture, consensus mecha-
nisms, and transaction models, enabling cross-chain interactions
while preserving each network’s operational independence [4]. The
primary objective of the SATP is to ensure the consistency of the
asset state across both the origin and destination networks, guar-
anteeing that the asset is located in only one system or network at
any given time, and that asset movements into (out of) networks
via gateways can be accounted for [22]. To complement the asset
transfer protocol and ensure a secure execution of the protocol, the

3 Available at https://github.com/hyperledger-cacti/cacti/tree/main/packages/cactus-
plugin-satp-hermes.
4 Available at https://github.com/hyperledger-cacti/cacti/tree/main/.

https://github.com/hyperledger-cacti/cacti/tree/main/packages/cactus-plugin-satp-hermes
https://github.com/hyperledger-cacti/cacti/tree/main/packages/cactus-plugin-satp-hermes
https://github.com/hyperledger-cacti/cacti/tree/main/

Monitoring and Auditing the Activity of Cross-Chain Mechanisms

system incorporates a crash recovery mechanism [11] that provides
both recovery and rollback capabilities in the event of system or
gateway failures [4]. This mechanism defines the procedures re-
quired for a crashed gateway to resume protocol execution from
a consistent state, minimizing possible disruption to the overall
transfer process. In extreme cases where recovery is simply not pos-
sible, the mechanism enables a controlled rollback of the protocol.
Since a distributed ledger is an append-only data structure, such a
rollback does not involve deleting previous transactions, instead,
issuing compensatory transactions that reverse the effects of the
operations already committed [11, 4]. This approach preserves the
integrity and immutability of the ledgers while ensuring that the
protocol’s consistency guarantees remain intact.

3 Motivation

Although blockchain interoperability has gained significant trac-
tion in recent years, its practical deployment continues to face
critical challenges [12]. Despite the high stakes, many existing ap-
proaches to cross-chain interoperability remain immature in terms
of observability, leading to substantial financial losses [36] and low
user trust [25]. These shortcomings give rise to several pressing
problems, which we outline in the following subsections as distinct
challenges requiring attention.

Motivation 1: Lack of Monitoring Practices. As the transition to com-
plex applications that interconnect multiple blockchain systems
accelerates and as the value locked in these systems grows, the
demand for reliable cross-chain platforms with minimal error rates
correspondingly increases. Existing studies have shown that proto-
cols often take too long to react to an attack [5, 13, 19], which may
be attributed to inadequate monitoring and suboptimal SecOps prac-
tices [3, 5, 13]. The lack of monitoring practices makes it difficult to
ensure the correct execution of cross-chain systems, contributing
to a less safe and more attack-prone operational environment [13,
5].

Motivation 2: Need for Quick Root-Cause Analysis. The necessity for
rapid post-mortem identification of root causes is critical to ensure
timely issue resolution in cross-chain environments. As cross-chain
transactions often involve heterogeneous systems, each with dis-
tinct consensus mechanisms, communication protocols, and secu-
rity assumptions, the task of tracing failures back to their origin is
sometimes complicated [26]. For instance, the Ronin Network hack
in August 2024 resulted in the theft of over $12 million, yet the
bridge was paused approximately 40 minutes to assess the vulnera-
bility [33]. Similarly, the Wormhole bridge exploit in February 2022
led to a loss of $320 million, the attack’s root cause traced back to a
vulnerability in the signature verification process [32], highlighting
the critical need for quick and robust root cause analysis capabili-
ties. Without quick and robust root cause analysis capabilities, the
operational resilience and trustworthiness of cross-chain systems
remains severely constrained.

Motivation 3: Lack of Visualization Tools. A survey concluded that
there is no publicly available mechanism for gathering and visu-
alizing cross-chain operations metrics [9]. This limitation poses a
significant challenge, as effective monitoring and auditing require

SAC ’26, March 23-27, 2026, Thessaloniki, Greece

not only the collection of telemetry data, but also its clear presen-
tation in a form that stakeholders can quickly interpret. The lack
of user-centric visualization tools hampers the ability to perform
timely post-mortem analyzes, identify root causes, and mitigate
actions. Consequently, there is a pressing need for visualization
frameworks that can integrate cross-chain data into intuitive dash-
boards, providing actionable insights for developers, auditors, and
end-users [9, 35].

4 Design and Implementation

To ensure correct execution and facilitate the process of examining
cross-chain mechanisms, we propose a system composed of several
components, including data exporters, telemetry aggregators, and
dashboard management infrastructures. This system is designed
to address the interoperability challenges identified in Section 3,
offering a solution capable of providing real-time monitoring, quick
analysis of events, and information based on the needs of stake-
holders. This section starts by introducing the system requirements.
Secondly, we present the implementation and design decisions of
the proposed solution.

4.1 Requirements

The monitoring framework is expected to capture telemetry data to
monitor and audit the execution of a system, allowing users to gain
insights into each process step. The non-functional requirements
of the system are:

(1) Adaptability: Since new cross-chain mechanisms are emerging
every day, it is necessary for the framework to be adaptable
enough to be implemented in other use cases.

(2) High Processing Capacity: Since telemetry is generated and ana-
lyzed in real-time, the system needs to have the ability to pro-
cess a large amount of telemetry information per second(high
throughput) [24].

(3) Availability: A monitoring system should function with minimal
down-time to ensure that there is no unrecorded information.

(4) Centralization: With several different types of telemetry infor-
mation being captured by different monitoring components,
the system should be capable of aggregating the information
for the user to explore [18].

(5) Seamless Integration: The implementation should be non-disruptive

and ensure compatibility with existing systems and components.
Transaction latency, for example, should not be hindered by
the integration of the monitoring and auditing system.
Scalability: The solution should allow for the extension and
integration of future project components into the existing mon-
itoring system without hindering performance.
(7) Customization: With a large amount of data being captured,
a degree of filtering and customization is required to provide
different users with their relevant information.

G

~

Concerning the functional requirements, Fig. 1 presents a use
case diagram of the monitoring framework. The identified func-
tionalities can be summarized as follows: (1) Capture execution
metrics. (2) Capture execution logs. (3) Capture execution traces.
(4) Correlate logs and traces. (5) Define new metrics to be captured.
(6) Create dashboards. (7) Visualize telemetry data.

