
A Framework for Monitoring and Auditing the Activity of
Cross-Chain Mechanisms

Jorge Santos

INESC-ID, Instituto Superior Técnico,

University of Lisbon – Lisbon, Portugal

jorge.m.santos@tecnico.ulisboa.pt

André Augusto

INESC-ID, Instituto Superior Técnico,

University of Lisbon – Lisbon, Portugal

andre.augusto@tecnico.ulisboa.pt

André Vasconcelos

INESC-ID, Instituto Superior Técnico,

University of Lisbon – Lisbon, Portugal

andre.vasconcelos@tecnico.ulisboa.pt

Miguel Correia

INESC-ID, Instituto Superior Técnico,

University of Lisbon – Lisbon, Portugal

miguel.p.correia@tecnico.ulisboa.pt

Abstract
Blockchain interoperability presents complex challenges regarding

transparency and accountability. This paper proposes a modular

framework for monitoring and auditing cross-chain systems by

capturing, correlating, and visualizing telemetry data, namely logs,

metrics, and traces produced during execution. The proposed so-

lution provides real-time observability and post-incident auditing

through customizable dashboards and automated data aggrega-

tion. The framework maintains high throughput, low latency, and

scalable performance while introducing negligible operational over-

head. By allowing stakeholders to perform root-cause analysis and

track performance indicators, the system improves cross-chain

transparency, operational resilience, and trustworthiness.

CCS Concepts
• Applied computing → Enterprise interoperability; • Soft-
ware and its engineering→ Software design engineering.

Keywords
Blockchain, Monitoring, Auditing, Interoperability, Evaluation

ACM Reference Format:
Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia. 2026.

A Framework for Monitoring and Auditing the Activity of Cross-Chain

Mechanisms. In The 41st ACM/SIGAPP Symposium on Applied Computing
(SAC ’26), March 23–27, 2026, Thessaloniki, Greece. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3748522.3779917

1 Introduction
The ability to monitor and conduct audits represents a crucial com-

ponent for inferring conclusions about the execution of a system.

Software systems are statistically bound to fail at some point [14];

however, damage can be minimized by continuously improving

these systems and addressing detected flaws. To effectively miti-

gate the impact of failures, flaws should be identified as quickly as

This work is licensed under a Creative Commons Attribution 4.0 International License.

SAC ’26, Thessaloniki, Greece
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2294-3/2026/03

https://doi.org/10.1145/3748522.3779917

possible through systematic monitoring of system behavior and sub-

sequently analyzed during audit processes to identify root causes

and prevent recurrence [15].

Blockchain interoperability is a relatively new branch of study

within the field of blockchain systems [12, 10]. Its importance arises

from the need to address the increasing fragmentation of blockchain

ecosystems, where independent networks often operate in isolation

due to differences in architecture, consensus mechanisms, and data

models [9, 10]. Interoperability enables seamless communication

and asset exchange between heterogeneous blockchains, thus im-

proving scalability, fostering innovation, and supporting the wide

adoption of decentralized technologies [9, 12]. Thus, from the late

2010s to the early 2020s, research began to shift focus: as individual

blockchain systems matured, the central challenge evolved from im-

proving isolated platforms to enabling interaction and integration

across heterogeneous blockchains [12]. An early and influential ref-

erence to the concept of blockchain interoperability in the Semantic
Scholar1 database of academic works dates back to 2014, in a work

by Back et al. [7], where the authors propose a sidechain capable

of bridging different blockchains. Their proposal garnered signifi-

cant attention from the blockchain research community, inspiring

subsequent research on cross-chain communication and ways of

securely transferring assets between distinct blockchains.

The growing pursuit of interoperability has sparked the develop-

ment of numerous cross-chain systems and applications. According

to the DefiLlama database
2
, there are currently at least 134 oper-

ational cross-chain protocols [16], many of which manage total

locked values in the millions or even billions of dollars. However,

these interoperable technologies are not flawless, especially in the

early stages of production, resulting in bugs and vulnerabilities

that, from 2021 to 2024, have caused reported losses of nearly 4.3

billion dollars [36]. These incidents reveal deeper challenges in the

operational reliability and observability of interoperable systems.

Specifically, existing approaches often lack systematic monitoring

practices to promptly detect abnormal behavior [5, 13], provide

limited support for rapid root cause analysis following incidents

[26, 32, 33], and offer few visualization tools capable of presenting

cross-chain data in a meaningful and accessible manner [9, 35].

Addressing these issues is critical to improving the transparency,

1
Available at https://www.semanticscholar.org/.

2
Available at https://defillama.com.

https://orcid.org/0009-0005-9239-3220
https://orcid.org/0000-0001-7020-2087
https://orcid.org/0000-0003-0038-7199
https://orcid.org/0000-0001-7873-5531
https://doi.org/10.1145/3748522.3779917
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3748522.3779917
https://www.semanticscholar.org/
https://defillama.com

SAC ’26, March 23–27, 2026, Thessaloniki, Greece Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

resilience, and trustworthiness of cross-chain protocols, underscor-

ing the need for enhanced monitoring and auditing capabilities in

blockchain interoperability research.

In this work, we propose and implement a monitoring and au-

diting framework capable of capturing, storing, correlating, and

displaying telemetry data–that is, execution information such as

metrics, logs, and traces that describe the runtime behavior of a

system–to enable users to analyze a cross-chain system’s activ-

ity. The proposed solution is modular and adaptable, composed

of several components, including data collectors, aggregators, and

interface managers to facilitate component substitution or addition.

The system receives telemetry data, including metrics, logs and

traces, from a cross-chain mechanism using a telemetry collector,

processes it, and redirects it to the respective data collector. The

information is then processed according to the type of telemetry

and sent to a telemetry aggregator that correlates different types

of telemetry data to find common links to aggregate information.

Finally, the data is ready to be displayed, with the dashboard man-

ager responsible for providing an interface to the end user to create

dashboards to analyze the processed data.

2 Background
This section presents background information on monitoring, au-

diting, observability, and the SATP-Hermes protocol.

2.1 Monitoring and Auditing
Monitoring and auditing are complementary processes that to-

gether ensure the security, reliability, and accountability of complex

systems [29]. Monitoring is primarily concerned with the real time

collection, aggregation, and analysis of telemetry data to identify

abnormal events, performance issues, or security incidents as they

occur [28, 2]. Its role is inherently diagnostic: monitoring captures

signals such as metrics, logs, and traces that indicate when some-

thing has gone wrong or is trending toward failure [31]. In other

words, monitoring identifies what is happening in the system.

Auditing, on the contrary, operates on a different time scale and

with a different purpose. Rather than focusing on immediate de-

tection, auditing provides a retrospective and explanatory account

of system behavior [8, 23]. Through a systematic examination of

past records of events, auditing seeks to explain why an event oc-

curred, whether it aligned with established policies or invariants,

and who or what was responsible for the underlying actions. Thus,

auditing complements monitoring by transforming raw signals into

accountability, assurance, and verifiable evidence of correctness.

When applied to blockchain and cross-chain environments, this

distinction becomes particularly important. Monitoring enables

the timely detection of anomalies, such as unexpected transaction

delays, abnormal transaction fee values, or suspicious cross-chain

message flows. Auditing, in turn, enables detailed investigations

of system activity to verify transaction integrity, ensure that the

cross-chain system operates without faults, and confirm that no

unauthorized or malicious activities occurred [17]. Together, these

two processes provide a comprehensive framework: monitoring

identifies potential risks as they emerge, while auditing explains

their root causes and verifies compliance with security and opera-

tional guarantees [29].

