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Abstract—With the advancement of blockchain technology,
numerous systems and protocols are emerging, resulting in
isolated environments that constrain the technology’s full po-
tential. Consequently, one of the key trends that has emerged
in blockchain technology is interoperability. Our work proposes
a gateway-based architecture that supports cross-chain trans-
actions, i.e., transactions involving different blockchains. Each
network is linked with gateways that are specialized nodes
that are in charge of making transactions of assets using the
Secure Asset Transfer Protocol (SATP). This paper proposes
a specification and implementation for the SATP’s Stage 0,
where sessions between gateways are established and assets are
prepared through wrapping on both source and destination
networks, necessary conditions for a cross-network transfer. Its
core is a wrapper contract that makes use of ontologies that
formalize token behavior and interfaces, described in OWL; these
ontologies are then used by the gateways to understand how to
interact with the corresponding token’s smart contracts. These
ontologies improve the support for multiple forms of fungible
tokens within the SATP. The evaluation of the adoption of a
wrapper contract with ontology support indicates that the addi-
tional transaction latency is minimal, around 1%. Meanwhile, the
implementation of Stage 0 of SATP increases the time required
to complete transfers between Hyperledger Fabric and Besu
networks by approximately 30%. Our work enables cross-chain
asset transactions without the need for system and architectural
modifications or modifications to the token’s smart contracts,
compared to existing solutions.

Index Terms—Blockchain, Interoperability, Bridge, Ontology,
SATP

I. INTRODUCTION

A blockchain is a distributed, immutable ledger that under-
pins global value transfer and decentralized computing, with
applications in sectors like DeFi, cybersecurity, and healthcare.
The global blockchain market is projected to reach $1 trillion
by 2032, growing at 85.7% annually [1]-[3].

Despite this progress, many blockchains still keep data
and value isolated, limiting broader use [4]. This results in
the creation of silos and fragmentation of these systems,
eroding decentralization, making data and asset transfer more
difficult, and locking users into a platform, in opposition to
the core principles of Web3: decentralization, data ownership,
and interoperability. Applications built on these fragmented
networks often experience interoperability problems, creat-
ing barriers to migration and integration between systems.
The challenge of connecting Distributed Ledger Technologies

(DLTs) remains unresolved [4]. Cross-chain communication is
the cornerstone of blockchain interoperability, as this allows
transactions across different blockchains, allowing transactions
to be initiated on the source blockchain and executed on the
target blockchain, facilitating seamless interactions between
networks [4].

There are many approaches to blockchain interoperability
proposed, with only a few focusing on the semantic layer,
where ontologies play a crucial role. This layer ensures that
data is standardized, structured, and homogeneous across
blockchains, which is crucial given the sensitive and critical
nature of many blockchain records. Ontologies [5] allow data
(e.g., assets, information) to be reusable and standardized.
Although there is no universally accepted methodology for the
development of ontologies [6], frameworks aim to establish
semantic consistency between systems [7]. An ontology is
a tool that is used to clarify and organize concepts within
a specific area of interest. It helps reduce confusion and
inconsistencies while identifying valuable opportunities in that
domain [8]. An approach to addressing the semantic layer
is through the ERC standards [9], which establish common
interfaces, data structures, and event patterns. While these
standards are excellent tools for deploying new contracts,
they may not address the needs of existing non-standard
contracts or those requiring alternative interfaces. Developing
a unified semantic model or ontology remains challenging, as
it requires balancing diverse frameworks, sometimes comple-
mentary, others conflicting. Ontologies improve the semantic
layer by enabling extensible, reusable, and standardized data
representation.

We propose an implementation for Stage 0 of the Secure
Asset Transfer Protocol (SATP) [10]. Central to this approach
is a wrapper contract that uses ontologies to provide improved
support for various forms of fungible tokens within the SATP
framework. Using an approach focused on the semantic layer,
these ontologies facilitate direct mapping of token methods
to the necessary SATP primitives, enabling the acceptance of
a broader range of tokens, already or not deployed, with no
modification to their implementation.

This document is organized as follows. Section II introduces
the background knowledge on Blockchain Interoperability,
Gateways and Bridges, and the Secure Asset Transfer Protocol
(SATP). Then, Section III presents the design, architecture, and



implementation details of our solution. In Section IV, we eval-
uate and demonstrate the performance of our solution. Section
V gives a summary of existing solutions and a comparison with
ours. In Section VI, we make our conclusion and some future
work proposals.

II. BACKGROUND
A. Blockchain Interoperability

In day-to-day use, interoperability refers to the characteristic
of a product or system to work with other products or systems
[11]. In the blockchain world, we can consider interoperability
to be the ability of a source blockchain to change the state of
a target blockchain (and vice versa), enabled by cross-chain
or cross-blockchain transactions that span a composition of
homogeneous and heterogeneous blockchain systems [4].