SAC ’26, March 23-27, 2026, Thessaloniki, Greece

Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

Table 1: Summary view of telemetry data types’ information captured, use cases and limitations.

Data Type Information Captured Use Cases Limitations
. . - Debugging; - Storage and processing costs;
- Discrete events, system state, or user actions. L gg‘ g . s . P . s

- Auditing and security monitoring; - Excessive logging overhead;

Logs - Context about past, . . R
- Compliance; - Requires careful structuring;

present and future events. . - .
- Incident response; - Privacy/security concerns.
. - Monitoring system health; .

- Numerical and aggregated data - & 5y - - Lacks detailed context;

. . - Tracking service-level objectives; L . .
Metrics collected over time; A - Simplification of complex behaviors;
L A - Alerting on threshold breaches;) . K
- Quantitative overview of system health. . - Requires well-designed metrics.
- Performance trend analysis;
- Identification of latency sources; - Storage and processing costs;
- End-to-end paths of requests across services; 4 ’ torag pro¢ 8 -
. . - Dependency mapping; - Requires instrumentation across services;
Traces - Temporal and causal relationships R - L
- Failure detection; - Dependent on visualization tools;

between components. . . : :

- Correlation with other data types; - Implementation complexity;

Monitor System

Visualize telemetry
data

Capture execution
metrics
Investor

™~

<<include>>) —
Capture execution
Correlate logs and logs

traces

------ Cross-Chain
Mechanism

Auditor *- ginclude>>

Capture execution
traces
Create dashboards

Developer

Define new metrics to
be captured

Figure 1: Use case diagram for the monitoring and auditing
system’s functional requirements.

The proposed system should capture and correlate execution
metrics, logs, and traces. This information should be available for
visualization by users, allowing them to create dashboards. Finally,
developers should also be able to define new metrics to be captured.

4.2 System Architecture

This section presents the system architecture. Our solution consists
of several components that enable the processing and display of
telemetry data: the Telemetry Collector, Data Exporters, including a
collector for each telemetry data type, a Telemetry Aggregator, and
a Dashboard Manager. Fig. 2 depicts the proposed modular system
architecture. The proposed solution is designed to be adaptable,
allowing for implementation in different cross-chain use cases. The
framework is also easily scalable and integrable, maintaining a mod-
ular architecture that simplifies changing modules and the integra-
tion of new system components without hampering performance.
Furthermore, the system centralizes all telemetry information to
allow for simplified user access.

Cross-chain systems function by interacting with isolated block-
chains. When these interactions occur the cross-chain system ex-
ecutes a certain protocol (for example, a cross-chain transaction,

or cross-chain state proof) which in turn produces telemetry data,
such as logs of the execution, metrics increments for the number
of transactions processed and traces of the execution of the trans-
action from end-to-end. This telemetry is essential for providing
stakeholders with accurate information on the system’s execution
and current state, enabling effective monitoring and auditing. Addi-
tionally, developers are empowered to define new metrics tailored
to emerging use cases or specific performance indicators, ensuring
that the monitoring framework remains adaptable and capable of
capturing all relevant operational aspects of the cross-chain system.

4.2.1 Telemetry Collector. When telemetry data is produced, it
should be directed to a component capable of collecting, inter-
preting, and forwarding it for further processing. The Telemetry
Collector fulfills this role by acting as an abstraction and unification
layer for all telemetry data types. Although this component could
be bypassed in the overall pipeline of telemetry processing by sim-
ply connecting the cross-chain system to each of the data exporters,
it was included to simplify the management of all data types, as
a single collector agent reduces the operational complexity and
allows the data exporters to be easily substituted without requiring
new instrumentation within the cross-chain system’s codebase.

In addition to basic collection, the Telemetry Collector also pro-
vides a set of intermediate processing capabilities. These include
data enrichment with contextual metadata (e.g., operational con-
texts, function details, or transaction related information), data
normalization, and preliminary aggregation. Such functionality
ensures that only relevant and structured telemetry data is for-
warded to subsequent components, thereby improving the system’s
performance and scalability.

Furthermore, the modular design of the Telemetry Collector
promotes extensibility. New telemetry formats or protocols can
be integrated through custom receivers or data exporters with-
out altering the collector’s core logic, instead relying on simple
reconfigurations of the collector.

4.2.2 Data Exporters. After the telemetry data is collected and
preprocessed by the Telemetry Collector, it is forwarded to the
respective data exporter. The processing step greatly differs across
different data type collectors. As seen in Section 2.2, each telemetry
type captures different dimensions of the system’s execution, re-
quiring specific handling, transformation, and storage mechanisms.
The Data Exporters are responsible for ensuring that the collected

Monitoring and Auditing the Activity of Cross-Chain Mechanisms SAC ’26, March 23-27, 2026, Thessaloniki, Greece

Blockchain Systems B3, Cross-Chain Systems B3 Solution Backend B
Data Exporters]
Solution Frontend B2
Ledger A - T Log £
;/ Collector
|
1 Dashboard €]
i T
i Manager
|
|
i
Cross-Chain®] Telemetry | » Metric & Telemetry |
,,,,,,,,,,, >
System Collector Collector Aggregator

. Dashboard -O
i Create Dashboard
i

Implement New Metric 1
|
i
i

Ledger B g] ‘ (S S il
Collector
Developer R Stakeholder X

Figure 2: System architecture in Archimate language.

telemetry is correctly formatted, transmitted, and stored in the
appropriate backend systems.

Each exporter is designed to handle a single telemetry signal
type (logs, metrics, or traces) in order to optimize the performance
and reliability of the data flow. For instance, log exporters handle
unstructured or semi-structured textual data that captures discrete
events and error messages. Metric exporters, on the other hand,
manage numerical data representing quantitative measurements
(e.g., the number of transactions, latencies, and operational gas
used). Finally, trace exporters are responsible for conveying dis-
tributed tracing data that describes end-to-end execution paths
across the cross-chain system.

The use of dedicated exporters for each telemetry type allows for
fine-grained control over the data transmission process, including
the definition of export intervals, batching policies, and retry strate-
gies in the event of network failures. Moreover, exporters can be
configured to support multiple output destinations simultaneously,
enabling data replication for redundancy or multi-platform observ-
ability. This capability ensures both fault tolerance and flexibility
in adapting to different deployment environments and analytical
requirements.