2.2 Three Pillars of Observability
To achieve observability in practice, modern monitoring and au-

diting systems rely on three types of telemetry data, also known

as the “three pillars of observability”: logs, metrics and traces [20,

30]. Logs capture discrete events and contextual information, met-

rics provide aggregated numerical indicators of performance over

time, and traces record end-to-end execution paths across different

components [27]. Each pillar offers a distinct perspective on system

behavior; however, when combined, they provide a strong founda-

tion for monitoring and auditing a system’s behavior and activity

[20]. Table 1 systematizes and compares the information captured,

use cases and limitations of each of the telemetry data types:

Logs are collections of semi-structured or unstructured strings.

They provide fine-grained detailed information along with a rich

system context, serving as audit trails to track user actions and

system events [1]. These trails provide information on what hap-

pened before, during and after an event, making them invaluable

for understanding why unexpected behavior occurred in the system

[24].

Metrics are structured numerical representations of data col-

lected over intervals of time [20, 27]. They provide a simplified and

systematic view of the performance of the monitored system and

resource utilization, allowing the detection of anomalies and the

observation of long-term trends [24]. Monitoring systems collect,

aggregate, and analyze metrics to sift through known patterns that

indicate trends that stakeholders find relevant [27].

Traces capture the end-to-end journey of a request as it propa-

gates through a system, providing detailed visibility into its execu-

tion across components [34, 37]. A trace is composed of a sequence

of spans, where each span represents a unit of work or an interac-

tion between the system components [37]. Tracing allows operators

and developers to identify performance bottlenecks, uncover depen-

dency issues, and detect failures that may not be apparent through

logs or metrics alone.

2.3 SATP-Hermes
The SATP-Hermes project

3
is a plugin implementation of the Se-

cure Asset Transfer Protocol [22] and the Hermes [11] fault-tolerant

middleware on the Hyperledger Cacti
4
interoperability framework.

The Secure Asset Transfer Protocol [22] (SATP) is an asset transfer

protocol between two networks, being developed by the IETF, based

on the concept of trusted gateways, a type of hybrid connector [12]

that runs an interoperability protocol capable of connecting het-

erogeneous systems such as private and public blockchains. These

connectors bridge differences in architecture, consensus mecha-

nisms, and transaction models, enabling cross-chain interactions

while preserving each network’s operational independence [4]. The

primary objective of the SATP is to ensure the consistency of the

asset state across both the origin and destination networks, guar-

anteeing that the asset is located in only one system or network at

any given time, and that asset movements into (out of) networks

via gateways can be accounted for [22]. To complement the asset

transfer protocol and ensure a secure execution of the protocol, the

3
Available at https://github.com/hyperledger-cacti/cacti/tree/main/packages/cactus-

plugin-satp-hermes.

4
Available at https://github.com/hyperledger-cacti/cacti/tree/main/.

https://github.com/hyperledger-cacti/cacti/tree/main/packages/cactus-plugin-satp-hermes
https://github.com/hyperledger-cacti/cacti/tree/main/packages/cactus-plugin-satp-hermes
https://github.com/hyperledger-cacti/cacti/tree/main/

Monitoring and Auditing the Activity of Cross-Chain Mechanisms SAC ’26, March 23–27, 2026, Thessaloniki, Greece

system incorporates a crash recovery mechanism [11] that provides

both recovery and rollback capabilities in the event of system or

gateway failures [4]. This mechanism defines the procedures re-

quired for a crashed gateway to resume protocol execution from

a consistent state, minimizing possible disruption to the overall

transfer process. In extreme cases where recovery is simply not pos-

sible, the mechanism enables a controlled rollback of the protocol.

Since a distributed ledger is an append-only data structure, such a

rollback does not involve deleting previous transactions, instead,

issuing compensatory transactions that reverse the effects of the

operations already committed [11, 4]. This approach preserves the

integrity and immutability of the ledgers while ensuring that the

protocol’s consistency guarantees remain intact.

3 Motivation
Although blockchain interoperability has gained significant trac-

tion in recent years, its practical deployment continues to face

critical challenges [12]. Despite the high stakes, many existing ap-

proaches to cross-chain interoperability remain immature in terms

of observability, leading to substantial financial losses [36] and low

user trust [25]. These shortcomings give rise to several pressing

problems, which we outline in the following subsections as distinct

challenges requiring attention.

Motivation 1: Lack of Monitoring Practices. As the transition to com-

plex applications that interconnect multiple blockchain systems

accelerates and as the value locked in these systems grows, the

demand for reliable cross-chain platforms with minimal error rates

correspondingly increases. Existing studies have shown that proto-

cols often take too long to react to an attack [5, 13, 19], which may

be attributed to inadequate monitoring and suboptimal SecOps prac-

tices [3, 5, 13]. The lack of monitoring practices makes it difficult to

ensure the correct execution of cross-chain systems, contributing

to a less safe and more attack-prone operational environment [13,

5].

Motivation 2: Need forQuick Root-Cause Analysis. The necessity for
rapid post-mortem identification of root causes is critical to ensure

timely issue resolution in cross-chain environments. As cross-chain

transactions often involve heterogeneous systems, each with dis-

tinct consensus mechanisms, communication protocols, and secu-

rity assumptions, the task of tracing failures back to their origin is

sometimes complicated [26]. For instance, the Ronin Network hack

in August 2024 resulted in the theft of over $12 million, yet the

bridge was paused approximately 40 minutes to assess the vulnera-

bility [33]. Similarly, the Wormhole bridge exploit in February 2022

led to a loss of $320 million, the attack’s root cause traced back to a

vulnerability in the signature verification process [32], highlighting

the critical need for quick and robust root cause analysis capabili-

ties. Without quick and robust root cause analysis capabilities, the

operational resilience and trustworthiness of cross-chain systems

remains severely constrained.

Motivation 3: Lack of Visualization Tools. A survey concluded that

there is no publicly available mechanism for gathering and visu-

alizing cross-chain operations metrics [9]. This limitation poses a

significant challenge, as effective monitoring and auditing require

not only the collection of telemetry data, but also its clear presen-

tation in a form that stakeholders can quickly interpret. The lack

of user-centric visualization tools hampers the ability to perform

timely post-mortem analyzes, identify root causes, and mitigate

actions. Consequently, there is a pressing need for visualization

frameworks that can integrate cross-chain data into intuitive dash-

boards, providing actionable insights for developers, auditors, and

end-users [9, 35].

4 Design and Implementation
To ensure correct execution and facilitate the process of examining

cross-chain mechanisms, we propose a system composed of several

components, including data exporters, telemetry aggregators, and

dashboard management infrastructures. This system is designed

to address the interoperability challenges identified in Section 3,

offering a solution capable of providing real-time monitoring, quick

analysis of events, and information based on the needs of stake-

holders. This section starts by introducing the system requirements.

Secondly, we present the implementation and design decisions of

the proposed solution.

4.1 Requirements
The monitoring framework is expected to capture telemetry data to

monitor and audit the execution of a system, allowing users to gain

insights into each process step. The non-functional requirements

of the system are:

(1) Adaptability: Since new cross-chain mechanisms are emerging

every day, it is necessary for the framework to be adaptable

enough to be implemented in other use cases.