The primary goal of blockchain interoperability is to en-
able smooth connections between different blockchain net-
works, regardless of their underlying technical implementa-
tions. Blockchain interoperability can be understood through
various layers, each addressing different concerns [12]. The
technical layer encompasses protocols and standards to enable
different blockchain networks to interact, focusing on protocol
compatibility and data standardization. The semantic layer
ensures that systems interpret data consistently, preserving
context and meaning across platforms. Organizational interop-
erability deals with human and procedural aspects, facilitating
collaboration between organizations with differing structures
and processes within the distributed ledger technology ecosys-
tem. Finally, governance and legal interoperability [4], which
combines legal and governance aspects, addresses regulatory
and compliance issues, ensuring that cross-chain interactions
adhere to legal frameworks and requirements across jurisdic-
tions.

B. Gateways & Bridges

Gateways serve as interfaces connecting blockchain net-
works to external systems (payment systems, fiat currencies).
They enable asset deposits/withdrawals with blockchain rep-
resentations and handle compliance functions, bridging the
decentralized and centralized worlds [13]. Bridges function as
protocols that enable cross-chain interoperability for transfer-
ring tokens, data, or assets between different blockchain net-
works. They overcome network isolation, typically by locking
assets in the source chain while minting equivalents on the
destination chain [4].

C. Secure Asset Transfer Protocol

The Secure Asset Transfer Protocol (SATP) is being de-
veloped by the Internet Engineering Task Force (IETF) [10].
SATP aims to standardize the secure and interoperable transfer
of digital assets across various blockchain networks, regard-
less of their underlying technologies. By supporting atomic
unidirectional asset transfers between gateways, it ensures
transaction integrity and eliminates trust issues, paving the way
for more complex N-to-N transactions.

SATP employs a gateway-based architecture to enable seam-
less asset transfers between different blockchains. SATP is still
in development, but secure production-ready bridges remain
a viable alternative solution for the time being. However,
the main counterarguments are the lack of privacy in public
bridges and the non-existent enterprise-grade support [14].

SATP transfer involves four key steps: Lock, sender’s asset is
secured on the origin ledger; Mint, a matching asset is created
on the destination ledger; Burn, the original asset is destroyed
in the source ledger; Assign, the minted asset is transferred to
the recipient.

The SATP consists of four stages. In Stage 1, the two gate-
ways authenticate each other, negotiate security parameters,
exchange the asset information and operational parameters,
and confirm agreement. During Stage 2, the first gateway
locks the asset on its ledger, creates and signs a lock claim,
which it sends to the second gateway for verification and
logging, while both maintain detailed records of the process.
In Stage 3, the first gateway signals the second to prepare for
transfer, the second temporarily creates the equivalent asset,
the first removes the original asset and notifies the second, the
second then assigns the new asset to the recipient, and finally
both gateways close their connection and clear any temporary
information, completing the transfer.

Stage O involves pre-transfer verification and context es-
tablishment. This stage was considered beyond the scope
of the current specifications. During Stage 0, applications
create a unique transfer ID, gateways validate asset own-
ership and compatibility across networks, obtain necessary
authorizations, exchange compliance information, authenticate
parties, and agree on technical parameters for the transfer.
Stage 0 is essential because it establishes trust, validates legal
and technical prerequisites, secures required authorizations,
and ensures seamless interoperability, thus mitigating potential
disputes, operational errors, and security vulnerabilities before
the beginning of the actual asset transfer process. And because
of this, one of our contributions is to Stage 0.

III. SATP GATEWAY ARCHITECTURE

The core problem we address is the challenge of perform-
ing atomic cross-chain transactions efficiently and directly
between different DLTs. Current solutions often require sig-
nificant modifications to existing systems and do not facilitate
direct asset transfers between chains.

Figure 1 depicts the overall architecture of our solution,
referred to as the Interoperability Mechanism (IM). The IM is
fundamentally composed of five new main modules (Business
Logic Orchestrator, Gateway Orchestration Layer, SATP Man-
ager, Crash Recovery, and Bridge Modules) that are part of our
contribution. These modules are explained in the following
subsections.