From a design perspective, the exporters maintain a modular
and loosely coupled structure. This modularity allows developers
to easily substitute one exporter implementation for another with-
out impacting the rest of the telemetry pipeline. For example, a
Prometheus metric exporter® can be replaced with a Mimir metric
exporter® without modifying the data generation or collection logic.
Such flexibility is essential for ensuring the long-term maintainabil-
ity and interoperability of the proposed framework.

4.2.3 Telemetry Aggregator. After receiving specific treatment, the
telemetry data flows to the Telemetry Aggregator. This component
serves as the central integration layer of the monitoring and audit-
ing framework, responsible for unifying and correlating telemetry
signals originating from different data sources. The aggregation of

S Available at https://prometheus.io/docs/introduction/overview/.
6 Available at https://grafana.com/docs/mimir/latest/.

information enables the correlation of metrics, logs and traces, thus
providing deeper insights into the system’s operational behavior
and facilitating the detection of cross-component dependencies and
anomalies.

The Telemetry Aggregator’s primary function is to consolidate
the various telemetry streams into a coherent and queryable dataset.
By correlating metrics (quantitative performance indicators), logs
(event-based textual information), and traces (end-to-end execution
paths), the aggregator constructs a holistic view of the system’s
execution. This correlation allows users to traverse from high-level
performance trends down to specific root causes of failures or
inefficiencies. For instance, an abnormal increase in transaction
latency (metric) can be correlated with a specific error message (log)
and traced back to the responsible cross-chain operation (trace).

To achieve this, the Telemetry Aggregator employs synchroniza-
tion and indexing mechanisms that align telemetry signals based
on timestamps and trace IDs. This process ensures that events cap-
tured across multiple systems or services are accurately correlated
in time and context. Additionally, the aggregator supports temporal
and contextual queries, enabling users to perform analyzes over
specific execution windows or components within the cross-chain
architecture.

4.24 Dashboard Manager. Once the telemetry data has been aggre-
gated and correlated, it is made accessible through the Dashboard
Manager, the component responsible for managing the visualization
and interaction layer of the monitoring and auditing framework.
This module provides end users, such as developers, system opera-
tors, and auditors, with intuitive and customizable dashboards for
analyzing the behavior of the cross-chain mechanisms in real time.

The Dashboard Manager acts as the primary interface between
users and the underlying telemetry data. It retrieves information
from the Telemetry Aggregator and allows for data exploration,
through a combination of graphical representations like, for exam-
ple, charts, tables and time series, enabling users to observe key
performance indicators, identify trends, and audit system events
across different telemetry dimensions.

https://prometheus.io/docs/introduction/overview/
https://grafana.com/docs/mimir/latest/

SAC ’26, March 23-27, 2026, Thessaloniki, Greece

A key design goal of the Dashboard Manager is customization.
Different users may have distinct monitoring needs depending on
their role or focus area. For instance, a developer may prioritize
visualizing execution traces and error logs to debug system be-
havior, whereas an investor may focus on number of successful
transactions, gas fees or even total locked value of a certain to-
ken. To accommodate this, the Dashboard Manager allows users
to create, modify, and save personalized dashboard configurations,
defining specific queries, filters, and visualization types suited to
their objectives.

Moreover, the Dashboard Manager supports real-time and histor-
ical data visualization, enabling users not only to monitor ongoing
system activity but also to analyze past executions for auditing and
post-incident reviews. This dual capability is essential for verifying
system integrity and evaluating performance over time.

4.3 System Implementation

The monitoring and auditing system proposed in this work was
fully implemented as part of the SATP-Hermes package of the Hyper-
ledger Cacti project (introduced in Section 2.3), that connects Fabric,
Besu and Ethereum networks. The implementation integrates the
custom components defined in Section 4.2-namely the Teleme-
try Collector, Data Exporters, Telemetry Aggregator, and Dashboard
Manager—-to form a cohesive and extensible monitoring and audit-
ing framework for cross-chain systems. To support these compo-
nents, a telemetry backend was developed around the open-source
Grafana/OTel-LGTM stack’, which provides a preconfigured envi-
ronment including the OpenTelemetry Collector, Prometheus, Loki,
Tempo, and Grafana [21]. This stack serves as the foundation upon
which the system’s custom integration and observability logic were
built. The proposed framework extends their capabilities through
the implementation of tailored data export mechanisms, correlation
logic, and analytical dashboards that fulfill the requirements of
the SATP-Hermes cross-chain mechanism. A stable version of the
implementation source code is available here.

4.3.1 Grafana/Otel-LGTM Components. The Grafana/OTel-LGTM
docker image is an open-source framework composed of an Open-
Telemetry Collector, three telemetry data sources, Prometheus, Loki
and Tempo, and Grafana for data visualization.

The OpenTelemetry Collector works as the proposed architec-
ture’s Telemetry Collector, receiving execution data. This data is
then relayed to the correspondent collector, in this case, Prometheus
for metrics, Tempo for traces and Loki for logs. Inside these col-
lectors, each type of telemetry is processed accordingly to make
the information usable for querying. Finally, it is sent to Grafana,
which serves as both the Telemetry Aggregator and the Dashboard
Manager (from section 4.2), correlating telemetry data to display
more concise insights and allow for a better and faster understand-
ing of the execution of the cross-chain mechanism. As mentioned,
it also serves as the Dashboard Manager, storing user interfaces
that allow the end user to create and get personalized dashboards
with the information deemed relevant.

4.3.2 Captured Telemetry. Thirteen metrics were implemented,
which can be seen in Table 2, capturing each different performance

7 Available at https://hub.docker.com/r/grafana/otel-lgtm.

Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

aspects of the execution. To support other implementations and
needs, new metrics can/should be defined. For logs, the ones present
in the project already were kept, as a comprehensive overview of the
system was in place. The implementation of tracing is deliberately
limited in scope, as not all project components are instrumented
with tracing logic. As mentioned in Section 2.2, if functions which
contain simple programming logic are incorporated with tracing
logic, the processing overhead may affect the performance of the
overall system. Thus, tracing is applied selectively to components
whose behavior is considered more complex and critical for observ-
ability and diagnostics purposes.

4.3.3 Grafana Dashboards. To allow users to interact with the
monitoring framework and extract meaningful insights, a set of
Grafana dashboards was developed. These dashboards act as the
main visualization and exploration layer, providing both high-level
overviews and detailed debugging tools.