(2) High Processing Capacity: Since telemetry is generated and ana-

lyzed in real-time, the system needs to have the ability to pro-

cess a large amount of telemetry information per second(high

throughput) [24].

(3) Availability: Amonitoring system should functionwithminimal

down-time to ensure that there is no unrecorded information.

(4) Centralization: With several different types of telemetry infor-

mation being captured by different monitoring components,

the system should be capable of aggregating the information

for the user to explore [18].

(5) Seamless Integration: The implementation should be non-disruptive

and ensure compatibilitywith existing systems and components.

Transaction latency, for example, should not be hindered by

the integration of the monitoring and auditing system.

(6) Scalability: The solution should allow for the extension and

integration of future project components into the existing mon-

itoring system without hindering performance.

(7) Customization: With a large amount of data being captured,

a degree of filtering and customization is required to provide

different users with their relevant information.

Concerning the functional requirements, Fig. 1 presents a use

case diagram of the monitoring framework. The identified func-

tionalities can be summarized as follows: (1) Capture execution

metrics. (2) Capture execution logs. (3) Capture execution traces.

(4) Correlate logs and traces. (5) Define new metrics to be captured.

(6) Create dashboards. (7) Visualize telemetry data.

SAC ’26, March 23–27, 2026, Thessaloniki, Greece Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

Table 1: Summary view of telemetry data types’ information captured, use cases and limitations.

Data Type Information Captured Use Cases Limitations

Logs
- Discrete events, system state, or user actions.

- Context about past,

present and future events.

- Debugging;

- Auditing and security monitoring;

- Compliance;

- Incident response;

- Storage and processing costs;

- Excessive logging overhead;

- Requires careful structuring;

- Privacy/security concerns.

Metrics
- Numerical and aggregated data

collected over time;

- Quantitative overview of system health.

- Monitoring system health;

- Tracking service-level objectives;

- Alerting on threshold breaches;

- Performance trend analysis;

- Lacks detailed context;

- Simplification of complex behaviors;

- Requires well-designed metrics.

Traces
- End-to-end paths of requests across services;

- Temporal and causal relationships

between components.

- Identification of latency sources;

- Dependency mapping;

- Failure detection;

- Correlation with other data types;

- Storage and processing costs;

- Requires instrumentation across services;

- Dependent on visualization tools;

- Implementation complexity;

Cross-Chain
Mechanism

Capture execution
metrics

Capture execution
logs

Capture execution
traces

Correlate logs and
traces

Define new metrics to
be captured

Visualize telemetry
data

<<include>>

<<include>>

Create dashboards

Monitor System

Auditor

Developer

Investor

Figure 1: Use case diagram for the monitoring and auditing
system’s functional requirements.

The proposed system should capture and correlate execution

metrics, logs, and traces. This information should be available for

visualization by users, allowing them to create dashboards. Finally,

developers should also be able to define new metrics to be captured.

4.2 System Architecture
This section presents the system architecture. Our solution consists

of several components that enable the processing and display of

telemetry data: the Telemetry Collector, Data Exporters, including a

collector for each telemetry data type, a Telemetry Aggregator, and

a Dashboard Manager. Fig. 2 depicts the proposed modular system

architecture. The proposed solution is designed to be adaptable,

allowing for implementation in different cross-chain use cases. The

framework is also easily scalable and integrable, maintaining a mod-

ular architecture that simplifies changing modules and the integra-

tion of new system components without hampering performance.

Furthermore, the system centralizes all telemetry information to

allow for simplified user access.

Cross-chain systems function by interacting with isolated block-

chains. When these interactions occur the cross-chain system ex-

ecutes a certain protocol (for example, a cross-chain transaction,

or cross-chain state proof) which in turn produces telemetry data,

such as logs of the execution, metrics increments for the number

of transactions processed and traces of the execution of the trans-

action from end-to-end. This telemetry is essential for providing

stakeholders with accurate information on the system’s execution

and current state, enabling effective monitoring and auditing. Addi-

tionally, developers are empowered to define new metrics tailored

to emerging use cases or specific performance indicators, ensuring

that the monitoring framework remains adaptable and capable of

capturing all relevant operational aspects of the cross-chain system.

4.2.1 Telemetry Collector. When telemetry data is produced, it

should be directed to a component capable of collecting, inter-

preting, and forwarding it for further processing. The Telemetry

Collector fulfills this role by acting as an abstraction and unification

layer for all telemetry data types. Although this component could

be bypassed in the overall pipeline of telemetry processing by sim-

ply connecting the cross-chain system to each of the data exporters,

it was included to simplify the management of all data types, as

a single collector agent reduces the operational complexity and

allows the data exporters to be easily substituted without requiring

new instrumentation within the cross-chain system’s codebase.

In addition to basic collection, the Telemetry Collector also pro-

vides a set of intermediate processing capabilities. These include

data enrichment with contextual metadata (e.g., operational con-

texts, function details, or transaction related information), data

normalization, and preliminary aggregation. Such functionality

ensures that only relevant and structured telemetry data is for-

warded to subsequent components, thereby improving the system’s

performance and scalability.

Furthermore, the modular design of the Telemetry Collector

promotes extensibility. New telemetry formats or protocols can

be integrated through custom receivers or data exporters with-

out altering the collector’s core logic, instead relying on simple

reconfigurations of the collector.

4.2.2 Data Exporters. After the telemetry data is collected and

preprocessed by the Telemetry Collector, it is forwarded to the

respective data exporter. The processing step greatly differs across

different data type collectors. As seen in Section 2.2, each telemetry

type captures different dimensions of the system’s execution, re-

quiring specific handling, transformation, and storage mechanisms.

The Data Exporters are responsible for ensuring that the collected

Monitoring and Auditing the Activity of Cross-Chain Mechanisms SAC ’26, March 23–27, 2026, Thessaloniki, Greece

Figure 2: System architecture in Archimate language.

telemetry is correctly formatted, transmitted, and stored in the

appropriate backend systems.

Each exporter is designed to handle a single telemetry signal

type (logs, metrics, or traces) in order to optimize the performance

and reliability of the data flow. For instance, log exporters handle

unstructured or semi-structured textual data that captures discrete

events and error messages. Metric exporters, on the other hand,

manage numerical data representing quantitative measurements

(e.g., the number of transactions, latencies, and operational gas

used). Finally, trace exporters are responsible for conveying dis-

tributed tracing data that describes end-to-end execution paths

across the cross-chain system.

The use of dedicated exporters for each telemetry type allows for

fine-grained control over the data transmission process, including

the definition of export intervals, batching policies, and retry strate-

gies in the event of network failures. Moreover, exporters can be

configured to support multiple output destinations simultaneously,

enabling data replication for redundancy or multi-platform observ-

ability. This capability ensures both fault tolerance and flexibility

in adapting to different deployment environments and analytical

requirements.

From a design perspective, the exporters maintain a modular

and loosely coupled structure. This modularity allows developers

to easily substitute one exporter implementation for another with-

out impacting the rest of the telemetry pipeline. For example, a

Prometheus metric exporter
5
can be replaced with a Mimir metric

exporter
6
without modifying the data generation or collection logic.

Such flexibility is essential for ensuring the long-term maintainabil-

ity and interoperability of the proposed framework.

4.2.3 Telemetry Aggregator. After receiving specific treatment, the

telemetry data flows to the Telemetry Aggregator. This component

serves as the central integration layer of the monitoring and audit-

ing framework, responsible for unifying and correlating telemetry

signals originating from different data sources. The aggregation of

5
Available at https://prometheus.io/docs/introduction/overview/.

6
Available at https://grafana.com/docs/mimir/latest/.

information enables the correlation of metrics, logs and traces, thus

providing deeper insights into the system’s operational behavior

and facilitating the detection of cross-component dependencies and

anomalies.

The Telemetry Aggregator’s primary function is to consolidate

the various telemetry streams into a coherent and queryable dataset.

By correlating metrics (quantitative performance indicators), logs

(event-based textual information), and traces (end-to-end execution

paths), the aggregator constructs a holistic view of the system’s

execution. This correlation allows users to traverse from high-level

performance trends down to specific root causes of failures or

inefficiencies. For instance, an abnormal increase in transaction

latency (metric) can be correlated with a specific error message (log)

and traced back to the responsible cross-chain operation (trace).

To achieve this, the Telemetry Aggregator employs synchroniza-

tion and indexing mechanisms that align telemetry signals based

on timestamps and trace IDs. This process ensures that events cap-

tured across multiple systems or services are accurately correlated

in time and context. Additionally, the aggregator supports temporal

and contextual queries, enabling users to perform analyzes over

specific execution windows or components within the cross-chain

architecture.

4.2.4 DashboardManager. Once the telemetry data has been aggre-

gated and correlated, it is made accessible through the Dashboard

Manager, the component responsible for managing the visualization

and interaction layer of the monitoring and auditing framework.

This module provides end users, such as developers, system opera-

tors, and auditors, with intuitive and customizable dashboards for

analyzing the behavior of the cross-chain mechanisms in real time.

The Dashboard Manager acts as the primary interface between

users and the underlying telemetry data. It retrieves information

from the Telemetry Aggregator and allows for data exploration,

through a combination of graphical representations like, for exam-

ple, charts, tables and time series, enabling users to observe key

performance indicators, identify trends, and audit system events

across different telemetry dimensions.

https://prometheus.io/docs/introduction/overview/
https://grafana.com/docs/mimir/latest/

SAC ’26, March 23–27, 2026, Thessaloniki, Greece Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

A key design goal of the Dashboard Manager is customization.

Different users may have distinct monitoring needs depending on

their role or focus area. For instance, a developer may prioritize

visualizing execution traces and error logs to debug system be-

havior, whereas an investor may focus on number of successful

transactions, gas fees or even total locked value of a certain to-

ken. To accommodate this, the Dashboard Manager allows users

to create, modify, and save personalized dashboard configurations,

defining specific queries, filters, and visualization types suited to

their objectives.

Moreover, the Dashboard Manager supports real-time and histor-

ical data visualization, enabling users not only to monitor ongoing

system activity but also to analyze past executions for auditing and

post-incident reviews. This dual capability is essential for verifying

system integrity and evaluating performance over time.

4.3 System Implementation
The monitoring and auditing system proposed in this work was

fully implemented as part of the SATP-Hermes package of the Hyper-
ledger Cacti project (introduced in Section 2.3), that connects Fabric,

Besu and Ethereum networks. The implementation integrates the

custom components defined in Section 4.2–namely the Teleme-
try Collector, Data Exporters, Telemetry Aggregator, and Dashboard
Manager–to form a cohesive and extensible monitoring and audit-

ing framework for cross-chain systems. To support these compo-

nents, a telemetry backend was developed around the open-source

Grafana/OTel-LGTM stack
7
, which provides a preconfigured envi-

ronment including the OpenTelemetry Collector, Prometheus, Loki,

Tempo, and Grafana [21]. This stack serves as the foundation upon

which the system’s custom integration and observability logic were

built. The proposed framework extends their capabilities through

the implementation of tailored data export mechanisms, correlation

logic, and analytical dashboards that fulfill the requirements of

the SATP-Hermes cross-chain mechanism. A stable version of the

implementation source code is available here.

4.3.1 Grafana/Otel-LGTM Components. The Grafana/OTel-LGTM
docker image is an open-source framework composed of an Open-

Telemetry Collector, three telemetry data sources, Prometheus, Loki

and Tempo, and Grafana for data visualization.

The OpenTelemetry Collector works as the proposed architec-

ture’s Telemetry Collector, receiving execution data. This data is

then relayed to the correspondent collector, in this case, Prometheus

for metrics, Tempo for traces and Loki for logs. Inside these col-

lectors, each type of telemetry is processed accordingly to make

the information usable for querying. Finally, it is sent to Grafana,

which serves as both the Telemetry Aggregator and the Dashboard

Manager (from section 4.2), correlating telemetry data to display

more concise insights and allow for a better and faster understand-

ing of the execution of the cross-chain mechanism. As mentioned,

it also serves as the Dashboard Manager, storing user interfaces

that allow the end user to create and get personalized dashboards

with the information deemed relevant.

4.3.2 Captured Telemetry. Thirteen metrics were implemented,

which can be seen in Table 2, capturing each different performance

7
Available at https://hub.docker.com/r/grafana/otel-lgtm.

aspects of the execution. To support other implementations and

needs, newmetrics can/should be defined. For logs, the ones present

in the project alreadywere kept, as a comprehensive overview of the

system was in place. The implementation of tracing is deliberately

limited in scope, as not all project components are instrumented

with tracing logic. As mentioned in Section 2.2, if functions which

contain simple programming logic are incorporated with tracing

logic, the processing overhead may affect the performance of the

overall system. Thus, tracing is applied selectively to components

whose behavior is considered more complex and critical for observ-

ability and diagnostics purposes.

4.3.3 Grafana Dashboards. To allow users to interact with the

monitoring framework and extract meaningful insights, a set of

Grafana dashboards was developed. These dashboards act as the

main visualization and exploration layer, providing both high-level

overviews and detailed debugging tools.

The dashboards combine metrics, logs, and traces, leveraging

Grafana’s correlation capabilities. Specifically:

• System Overview Dashboard: Displays the current num-

ber of connected DLTs, gateways, and supported assets. It

includes real-time gauges, counters for total sessions and

transactions, and a breakdown of transaction outcomes (suc-

cessful vs. failed).

• Financial Metrics Dashboard: Focused on value flows

and economic performance, it reports cumulative exchanged

value and average resource consumption per transaction

(e.g., gas usage). These visualizations target decision makers

concerned with efficiency and sustainability.

• Debug and Performance Dashboard: Presents transaction
duration histograms, operation latencies, and failure rates.

Developers can use this dashboard to detect bottlenecks and

anomalous behaviors.

All dashboards were created using Grafana’s built-in editor, with

queries directly targeting the Prometheus, Loki, and Tempo data

sources. As new metrics are added to the monitoring framework,

dashboards can be updated by adding new panels or changing

queries. This design allows for constant adjustments to new cross-

chain mechanisms and evolving project needs.

5 Evaluation
This section evaluates the proposed framework for monitoring and

auditing. We describe evaluation methodology and each of evalua-

tion metrics. Later, the information provided by the evaluation is

collected, analyzed and discussed.

5.1 Evaluation Methodology
The evaluation focuses on the monitoring and auditing system as a

whole, meaning single operations such as the individual creation

of metrics or the individual creation of logs are not considered. The

assessment suite comprises both non-functional and functional eval-

uation, thereby ensuring a comprehensive analysis of the system’s

operational effectiveness and performance characteristics.