The dashboards combine metrics, logs, and traces, leveraging
Grafana’s correlation capabilities. Specifically:

e System Overview Dashboard: Displays the current num-
ber of connected DLTs, gateways, and supported assets. It
includes real-time gauges, counters for total sessions and
transactions, and a breakdown of transaction outcomes (suc-
cessful vs. failed).

¢ Financial Metrics Dashboard: Focused on value flows
and economic performance, it reports cumulative exchanged
value and average resource consumption per transaction
(e.g., gas usage). These visualizations target decision makers
concerned with efficiency and sustainability.

e Debug and Performance Dashboard: Presents transaction
duration histograms, operation latencies, and failure rates.
Developers can use this dashboard to detect bottlenecks and
anomalous behaviors.

All dashboards were created using Grafana’s built-in editor, with
queries directly targeting the Prometheus, Loki, and Tempo data
sources. As new metrics are added to the monitoring framework,
dashboards can be updated by adding new panels or changing
queries. This design allows for constant adjustments to new cross-
chain mechanisms and evolving project needs.

5 Evaluation

This section evaluates the proposed framework for monitoring and
auditing. We describe evaluation methodology and each of evalua-
tion metrics. Later, the information provided by the evaluation is
collected, analyzed and discussed.

5.1 Evaluation Methodology

The evaluation focuses on the monitoring and auditing system as a
whole, meaning single operations such as the individual creation
of metrics or the individual creation of logs are not considered. The
assessment suite comprises both non-functional and functional eval-
uation, thereby ensuring a comprehensive analysis of the system’s
operational effectiveness and performance characteristics.

We answer four questions with the experiments: i) Are the imple-
mented metrics relevant in the context of cross-chain operations?
ii) what is the maximum throughput the framework can achieve,

https://github.com/JJSantos22/cacti/tree/thesis-copy
https://hub.docker.com/r/grafana/otel-lgtm

Monitoring and Auditing the Activity of Cross-Chain Mechanisms

i.e., how much telemetry data can be processed? iii) what is the
latency overhead of the monitoring system in the latency of a trans-
action?, and iv) what is the cost, in terms of storage, of storing the
telemetry data produced in the proposed system, i.e., how do the
storage requirements scale with system growth? Answers to such
questions allow us to conclude the suitability of the implemented
solution in regards to the proposed use case.

5.2 Implementation Evaluation

In this section, we assess the system under controlled experimental
conditions that emulate a realistic cross-chain environment, includ-
ing a gateway connecting heterogeneous ledgers (Ethereum and
Besu) and the Otel-LGTM monitoring and auditing infrastructure.
The evaluation focuses on key aspects such as system through-
put, transaction latency, storage requirements, and the coverage
of implemented metrics. By analyzing these dimensions, we aim
to quantify the framework’s ability to capture telemetry data at
scale, its impact on transaction execution, and its suitability for
continuous, high-frequency monitoring in cross-chain scenarios.
This implementation-focused assessment provides empirical evi-
dence supporting the system’s robustness, scalability, and practical
applicability.

5.2.1 Coverage. The goal of the coverage assessment is to ver-
ify that the implemented telemetry metrics adequately cover the
main non-functional concerns identified in prior research, ensuring
that the system effectively captures relevant aspects of cross-chain
performance and interoperability.

Belchior et al. [9] identified performance metrics such as end-to-
end latency, throughput, and cost (transaction fees), as the primary
concerns for cross-chain analysis. Besides these, energy consump-
tion, carbon footprint, parties endorsing transactions (for Hyper-
ledger Fabric-based blockchains exclusively) and cross-chain logic
were other concerns of relevant parties in the context of cross-
chain operations. Of these seven identified metric concerns, we
implemented the metrics as shown in Table 2.

Overall, five of the seven metrics were implemented. Table 2 is
divided in sections. First, the reddish section refers to the aforemen-
tioned performance metrics, all implemented. Then, the yellowish
and blueish section corresponding to the other implement met-
rics. The metric for tracking cross-chain logic was decomposed
in several metrics, that together give the user an overview of the
cross-chain system activity and logic. For parties endorsing trans-
actions, is not exactly an implemented metric, but an attribute (an
additional information), something that can still be tracked using
the transaction metrics. Finally, energy consumption and carbon
footprint are currently not implemented (grey color in the table), as
these two indicators are not yet implemented within the scope of
the SATP-Hermes project. However, when these features are added
in the future, tracking their values will not be hard, as the only
requirement to track them is to define the new metric and record
the values, as done in other metrics, such as operation_duration for
example.

5.2.2 System Throughput. The throughput evaluation measures
how many telemetry data points the monitoring framework can
handle per second under varying load conditions. To assess this, we

SAC ’26, March 23-27, 2026, Thessaloniki, Greece

Table 2: Survey vs. implemented metrics: performance met-
rics in red, metrics related to interoperability and operational
states in yellow, metrics implemented differently in blue, cur-
rently not implemented metrics in grey.

Survey Metric [9] Implemented Metric Description
Transaction duration

in milliseconds

end-to-end latency transaction_duration

Total number of

successful_transactions .
successful transactions

end-to-end throughput

Gas used
during transaction
Total number of
initiated transactions
Total number of
failed transactions
Total number of
ongoing transactions
Total token
value exchanged
Operation duration
in milliseconds
Gas used
during operation
Total number of
sessions created
Current number of
supported assets
Current number of
connected DLTs
Current number of

gateways connected
parties endorsing transactions * -
carbon footprint - -
energy consumption - -

end-to-end cost (fees) transaction_gas_used
initiated_transactions
failed_transactions
ongoing_transactions
total_value_exchanged
operation_duration
operation_gas_used
created_sessions
cross-chain logic
number_of_supported_assets

connected_DLTs

gateways

Table 3: Throughput results for counters, histograms, logs,
and spans at various iteration counts.