We answer four questions with the experiments: i) Are the imple-

mented metrics relevant in the context of cross-chain operations?

ii) what is the maximum throughput the framework can achieve,

https://github.com/JJSantos22/cacti/tree/thesis-copy
https://hub.docker.com/r/grafana/otel-lgtm

Monitoring and Auditing the Activity of Cross-Chain Mechanisms SAC ’26, March 23–27, 2026, Thessaloniki, Greece

i.e., how much telemetry data can be processed? iii) what is the

latency overhead of the monitoring system in the latency of a trans-

action?, and iv) what is the cost, in terms of storage, of storing the

telemetry data produced in the proposed system, i.e., how do the

storage requirements scale with system growth? Answers to such

questions allow us to conclude the suitability of the implemented

solution in regards to the proposed use case.

5.2 Implementation Evaluation
In this section, we assess the system under controlled experimental

conditions that emulate a realistic cross-chain environment, includ-

ing a gateway connecting heterogeneous ledgers (Ethereum and

Besu) and the Otel-LGTM monitoring and auditing infrastructure.

The evaluation focuses on key aspects such as system through-

put, transaction latency, storage requirements, and the coverage

of implemented metrics. By analyzing these dimensions, we aim

to quantify the framework’s ability to capture telemetry data at

scale, its impact on transaction execution, and its suitability for

continuous, high-frequency monitoring in cross-chain scenarios.

This implementation-focused assessment provides empirical evi-

dence supporting the system’s robustness, scalability, and practical

applicability.

5.2.1 Coverage. The goal of the coverage assessment is to ver-

ify that the implemented telemetry metrics adequately cover the

main non-functional concerns identified in prior research, ensuring

that the system effectively captures relevant aspects of cross-chain

performance and interoperability.

Belchior et al. [9] identified performance metrics such as end-to-

end latency, throughput, and cost (transaction fees), as the primary

concerns for cross-chain analysis. Besides these, energy consump-

tion, carbon footprint, parties endorsing transactions (for Hyper-

ledger Fabric-based blockchains exclusively) and cross-chain logic

were other concerns of relevant parties in the context of cross-

chain operations. Of these seven identified metric concerns, we

implemented the metrics as shown in Table 2.

Overall, five of the seven metrics were implemented. Table 2 is

divided in sections. First, the reddish section refers to the aforemen-

tioned performance metrics, all implemented. Then, the yellowish

and blueish section corresponding to the other implement met-

rics. The metric for tracking cross-chain logic was decomposed

in several metrics, that together give the user an overview of the

cross-chain system activity and logic. For parties endorsing trans-

actions, is not exactly an implemented metric, but an attribute (an

additional information), something that can still be tracked using

the transaction metrics. Finally, energy consumption and carbon

footprint are currently not implemented (grey color in the table), as

these two indicators are not yet implemented within the scope of

the SATP-Hermes project. However, when these features are added

in the future, tracking their values will not be hard, as the only

requirement to track them is to define the new metric and record

the values, as done in other metrics, such as operation_duration for

example.

5.2.2 System Throughput. The throughput evaluation measures

how many telemetry data points the monitoring framework can

handle per second under varying load conditions. To assess this, we

Table 2: Survey vs. implemented metrics: performance met-
rics in red,metrics related to interoperability and operational
states in yellow,metrics implemented differently in blue, cur-
rently not implemented metrics in grey.

Survey Metric [9] Implemented Metric Description

end-to-end latency transaction_duration

Transaction duration

in milliseconds

end-to-end throughput successful_transactions

Total number of

successful transactions

end-to-end cost (fees) transaction_gas_used

Gas used

during transaction

initiated_transactions

Total number of

initiated transactions

failed_transactions

Total number of

failed transactions

ongoing_transactions

Total number of

ongoing transactions

total_value_exchanged

Total token

value exchanged

operation_duration

Operation duration

in milliseconds

operation_gas_used

Gas used

during operation

created_sessions

Total number of

sessions created

number_of_supported_assets

Current number of

supported assets

connected_DLTs

Current number of

connected DLTs

cross-chain logic

gateways

Current number of

gateways connected

parties endorsing transactions * -

carbon footprint - -

energy consumption - -

Table 3: Throughput results for counters, histograms, logs,
and spans at various iteration counts.

Iterations Counter (ops/sec) Histogram (ops/sec) Logs (ops/sec) Spans (ops/sec)

1,000 41,667 26,316 125,000 16,393

5,000 27,473 51,020 151,515 33,557

10,000 65,359 80,645 129,870 43,103

50,000 115,207 104,384 217,391 68,399

100,000 128,205 111,483 246,305 72,202

500,000 167,785 122,279 269,978 83,794

1,000,000 154,107 127,861 257,798 85,521

executed a series of benchmarks using different iteration counts,

ranging from 1,000 to 1,000,000 operations, focusing on counters,

histograms, logs, and spans. Gauges were excluded from this analy-

sis due to their read-only nature and negligible overhead compared

to the other telemetry types. Table 3 summarizes the results of these

benchmarks.

A transaction using the SATP-Hermes protocol produces 16

counter operations (including both creation and increment), 21 his-

togram operations (including both creation and recording), 1572

logs, and 537 spans. The values presented in Table 4 were obtained

using the best-performing throughput measurements (i.e., the high-

est operations-per-second values, corresponding, in general, to

the highest values of iterations) from Table 3. For each teleme-

try type, the maximum number of transactions per second was

computed by dividing the measured throughput in operations per

SAC ’26, March 23–27, 2026, Thessaloniki, Greece Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

Table 4: Analysis of Throughput Results.

Operations
per Transaction

Operations
per Second

Maximum Transactions
per Second

Maximum Transactions
per Year

Counter 16 167,785 10,486.56 3.31 ∗ 1011

Histogram 21 127,861 4,735.59 1.50 ∗ 1011

Logs 1,572 269,978 171.74 5.42 ∗ 109

Spans 537 85,521 159.26 5.02 ∗ 109

second (𝑂𝑠𝑒𝑐) by the number of operations generated per trans-

action (𝑂𝑐𝑐𝑡𝑥), following (𝑇𝑠𝑒𝑐 = 𝑂𝑠𝑒𝑐/𝑂𝑐𝑐𝑡𝑥). The corresponding

maximum number of transactions per year was then estimated as

(𝑇𝑦𝑒𝑎𝑟 = 𝑇𝑠𝑒𝑐 ∗ 31, 536, 000), where 31,536,000 represents the total
number of seconds in one year. This calculation provides an upper-

bound estimation of the system’s transaction-handling capacity

under continuous operation at peak throughput.

Using the results of the data generated for five bridges (CCTP,
CCIP, Stargate (Taxi), Stargate (Bus) and Across) during the last 6

months of 2024 (from Jun 1, 2024 to Dec 31, 2024) [6], we assume

there is an upper bound of 3, 864, 421 ∗ 2 = 7, 728, 842 transactions

per year. Considering the best results for each type of telemetry

data points, we can conclude that the implemented monitoring

framework exhibits sufficient capacity to handle the expected op-

erational load. Even under conservative assumptions, where the

system must accommodate up to 7.7 ∗ 106 transactions per year,
the measured throughput across all telemetry categories (counters,

histograms, logs, and spans) exceeds the required processing rate by

several orders of magnitude. This indicates that the monitoring in-

frastructure is not only capable of sustaining current workloads but

also possesses substantial performance capacity for future scaling.

5.2.3 Transaction Latency. Understanding how the monitor frame-

work impacts the execution time (latency) of a transaction is crucial

to justify the suitability of the proposed solution as a viable compo-

nent of a project. In case the solution affects a transaction’s end-

to-end latency too much, the monitoring system might be deemed

unfit as it stands. To evaluate the effects of the monitoring code, we

run 50 transactions with and without the monitoring framework

functioning.

We defined a transaction’s end-to-end latency in the scope of

the project SATP-Hermes as:

transaction end-to-end latency = transferCompleteMessageTimestamp -

transferCommenceMessageTimestamp

Table 5 showcases the latency results and the difference between

them in percentage. The minimum, maximum, median, and average

latencies exhibit differences close or below 1%, which are within

the expected variance of results. This suggests that the monitoring

framework imposes little overhead under normal operating con-

ditions. However, the analysis of higher-order statistics reveals a

more nuanced picture. In particular, the p95 latency increases by

25.18% when monitoring is enabled. This considerable rise shows

that the monitoring code introduces additional variability in la-

tency, disproportionately affecting a subset of transactions. Such a

shift in the tail distribution implies that while most operations are

not affected, a non-negligible fraction of executions experiences

a decrease in performance. The standard deviation, which rises

by 16.04%, corroborates this conclusion, highlighting an overall

Table 5: Latency of running 50 transactions with and without
monitoring.

W/out Monitoring W/ Monitoring Diff

Min 13998 14036 +0.27%

Max 20231 20557 +1.61%

Average 15124.08 15223.86 +0.66%

Median 14865 14894 +0.20%

p95 15890 19892 +25.18%

p99 20231 20557 +1.61%

Std. Dev. 1130.46 1311.78 +16.04%

Figure 3: Memory Usage vs Number of Transactions.

increase in dispersion. On the other hand, the p99 latency increases

by only 1.61%, which suggests that the most extreme outliers are

not significantly hindered by the monitoring logic.

5.2.4 Storage. The goal of storage evaluation is to forecast themon-

itoring system’s long-term storage needs. We address this through

an experimental analysis, where telemetry data is produced and

stored in the docker image, comparing the size of the data folder as

we vary the number of executed transactions.

The transactions were run sequentially and sent 100 tokens

each from the Besu network8 to the Ethereum network9, producing
runtime metrics, traces and logs. Telemetry data was exported from

the data sources to Grafana with a 1 second interval, offering better

temporal granularity compared to larger intervals, while reducing

the volume of captured data relative to smaller intervals.

Fig. 3 showcases the relation between the number of transactions

and the memory used to store telemetry data, for 1 second export

intervals. By producing a linear regression of the storage costs,

we can predict how much storage is necessary for one year of

transactions. The linear regression for this values is:

𝑆 = 1.49𝑥 + 85.69 (1)

Using the results of the data generated for five bridges (CCTP,
CCIP, Stargate (Taxi), Stargate (Bus) and Across) during the last 6

8
Documentation at https://besu.hyperledger.org/.

9
Documentation at https://ethereum.org/developers/docs/.

https://besu.hyperledger.org/
https://ethereum.org/developers/docs/

Monitoring and Auditing the Activity of Cross-Chain Mechanisms SAC ’26, March 23–27, 2026, Thessaloniki, Greece

months of 2024 (from Jun 1, 2024 to Dec 31, 2024) [6], we assume

there is a lower bound of 11, 430 ∗ 2 = 22, 860 transactions per year

(tpy), an upper bound of 3, 864, 421 ∗ 2 = 7, 728, 842 transactions per

year and an average of 11, 274, 334, 43∗2/5 ≃ 4, 509, 734 transactions

per year. Neglecting the constants from the linear regression (as

these are irrelevant when studying the overall system behavior on

a large number of transactions), the total storage required for a

year of execution of the monitoring system is given by:

𝑆𝑇𝑜𝑡𝑎𝑙 = 1.49 ∗ 𝑡𝑝𝑦 (2)

With a tpy = 22,860 as lower bound, a tpy = 7,728,842 as upper

bound, and an average tpy = 4,509,734 and from Equations 1 and

2, the monitoring system requires between 34.06GB and 11.52TB,

with an average of 6.72TB per year.

5.3 Discussion
In Section 3, we outlined the three main problems; now we explain

how we addressed them in our solution proposal, one by one.

First, in Section 3 we discussed how current cross-chain proto-

cols may lack monitoring practices, thus contributing to a less safe

and more attack-prone operational environment. To address this

problem, our solution enables users to implement a customizable

monitoring framework, based on open-source technologies such as

the Otel-LGTM docker image. By leveraging user defined metrics,

logs and traces, tailored for the user’s specific business use case,

the framework allows stakeholders to observe relevant aspects of

the system’s execution. Through the definition of custom metrics,

users can quantify and monitor domain-specific events, such as the

number of cross-chain transactions or the total value exchanged

across networks. Similarly, logs and traces provide qualitative and

contextual information that help identify abnormal behavior, fail-

ures, or performance bottlenecks in real time. This holistic observ-

ability capability ensures that system operators are continuously

informed about the operational state of the cross-chain protocol,

enabling proactive incident detection and response. Ultimately, by

introducing a structured and extensible monitoring practice into

cross-chain environments, the solution directly mitigates the lack

of visibility that often leads to undetected errors, vulnerabilities, or

inefficiencies, therefore contributing to a safer and more auditable

operational landscape.

Second, in Section 3 we discussed the importance of quick au-

dit capabilities in a monitored cross-chain system. Given the dis-

tributed andmulti-ledger nature of these environments, pinpointing

where and why a failure occurred can be challenging, often involv-

ing multiple gateways, ledgers, and system components. To address

this issue, our framework integrates logs, metrics, and traces under

a unified observability layer, allowing for temporal and contex-

tual correlation across telemetry sources. This means that when

an anomaly occurs (such as a failed transaction or an unexpected

delay) operators can trace its propagation path through spans, in-

spect associated logs for contextual details, and examine correlated

metrics to identify deviations from normal behavior. Furthermore,

by leveraging custom dashboards in Grafana, users can visualize

dependencies and quickly navigate from high-level indicators (e.g.,

increased transaction latency) to specific root causes (e.g., failure

in a gateway operation). This integrated audit and analysis capabil-

ity significantly shortens the mean time to recover from incidents,

enhancing the overall reliability and maintainability of cross-chain

operations.

Lastly, in Section 3 we discussed the lack of visualization tools

capable of gathering and visualizing cross-chain operation metrics.

Cross-chain systems handle a considerable amount of operations

per day, moving high quantities of money, which in turn generates

interest from several stakeholders of the ecosystem. Analytics are,

thus, important in this context to keep up with an overview of the

system performance. In order to address this need, our proposed

solution integrates captured metrics, logs, and traces into a Dash-

board Manager, enabling real-time system evaluation. Through

user-defined panels and queries, different stakeholders can visualize

relevant data, such as transaction throughput and operational costs

(e.g. for investors), as well as cross-chain activity indicators like the

number of active sessions, gateways, latencies and supported as-

sets (e.g. for developers). This multi-layered visualization approach

not only enhances system transparency for stakeholders, but also

facilitates proactive performance monitoring. By transforming raw

telemetry into actionable insights, the framework empowers users

to gain a holistic understanding of cross-chain operations, bridging

the visibility gap that currently hinders effective management and

optimization of interoperable blockchain systems.