Iterations Counter (ops/sec) Histogram (ops/sec) Logs (ops/sec) Spans (ops/sec)

1,000 | 41,667 | 26,316 | 125000 | 16393
5000 | 27,473 | 51,020 | 151515 | 33,557
10,000 | 65,359 | 80,645 | 129870 | 43,103
50,000 | 115,207 | 104,384 | 217,391 | 68,399
100,000 | 128,205 | 111,483 | 246305 | 72,202
500,000 | 167,785 | 122,279 | 269978 | 83794
1,000,000 | 154,107 | 127,861 | 257798 | 85,521

executed a series of benchmarks using different iteration counts,
ranging from 1,000 to 1,000,000 operations, focusing on counters,
histograms, logs, and spans. Gauges were excluded from this analy-
sis due to their read-only nature and negligible overhead compared
to the other telemetry types. Table 3 summarizes the results of these
benchmarks.

A transaction using the SATP-Hermes protocol produces 16
counter operations (including both creation and increment), 21 his-
togram operations (including both creation and recording), 1572
logs, and 537 spans. The values presented in Table 4 were obtained
using the best-performing throughput measurements (i.e., the high-
est operations-per-second values, corresponding, in general, to
the highest values of iterations) from Table 3. For each teleme-
try type, the maximum number of transactions per second was
computed by dividing the measured throughput in operations per

SAC ’26, March 23-27, 2026, Thessaloniki, Greece

Table 4: Analysis of Throughput Results.

Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

Table 5: Latency of running 50 transactions with and without
monitoring.

Operations Operations Maximum Transactions Maximum Transactions
per Transaction per Second per Second per Year - - - - -

Counter | 16 | 167785 | 10,486.56 | 331 101! W/out Monitoring W/ Monitoring Diff
Histogram | 21 | 127861 | 4,735.59 \ 1.50 % 10" Min | 13998 | 14036 | +0.27%
Logs | 1,572 | 269978 | 171.74 | 5.42 % 10° Max ‘ 20231 ‘ 20557 | +161%

Spans | 537 | 85521 | 159.26 | 5.02 * 10°
Average | 15124.08 | 15223.86 | +0.66%
Median | 14865 | 14894 | +0.20%
second (Os,.) by the number of operations generated per trans- P95 ‘ 15890 ‘ 19892 | +2518%
action (Ogcty), following (Tsee = Osec/Ocetx)- The corresponding p99 \ 20231 \ 20557 | +161%
maximum number of transactions per year was then estimated as Std. Dev. | 1130.46 \ 1311.78 | +16.04%

(Tyear = Tsec * 31,536,000), where 31,536,000 represents the total
number of seconds in one year. This calculation provides an upper-
bound estimation of the system’s transaction-handling capacity
under continuous operation at peak throughput.

Using the results of the data generated for five bridges (CCTP,
CCIP, Stargate (Taxi), Stargate (Bus) and Across) during the last 6
months of 2024 (from Jun 1, 2024 to Dec 31, 2024) [6], we assume
there is an upper bound of 3, 864, 421 % 2 = 7, 728, 842 transactions
per year. Considering the best results for each type of telemetry
data points, we can conclude that the implemented monitoring
framework exhibits sufficient capacity to handle the expected op-
erational load. Even under conservative assumptions, where the
system must accommodate up to 7.7 10° transactions per year,
the measured throughput across all telemetry categories (counters,
histograms, logs, and spans) exceeds the required processing rate by
several orders of magnitude. This indicates that the monitoring in-
frastructure is not only capable of sustaining current workloads but
also possesses substantial performance capacity for future scaling.

5.2.3 Transaction Latency. Understanding how the monitor frame-
work impacts the execution time (latency) of a transaction is crucial
to justify the suitability of the proposed solution as a viable compo-
nent of a project. In case the solution affects a transaction’s end-
to-end latency too much, the monitoring system might be deemed
unfit as it stands. To evaluate the effects of the monitoring code, we
run 50 transactions with and without the monitoring framework
functioning.

We defined a transaction’s end-to-end latency in the scope of
the project SATP-Hermes as:

transaction end-to-end latency = transferCompleteMessageTimestamp -
transferCommenceMessageTimestamp

Table 5 showcases the latency results and the difference between
them in percentage. The minimum, maximum, median, and average
latencies exhibit differences close or below 1%, which are within
the expected variance of results. This suggests that the monitoring
framework imposes little overhead under normal operating con-
ditions. However, the analysis of higher-order statistics reveals a
more nuanced picture. In particular, the p95 latency increases by
25.18% when monitoring is enabled. This considerable rise shows
that the monitoring code introduces additional variability in la-
tency, disproportionately affecting a subset of transactions. Such a
shift in the tail distribution implies that while most operations are
not affected, a non-negligible fraction of executions experiences
a decrease in performance. The standard deviation, which rises
by 16.04%, corroborates this conclusion, highlighting an overall

Memory Usage vs. Number of Transactions

= N N w w N N
%3 =} a S o o G
=) S =) S =} S =)

Memory Used for Telemetry Data (MB)

—
o
S

0 50 100 150 200 250
Number of Transactions

Figure 3: Memory Usage vs Number of Transactions.

increase in dispersion. On the other hand, the p99 latency increases
by only 1.61%, which suggests that the most extreme outliers are
not significantly hindered by the monitoring logic.

5.2.4 Storage. The goal of storage evaluation is to forecast the mon-
itoring system’s long-term storage needs. We address this through
an experimental analysis, where telemetry data is produced and
stored in the docker image, comparing the size of the data folder as
we vary the number of executed transactions.

The transactions were run sequentially and sent 100 tokens
each from the Besu network® to the Ethereum network®, producing
runtime metrics, traces and logs. Telemetry data was exported from
the data sources to Grafana with a 1 second interval, offering better
temporal granularity compared to larger intervals, while reducing
the volume of captured data relative to smaller intervals.

Fig. 3 showcases the relation between the number of transactions
and the memory used to store telemetry data, for 1 second export
intervals. By producing a linear regression of the storage costs,
we can predict how much storage is necessary for one year of
transactions. The linear regression for this values is:

S =1.49x + 85.69 (1)

Using the results of the data generated for five bridges (CCTP,
CCIP, Stargate (Taxi), Stargate (Bus) and Across) during the last 6

8Documentation at https://besu.hyperledger.org/.
“Documentation at https://ethereum.org/developers/docs/.

https://besu.hyperledger.org/
https://ethereum.org/developers/docs/

Monitoring and Auditing the Activity of Cross-Chain Mechanisms

months of 2024 (from Jun 1, 2024 to Dec 31, 2024) [6], we assume
there is a lower bound of 11,430 * 2 = 22, 860 transactions per year
(tpy), an upper bound of 3, 864, 421 = 2 = 7, 728, 842 transactions per
year and an average of 11, 274, 334, 43%2/5 = 4, 509, 734 transactions
per year. Neglecting the constants from the linear regression (as
these are irrelevant when studying the overall system behavior on
a large number of transactions), the total storage required for a
year of execution of the monitoring system is given by:

STotal =1.49 = tpy (2)

With a tpy = 22,860 as lower bound, a tpy = 7,728,842 as upper
bound, and an average tpy = 4,509,734 and from Equations 1 and
2, the monitoring system requires between 34.06GB and 11.52TB,
with an average of 6.72TB per year.