Overall, the evaluation demonstrates that the proposed monitor-

ing and auditing framework effectively addresses the challenges

identified in Section 3. By combining customizable metrics, logs,

and traces with a flexible visualization layer, the system provides

comprehensive monitoring, enables rapid root-cause analysis, and

ensures transparency for multiple stakeholders. The functional as-

sessments confirm that the framework can handle high operational

loads with minimal impact on transaction performance, while main-

taining the ability to scale and not hindering long-term resource

costs. Moreover, the modular and extensible design ensures that the

system can evolve to incorporate additional metrics, such as energy

consumption or carbon footprint, without requiring significant re-

development. Taken together, these results validate the practical

applicability, scalability, and robustness of the framework, position-

ing it as a reliable solution for enhancing security, auditability, and

operational insight in interoperable blockchain networks.

6 Conclusion
This work introduced a modular monitoring and auditing frame-

work that enhances the observability and accountability of cross-

chain systems. By unifying logs, metrics, and traces into a coherent

visualization and analysis system, the solution enables real-time

monitoring and efficient post-mortem analysis of cross-chain oper-

ations. Experimental results confirm that the framework supports

high performance with minimal impact on latency and substan-

tial scalability, addressing the core challenges of monitoring, rapid

diagnosis, and stakeholder transparency. By improving reliability,

transparency, and trust across heterogeneous blockchain networks,

the proposed system strengthens the overall interoperability ecosys-

tem, leading to safer and more efficient cross-chain collaboration.

Acknowledgments
This work was financially supported by Project Blockchain.PT –

Decentralize Portugal with Blockchain Agenda, (Project no 51), WP

SAC ’26, March 23–27, 2026, Thessaloniki, Greece Jorge Santos, André Augusto, André Vasconcelos, and Miguel Correia

7: Interoperability, Call no 02/C05-i01.01/2022, funded by the Por-

tuguese Recovery and Resilience Program (PRR), The Portuguese

Republic and The European Union (EU) under the framework of

Next Generation EU Program. This work was also supported by na-

tional funds through Fundação para a Ciência e a Tecnologia (FCT)

with reference UID/50021/2025 e UID/PRR/50021/2025 (INESC-ID).

References
[1] Ashar Ahmad, Muhammad Saad, and Aziz Mohaisen. 2019. Secure and trans-

parent audit logs with blockaudit. (2019). https://arxiv.org/abs/1907.10484

arXiv: 1907.10484 [cs.DC].
[2] Riyaz Ahamed Ariyaluran Habeeb, Fariza Nasaruddin, Abdullah Gani, Ibrahim

Abaker Targio Hashem, Ejaz Ahmed, and Muhammad Imran. 2019. Real-time

big data processing for anomaly detection: a survey. International Journal of
Information Management, 45, 289–307. doi:https://doi.org/10.1016/j.ijinfomgt.2

018.08.006.

[3] André Augusto, Rafael Belchior, Miguel Correia, André Vasconcelos, Luyao

Zhang, and Thomas Hardjono. 2024. Sok: security and privacy of blockchain

interoperability. In 2024 IEEE Symposium on Security and Privacy (SP), 3840–
3865. doi:10.1109/SP54263.2024.00255.

[4] André Augusto, Rafael Belchior, Imre Kocsis, László Gönczy, André Vasconce-

los, and Miguel Correia. 2023. CBDC bridging between Hyperledger Fabric and

permissioned EVM-based blockchains. In 2023 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), 1–9. doi:10.1109/ICBC56567.2023.10
174953.

[5] André Augusto, Rafael Belchior, Jonas Pfannschmidt, André Vasconcelos, and

Miguel Correia. 2025. Xchainwatcher: identifying anomalies in cross-chain

bridges. In Proceedings of the 26th International Middleware Conference, 413–
426.

[6] André Augusto, André Vasconcelos, Miguel Correia, and Luyao Zhang. 2025.

Xchaindatagen: a cross-chain dataset generation framework. (2025). https://ar

xiv.org/abs/2503.13637 arXiv: 2503.13637.

[7] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,

Andrew K. Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. 2014.

Enabling Blockchain Innovations with Pegged Sidechains. Whitepaper. Block-

stream. https://api.semanticscholar.org/CorpusID:61340590.

[8] Ayoosh Bansal, Anant Kandikuppa, Chien-Ying Chen, Monowar Hasan, Adam

Bates, and Sibin Mohan. 2022. Ellipsis: towards efficient system auditing for

real-time systems. (2022). https://arxiv.org/abs/2208.02699 arXiv: 2208.02699.

[9] Rafael Belchior, Sabrina Scuri, Nuno Nunes, Thomas Hardjono, and André

Vasconcelos. 2024. Towards a standard framework for blockchain interoper-

ability: a position paper. In 2024 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), 1–5. doi:10.1109/ICBC59979.2024.10634443.

[10] Rafael Belchior, Jan Süßenguth, Qi Feng, Thomas Hardjono, André Vasconce-

los, and Miguel Correia. 2024. A brief history of blockchain interoperability.

Commun. ACM, 67, 10, (Sept. 2024), 62–69. doi:10.1145/3648607.

[11] Rafael Belchior, André Vasconcelos, Miguel Correia, and Thomas Hardjono.

2022. Hermes: fault-tolerant middleware for blockchain interoperability. Future
Generation Computer Systems, 129, 236–251. doi:https://doi.org/10.1016/j.futur
e.2021.11.004.

[12] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021.

A survey on blockchain interoperability: past, present, and future trends. ACM
Computing Surveys, 54, 8, (Oct. 2021). doi:10.1145/3471140.

[13] Nikita Belenkov, Valerian Callens, Alexandr Murashkin, Kacper Bak, Martin

Derka, Jan Gorzny, and Sung-Shine Lee. 2025. Sok: a review of cross-chain

bridge hacks in 2023. (2025). https://arxiv.org/abs/2501.03423 arXiv: 2501.03423.

[14] Ricky W. Butler and George B. Finelli. 1993. The infeasibility of quantifying

the reliability of life-critical real-time software. IEEE Transactions on Software
Engineering, 19, 1, 3–12. doi:10.1109/32.210303.

[15] Sandeep Dalal and Rajender Singh Chhillar. 2013. Empirical study of root cause

analysis of software failure. SIGSOFT Softw. Eng. Notes, 38, 4, (July 2013), 1–7.

doi:10.1145/2492248.2492263.

[16] DefiLlama. [n. d.] https://defillama.com/protocols/bridge.

[17] Haotian Deng, Zihao Wang, Yajie Wang, Licheng Wang, Liehuang Zhu, and

Chuan Zhang. 2025. A secure cross-account audit scheme for cross-chain trans-

actions. In Algorithms and Architectures for Parallel Processing. Tianqing Zhu,
Jin Li, and Aniello Castiglione, (Eds.) Springer Nature Singapore, Singapore,

334–350.

[18] Jennie Duggan et al. 2015. The bigdawg polystore system. SIGMOD Rec., 44, 2,
(Aug. 2015), 11–16. doi:10.1145/2814710.2814713.

[19] Elliptic. [n. d.] North Korea’s Lazarus group identified as exploiters behind

$540 million Ronin bridge heist. (). https://www.elliptic.co/blog/540-million-st

olen-from-the-ronin-defi-bridge.

[20] Radoslav Gatev. 2021. Observability: logs, metrics, and traces. In Introducing
Distributed Application Runtime (Dapr): Simplifying Microservices Applications

Development Through Proven and Reusable Patterns and Practices. Apress, Berke-
ley, CA, 233–252. isbn: 978-1-4842-6998-5. doi:10.1007/978-1-4842-6998-5_12.