5.3 Discussion

In Section 3, we outlined the three main problems; now we explain
how we addressed them in our solution proposal, one by one.

First, in Section 3 we discussed how current cross-chain proto-
cols may lack monitoring practices, thus contributing to a less safe
and more attack-prone operational environment. To address this
problem, our solution enables users to implement a customizable
monitoring framework, based on open-source technologies such as
the Otel-LGTM docker image. By leveraging user defined metrics,
logs and traces, tailored for the user’s specific business use case,
the framework allows stakeholders to observe relevant aspects of
the system’s execution. Through the definition of custom metrics,
users can quantify and monitor domain-specific events, such as the
number of cross-chain transactions or the total value exchanged
across networks. Similarly, logs and traces provide qualitative and
contextual information that help identify abnormal behavior, fail-
ures, or performance bottlenecks in real time. This holistic observ-
ability capability ensures that system operators are continuously
informed about the operational state of the cross-chain protocol,
enabling proactive incident detection and response. Ultimately, by
introducing a structured and extensible monitoring practice into
cross-chain environments, the solution directly mitigates the lack
of visibility that often leads to undetected errors, vulnerabilities, or
inefficiencies, therefore contributing to a safer and more auditable
operational landscape.

Second, in Section 3 we discussed the importance of quick au-
dit capabilities in a monitored cross-chain system. Given the dis-
tributed and multi-ledger nature of these environments, pinpointing
where and why a failure occurred can be challenging, often involv-
ing multiple gateways, ledgers, and system components. To address
this issue, our framework integrates logs, metrics, and traces under
a unified observability layer, allowing for temporal and contex-
tual correlation across telemetry sources. This means that when
an anomaly occurs (such as a failed transaction or an unexpected
delay) operators can trace its propagation path through spans, in-
spect associated logs for contextual details, and examine correlated
metrics to identify deviations from normal behavior. Furthermore,
by leveraging custom dashboards in Grafana, users can visualize
dependencies and quickly navigate from high-level indicators (e.g.,
increased transaction latency) to specific root causes (e.g., failure
in a gateway operation). This integrated audit and analysis capabil-
ity significantly shortens the mean time to recover from incidents,

SAC ’26, March 23-27, 2026, Thessaloniki, Greece

enhancing the overall reliability and maintainability of cross-chain
operations.

Lastly, in Section 3 we discussed the lack of visualization tools
capable of gathering and visualizing cross-chain operation metrics.
Cross-chain systems handle a considerable amount of operations
per day, moving high quantities of money, which in turn generates
interest from several stakeholders of the ecosystem. Analytics are,
thus, important in this context to keep up with an overview of the
system performance. In order to address this need, our proposed
solution integrates captured metrics, logs, and traces into a Dash-
board Manager, enabling real-time system evaluation. Through
user-defined panels and queries, different stakeholders can visualize
relevant data, such as transaction throughput and operational costs
(e.g. for investors), as well as cross-chain activity indicators like the
number of active sessions, gateways, latencies and supported as-
sets (e.g. for developers). This multi-layered visualization approach
not only enhances system transparency for stakeholders, but also
facilitates proactive performance monitoring. By transforming raw
telemetry into actionable insights, the framework empowers users
to gain a holistic understanding of cross-chain operations, bridging
the visibility gap that currently hinders effective management and
optimization of interoperable blockchain systems.

Overall, the evaluation demonstrates that the proposed monitor-
ing and auditing framework effectively addresses the challenges
identified in Section 3. By combining customizable metrics, logs,
and traces with a flexible visualization layer, the system provides
comprehensive monitoring, enables rapid root-cause analysis, and
ensures transparency for multiple stakeholders. The functional as-
sessments confirm that the framework can handle high operational
loads with minimal impact on transaction performance, while main-
taining the ability to scale and not hindering long-term resource
costs. Moreover, the modular and extensible design ensures that the
system can evolve to incorporate additional metrics, such as energy
consumption or carbon footprint, without requiring significant re-
development. Taken together, these results validate the practical
applicability, scalability, and robustness of the framework, position-
ing it as a reliable solution for enhancing security, auditability, and
operational insight in interoperable blockchain networks.

6 Conclusion

This work introduced a modular monitoring and auditing frame-
work that enhances the observability and accountability of cross-
chain systems. By unifying logs, metrics, and traces into a coherent
visualization and analysis system, the solution enables real-time
monitoring and efficient post-mortem analysis of cross-chain oper-
ations. Experimental results confirm that the framework supports
high performance with minimal impact on latency and substan-
tial scalability, addressing the core challenges of monitoring, rapid
diagnosis, and stakeholder transparency. By improving reliability,
transparency, and trust across heterogeneous blockchain networks,
the proposed system strengthens the overall interoperability ecosys-
tem, leading to safer and more efficient cross-chain collaboration.

Acknowledgments

This work was financially supported by Project Blockchain.PT -
Decentralize Portugal with Blockchain Agenda, (Project no 51), WP

SAC ’26, March 23-27, 2026, Thessaloniki, Greece

7: Interoperability, Call no 02/C05-i01.01/2022, funded by the Por-
tuguese Recovery and Resilience Program (PRR), The Portuguese
Republic and The European Union (EU) under the framework of
Next Generation EU Program. This work was also supported by na-
tional funds through Fundacéo para a Ciéncia e a Tecnologia (FCT)
with reference UID/50021/2025 e UID/PRR/50021/2025 (INESC-ID).

References

(1]

(2]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Ashar Ahmad, Muhammad Saad, and Aziz Mohaisen. 2019. Secure and trans-
parent audit logs with blockaudit. (2019). https://arxiv.org/abs/1907.10484
arXiv: 1907.10484 [cs.DC].