[21] Grafana Labs. [n. d.] https://grafana.com/docs/opentelemetry/docker-lgtm/.

[22] Martin Hargreaves, Thomas Hardjono, Rafael Belchior, Venkatraman Ramakr-

ishna, and Alexandru Chiriac. 2025. Secure Asset Transfer Protocol (SATP)

Core. Internet-Draft draft-ietf-satp-core-11. Work in Progress. Internet Engi-

neering Task Force, (Aug. 2025). 47 pp. https://datatracker.ietf .org/doc/draft-i

etf-satp-core/11/.

[23] Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2009. Towards

a theory of accountability and audit. In Computer Security – ESORICS 2009.
Michael Backes and Peng Ning, (Eds.) Springer Berlin Heidelberg, Berlin, Hei-

delberg, 152–167. isbn: 978-3-642-04444-1.

[24] Suman Karumuri, Franco Solleza, Stan Zdonik, and Nesime Tatbul. 2021. To-

wards observability data management at scale. SIGMOD Rec., 49, 4, (Mar. 2021),

18–23. doi:10.1145/3456859.3456863.

[25] Scott Keaney and Pierre Berthon. 2025. The blockchain trust paradox: engi-

neered trust vs. experienced trust in decentralized systems. Information, 16,
(Sept. 2025), 801. doi:10.3390/info16090801.

[26] Ningran Li, Minfeng Qi, Zhiyu Xu, Xiaogang Zhu, Wei Zhou, Sheng Wen, and

Yang Xiang. 2024. Blockchain cross-chain bridge security: challenges, solutions,

and future outlook. Distributed Ledger Technologies: Research and Practice, 4,
(Oct. 2024). doi:10.1145/3696429.

[27] Charity Majors, Liz Fong-Jones, and George Miranda. 2022. Observability Engi-
neering. O’Reilly Media.

[28] M. Mansouri-Samani and M. Sloman. 1993. Monitoring distributed systems.

Netwrk. Mag. of Global Internetwkg., 7, 6, (Nov. 1993), 20–30. doi:10.1109/65.244
791.

[29] A. Mounji, B. Le Charlier, D. Zampunieris, and N. Habra. 1995. Distributed

audit trail analysis. In Proceedings of the Symposium on Network and Distributed
System Security, 102–112. doi:10.1109/NDSS.1995.390641.

[30] Rodolfo Picoreti, Alexandre Pereira do Carmo, Felippe Mendonça de Queiroz,

Anilton Salles Garcia, Raquel Frizera Vassallo, and Dimitra Simeonidou. 2018.

Multilevel observability in cloud orchestration. In 2018 IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intel-
ligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and
Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech),
776–784. doi:10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134.

[31] Monika Steidl, Benedikt Dornauer, Michael Felderer, Rudolf Ramler, Mircea-

Cristian Racasan, and Marko Gattringer. 2024. How industry tackles anomalies

during runtime: approaches and key monitoring parameters. In 2024 50th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE, (Aug. 2024), 364–372. doi:10.1109/seaa64295.2024.00062.

[32] Chainalysis Team. 2025. Lessons from the wormhole exploit: smart contract

vulnerabilities introduce risk; blockchains’ transparency makes it hard for bad

actors to cash out. en-US. (June 2025). https://www.chainalysis.com/blog/wor

mhole-hack-february-2022/.

[33] Ronin Network Team. [n. d.] https://x.com/ronin_network/status/18208047729

17588339.

[34] Dominique Toupin. 2011. Using tracing to diagnose or monitor systems. IEEE
Software, 28, 1, 87–91. doi:10.1109/MS.2011.20.

[35] Natkamon Tovanich, Nicolas Heulot, Jean-Daniel Fekete, and Petra Isenberg.

2021. Visualization of blockchain data: a systematic review. IEEE Transactions
on Visualization and Computer Graphics, 27, 7, 3135–3152. doi:10.1109/TVCG.2
019.2963018.

[36] Jiajing Wu, Kaixin Lin, Dan Lin, Bozhao Zhang, Zhiying Wu, and Jianzhong Su.

2025. Safeguarding blockchain ecosystem: understanding and detecting attack

transactions on cross-chain bridges. In Proceedings of the ACM Web Conference
2025. ACM, (Apr. 2025), 4902–4912. doi:10.1145/3696410.3714604.

[37] YulunWu, Guangba Yu, Zhihan Jiang, Yichen Li, andMichael R Lyu. 2025. Trace

sampling 2.0: code knowledge enhanced span-level sampling for distributed

tracing. arXiv preprint arXiv:2509.13852.

https://arxiv.org/abs/1907.10484
https://arxiv.org/abs/1907.10484
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2018.08.006
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2018.08.006
https://doi.org/10.1109/SP54263.2024.00255
https://doi.org/10.1109/ICBC56567.2023.10174953
https://doi.org/10.1109/ICBC56567.2023.10174953
https://arxiv.org/abs/2503.13637
https://arxiv.org/abs/2503.13637
https://arxiv.org/abs/2503.13637
https://api.semanticscholar.org/CorpusID:61340590
https://arxiv.org/abs/2208.02699
https://arxiv.org/abs/2208.02699
https://doi.org/10.1109/ICBC59979.2024.10634443
https://doi.org/10.1145/3648607
https://doi.org/https://doi.org/10.1016/j.future.2021.11.004
https://doi.org/https://doi.org/10.1016/j.future.2021.11.004
https://doi.org/10.1145/3471140
https://arxiv.org/abs/2501.03423
https://arxiv.org/abs/2501.03423
https://doi.org/10.1109/32.210303
https://doi.org/10.1145/2492248.2492263
https://defillama.com/protocols/bridge
https://doi.org/10.1145/2814710.2814713
https://www.elliptic.co/blog/540-million-stolen-from-the-ronin-defi-bridge
https://www.elliptic.co/blog/540-million-stolen-from-the-ronin-defi-bridge
https://doi.org/10.1007/978-1-4842-6998-5_12
https://grafana.com/docs/opentelemetry/docker-lgtm/
https://datatracker.ietf.org/doc/draft-ietf-satp-core/11/
https://datatracker.ietf.org/doc/draft-ietf-satp-core/11/
https://doi.org/10.1145/3456859.3456863
https://doi.org/10.3390/info16090801
https://doi.org/10.1145/3696429
https://doi.org/10.1109/65.244791
https://doi.org/10.1109/65.244791
https://doi.org/10.1109/NDSS.1995.390641
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134
https://doi.org/10.1109/seaa64295.2024.00062
https://www.chainalysis.com/blog/wormhole-hack-february-2022/
https://www.chainalysis.com/blog/wormhole-hack-february-2022/
https://x.com/ronin_network/status/1820804772917588339
https://x.com/ronin_network/status/1820804772917588339
https://doi.org/10.1109/MS.2011.20
https://doi.org/10.1109/TVCG.2019.2963018
https://doi.org/10.1109/TVCG.2019.2963018
https://doi.org/10.1145/3696410.3714604

	Abstract
	1 Introduction
	2 Background
	2.1 Monitoring and Auditing
	2.2 Three Pillars of Observability
	2.3 SATP-Hermes

	3 Motivation
	4 Design and Implementation
	4.1 Requirements
	4.2 System Architecture
	4.3 System Implementation

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Implementation Evaluation
	5.3 Discussion

	6 Conclusion
	Acknowledgments