Riyaz Ahamed Ariyaluran Habeeb, Fariza Nasaruddin, Abdullah Gani, Ibrahim
Abaker Targio Hashem, Ejaz Ahmed, and Muhammad Imran. 2019. Real-time
big data processing for anomaly detection: a survey. International Journal of
Information Management, 45, 289-307. doi:https://doi.org/10.1016/j.ijinfomgt.2
018.08.006.

André Augusto, Rafael Belchior, Miguel Correia, André Vasconcelos, Luyao
Zhang, and Thomas Hardjono. 2024. Sok: security and privacy of blockchain
interoperability. In 2024 IEEE Symposium on Security and Privacy (SP), 3840—
3865. doi:10.1109/SP54263.2024.00255.

André Augusto, Rafael Belchior, Imre Kocsis, Laszl6 Génczy, André Vasconce-
los, and Miguel Correia. 2023. CBDC bridging between Hyperledger Fabric and
permissioned EVM-based blockchains. In 2023 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), 1-9. doi:10.1109/ICBC56567.2023.10
174953.

André Augusto, Rafael Belchior, Jonas Pfannschmidt, André Vasconcelos, and
Miguel Correia. 2025. Xchainwatcher: identifying anomalies in cross-chain
bridges. In Proceedings of the 26th International Middleware Conference, 413—
426.

André Augusto, André Vasconcelos, Miguel Correia, and Luyao Zhang. 2025.
Xchaindatagen: a cross-chain dataset generation framework. (2025). https://ar
xiv.org/abs/2503.13637 arXiv: 2503.13637.

Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
Andrew K. Miller, Andrew Poelstra, Jorge Timoén, and Pieter Wuille. 2014.
Enabling Blockchain Innovations with Pegged Sidechains. Whitepaper. Block-
stream. https://api.semanticscholar.org/CorpusID:61340590.

Ayoosh Bansal, Anant Kandikuppa, Chien-Ying Chen, Monowar Hasan, Adam
Bates, and Sibin Mohan. 2022. Ellipsis: towards efficient system auditing for
real-time systems. (2022). https://arxiv.org/abs/2208.02699 arXiv: 2208.02699.
Rafael Belchior, Sabrina Scuri, Nuno Nunes, Thomas Hardjono, and André
Vasconcelos. 2024. Towards a standard framework for blockchain interoper-
ability: a position paper. In 2024 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), 1-5. doi:10.1109/ICBC59979.2024.10634443.
Rafael Belchior, Jan Siilenguth, Qi Feng, Thomas Hardjono, André Vasconce-
los, and Miguel Correia. 2024. A brief history of blockchain interoperability.
Commun. ACM, 67, 10, (Sept. 2024), 62-69. doi:10.1145/3648607.

Rafael Belchior, André Vasconcelos, Miguel Correia, and Thomas Hardjono.
2022. Hermes: fault-tolerant middleware for blockchain interoperability. Future
Generation Computer Systems, 129, 236-251. doi:https://doi.org/10.1016/j.futur
€.2021.11.004.

Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021.
A survey on blockchain interoperability: past, present, and future trends. ACM
Computing Surveys, 54, 8, (Oct. 2021). doi:10.1145/3471140.

Nikita Belenkov, Valerian Callens, Alexandr Murashkin, Kacper Bak, Martin
Derka, Jan Gorzny, and Sung-Shine Lee. 2025. Sok: a review of cross-chain
bridge hacks in 2023. (2025). https://arxiv.org/abs/2501.03423 arXiv: 2501.03423.
Ricky W. Butler and George B. Finelli. 1993. The infeasibility of quantifying
the reliability of life-critical real-time software. IEEE Transactions on Software
Engineering, 19, 1, 3-12. d0i:10.1109/32.210303.

Sandeep Dalal and Rajender Singh Chhillar. 2013. Empirical study of root cause
analysis of software failure. SIGSOFT Softw. Eng. Notes, 38, 4, (July 2013), 1-7.
doi:10.1145/2492248.2492263.

DefiLlama. [n. d.] https://defillama.com/protocols/bridge.

Haotian Deng, Zihao Wang, Yajie Wang, Licheng Wang, Liehuang Zhu, and
Chuan Zhang. 2025. A secure cross-account audit scheme for cross-chain trans-
actions. In Algorithms and Architectures for Parallel Processing. Tianging Zhu,
Jin Li, and Aniello Castiglione, (Eds.) Springer Nature Singapore, Singapore,
334-350.

Jennie Duggan et al. 2015. The bigdawg polystore system. SIGMOD Rec., 44, 2,
(Aug. 2015), 11-16. doi:10.1145/2814710.2814713.

Elliptic. [n. d.] North Korea’s Lazarus group identified as exploiters behind
$540 million Ronin bridge heist. (). https://www.elliptic.co/blog/540-million-st
olen-from-the-ronin-defi-bridge.

Radoslav Gatev. 2021. Observability: logs, metrics, and traces. In Introducing
Distributed Application Runtime (Dapr): Simplifying Microservices Applications

(31]

(32]

(33]

(34]

(35]

(37]

Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

Development Through Proven and Reusable Patterns and Practices. Apress, Berke-
ley, CA, 233-252. ISBN: 978-1-4842-6998-5. d0i:10.1007/978-1-4842-6998-5_12.
Grafana Labs. [n. d.] https://grafana.com/docs/opentelemetry/docker-lgtm/.
Martin Hargreaves, Thomas Hardjono, Rafael Belchior, Venkatraman Ramakr-
ishna, and Alexandru Chiriac. 2025. Secure Asset Transfer Protocol (SATP)
Core. Internet-Draft draft-ietf-satp-core-11. Work in Progress. Internet Engi-
neering Task Force, (Aug. 2025). 47 pp. https://datatracker.ietf.org/doc/draft-i
etf-satp-core/11/.

Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2009. Towards
a theory of accountability and audit. In Computer Security — ESORICS 2009.
Michael Backes and Peng Ning, (Eds.) Springer Berlin Heidelberg, Berlin, Hei-
delberg, 152-167. ISBN: 978-3-642-04444-1.

Suman Karumuri, Franco Solleza, Stan Zdonik, and Nesime Tatbul. 2021. To-
wards observability data management at scale. SIGMOD Rec., 49, 4, (Mar. 2021),
18-23. doi:10.1145/3456859.3456863.

Scott Keaney and Pierre Berthon. 2025. The blockchain trust paradox: engi-
neered trust vs. experienced trust in decentralized systems. Information, 16,
(Sept. 2025), 801. doi:10.3390/inf016090801.

Ningran Li, Minfeng Qi, Zhiyu Xu, Xiaogang Zhu, Wei Zhou, Sheng Wen, and
Yang Xiang. 2024. Blockchain cross-chain bridge security: challenges, solutions,
and future outlook. Distributed Ledger Technologies: Research and Practice, 4,
(Oct. 2024). doi:10.1145/3696429.

Charity Majors, Liz Fong-Jones, and George Miranda. 2022. Observability Engi-
neering. O’'Reilly Media.

M. Mansouri-Samani and M. Sloman. 1993. Monitoring distributed systems.
Netwrk. Mag. of Global Internetwkg., 7, 6, (Nov. 1993), 20-30. doi:10.1109/65.244
791.

A. Mounyji, B. Le Charlier, D. Zampunieris, and N. Habra. 1995. Distributed
audit trail analysis. In Proceedings of the Symposium on Network and Distributed
System Security, 102-112. doi:10.1109/NDSS.1995.390641.

Rodolfo Picoreti, Alexandre Pereira do Carmo, Felippe Mendonga de Queiroz,
Anilton Salles Garcia, Raquel Frizera Vassallo, and Dimitra Simeonidou. 2018.
Multilevel observability in cloud orchestration. In 2018 IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intel-
ligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and
Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech),
776-784. doi:10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134.
Monika Steidl, Benedikt Dornauer, Michael Felderer, Rudolf Ramler, Mircea-
Cristian Racasan, and Marko Gattringer. 2024. How industry tackles anomalies
during runtime: approaches and key monitoring parameters. In 2024 50th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE, (Aug. 2024), 364-372. doi:10.1109/seaa64295.2024.00062.

Chainalysis Team. 2025. Lessons from the wormhole exploit: smart contract
vulnerabilities introduce risk; blockchains’ transparency makes it hard for bad
actors to cash out. en-US. (June 2025). https://www.chainalysis.com/blog/wor
mhole-hack-february-2022/.

Ronin Network Team. [n. d.] https://x.com/ronin_network/status/18208047729
17588339.

Dominique Toupin. 2011. Using tracing to diagnose or monitor systems. IEEE
Software, 28, 1, 87-91. do0i:10.1109/MS.2011.20.

Natkamon Tovanich, Nicolas Heulot, Jean-Daniel Fekete, and Petra Isenberg.
2021. Visualization of blockchain data: a systematic review. IEEE Transactions
on Visualization and Computer Graphics, 27, 7, 3135-3152. d0i:10.1109/TVCG.2
019.2963018.

Jiajing Wu, Kaixin Lin, Dan Lin, Bozhao Zhang, Zhiying Wu, and Jianzhong Su.
2025. Safeguarding blockchain ecosystem: understanding and detecting attack
transactions on cross-chain bridges. In Proceedings of the ACM Web Conference
2025. ACM, (Apr. 2025), 4902-4912. doi:10.1145/3696410.3714604.

Yulun Wu, Guangba Yu, Zhihan Jiang, Yichen Li, and Michael R Lyu. 2025. Trace
sampling 2.0: code knowledge enhanced span-level sampling for distributed
tracing. arXiv preprint arXiv:2509.13852.

https://arxiv.org/abs/1907.10484
https://arxiv.org/abs/1907.10484
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2018.08.006
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2018.08.006
https://doi.org/10.1109/SP54263.2024.00255
https://doi.org/10.1109/ICBC56567.2023.10174953
https://doi.org/10.1109/ICBC56567.2023.10174953
https://arxiv.org/abs/2503.13637
https://arxiv.org/abs/2503.13637
https://arxiv.org/abs/2503.13637
https://api.semanticscholar.org/CorpusID:61340590
https://arxiv.org/abs/2208.02699
https://arxiv.org/abs/2208.02699
https://doi.org/10.1109/ICBC59979.2024.10634443
https://doi.org/10.1145/3648607
https://doi.org/https://doi.org/10.1016/j.future.2021.11.004
https://doi.org/https://doi.org/10.1016/j.future.2021.11.004
https://doi.org/10.1145/3471140
https://arxiv.org/abs/2501.03423
https://arxiv.org/abs/2501.03423
https://doi.org/10.1109/32.210303
https://doi.org/10.1145/2492248.2492263
https://defillama.com/protocols/bridge
https://doi.org/10.1145/2814710.2814713
https://www.elliptic.co/blog/540-million-stolen-from-the-ronin-defi-bridge
https://www.elliptic.co/blog/540-million-stolen-from-the-ronin-defi-bridge
https://doi.org/10.1007/978-1-4842-6998-5_12
https://grafana.com/docs/opentelemetry/docker-lgtm/
https://datatracker.ietf.org/doc/draft-ietf-satp-core/11/
https://datatracker.ietf.org/doc/draft-ietf-satp-core/11/
https://doi.org/10.1145/3456859.3456863
https://doi.org/10.3390/info16090801
https://doi.org/10.1145/3696429
https://doi.org/10.1109/65.244791
https://doi.org/10.1109/65.244791
https://doi.org/10.1109/NDSS.1995.390641
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134
https://doi.org/10.1109/seaa64295.2024.00062
https://www.chainalysis.com/blog/wormhole-hack-february-2022/
https://www.chainalysis.com/blog/wormhole-hack-february-2022/
https://x.com/ronin_network/status/1820804772917588339
https://x.com/ronin_network/status/1820804772917588339
https://doi.org/10.1109/MS.2011.20
https://doi.org/10.1109/TVCG.2019.2963018
https://doi.org/10.1109/TVCG.2019.2963018
https://doi.org/10.1145/3696410.3714604

	Abstract
	1 Introduction
	2 Background
	2.1 Monitoring and Auditing
	2.2 Three Pillars of Observability
	2.3 SATP-Hermes

	3 Motivation
	4 Design and Implementation
	4.1 Requirements
	4.2 System Architecture
	4.3 System Implementation

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Implementation Evaluation
	5.3 Discussion

	6 Conclusion
	Acknowledgments