Our approach takes advantage of Hyperledger Cacti!. We
chose it because of its modular design properties, which
make it a suitable method of interoperability in designing a

Thttps://github.com/hyperledger-cacti/cacti
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Fig. 1. Architecture of the Interoperability Mechanism, featuring a bridge module that is composed of ledger connectors (Hyperledger Fabric, Besu, and EVM-
based systems), BUNGEE plugin, Ontology layer, Bridge Manager, Consortium plugin, crash recovery module, SATP manager module, gateway orchestrator
module, and business logic orchestrator module. Modules colored in red are our contributions; modules colored in blue also had some contributions, but they

already existed.

system that can be customized to support a wide range of
distributed ledger technologies using a set of software plugins,
which enable flexible customization and integration across
different DLTs. This gateway is implemented using the new
SATP protocol, ensuring compliance with the latest standards
for secure asset transfer. This design allows stakeholders to
continue using their preferred DLTs while cooperating and
exchanging information with others, without the need to alter
their underlying systems. The SATP Gateway? performs asset
transfers between heterogeneous DLTs.

In the following subsections, we present a comprehensive
description of the gateway, its functionalities, and its various
layers. Our contributions include both the conception and
implementation of key components such as Stage 0 and
the ontology framework. In addition, we implemented other
modules based on the existing architecture and specifications.

1) BLO Module: The Business Logic Orchestrator (BLO)
acts as an intermediary between client applications and the
SATP protocol. BLO translates various API requests, such as
initiating transactions or retrieving session information, into
SATP-compatible actions, ensuring business requirements are
accurately mapped and then forwarding them for processing in
the system. BLO, after receiving a transaction request sent by
a client seen in (1) of Figure 1, processes the request, extracts
relevant details, and then forwards the action to GOL to be
processed.

2) GOL Module: The Gateway Orchestration Layer (GOL)
is responsible for managing all gateway-to-gateway processes.
It is in charge of gateway discovery, taking advantage of the
Consortium Plugin, existing counterpart gateways, gateways’
communication channels, core SATP service, and different
stages. Importantly, while it provides the infrastructure to
support SATP services, the actual execution of the SATP
protocol and its stages is managed by the SATP Manager. A
gateway can operate as both a client and a server, as seen in

Zhttps://github.com/hyperledger-cacti/cacti/tree/satp-dev/packages/
cactus-plugin-satp-hermes

(2) in the figure 1, allowing independent asset transfers when
connected to multiple ledgers.

3) SATP Manager: The SATP Manager is where the SATP
protocol is implemented. For each transfer, it creates a separate
session. The session is tasked with observing relevant data
and operations, hence ensuring that transfers are secure and
compliant with audit requirements. In addition, the module
manages different phases of the protocol, such as validation,
initiation of the transfer, and their completion afterward, in
addition to protecting transaction states to allow rollback or
recovery in cases of failure. It is integrated with other modules,
such as the BLO, the Crash Recovery Module, and the Bridge
Module.

4) Crash Recovery Module: The Crash Recovery module
employs the SATP Gateway Crash Recovery Mechanism to
safeguard the integrity of asset transfers during system failures.
The module retrieves information from the local log database
to restore any in-progress transfers. If recovery is not feasible,
the module rolls back the transfer to its last state (returns the
assets to their origin) [15]. This ensures that no assets are lost
or incorrectly transferred.

5) Bridge Module: The bridge module is an interface
between the gateway and the DLT. It comprises connectors,
wrapper contracts, and a manager component. Connectors
interact with specific DLT networks, handling their unique
protocols and data structures. Wrapper contracts facilitate asset
transfers and proof verification in source and target chains. The
core of the bridge orchestrates the entire process, ensuring
seamless communication and data consistency. The bridge
acts as a wrapper around these connectors by abstracting the
underlying DLT details.

The bridge interfaces with wrapper contracts and leverages
ontology-specific methods to ensure seamless communication
and data consistency across different DLTs. Using ontologies,
the bridge can map data structures and concepts between
different blockchains, facilitating accurate and efficient cross-
chain interactions. Figure 2 presents the UML diagram that
illustrates the relationship between the bridge module and the
ontologies.
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Fig. 2. UML Diagram Illustrating the Relationship Between Bridges and Ontology

A bridge consists of two leaves (this design was inspired by
bascule bridges3. In the blockchain context, a leaf refers to the
component of a blockchain bridge that interacts with a specific
DLT. At least two leaves are required to successfully perform
a transfer between different DLTs. A leaf is composed of a
connector and a wrapper smart contract, where each leaf is
an implementation specifically designed for its corresponding
DLT. Each leaf interacts exclusively with its wrapper smart
contract to handle token operations, providing a standardized
way to manage token transfers across different blockchain
networks.

6) Wrapper Smart Contract: The Wrapper Contract sim-
plifies cross-network interoperability by encapsulating assets
within a unified framework. By defining a universal interface,
both the source and destination networks can interpret and
work with the asset in the same way. Operating a token through
the Wrapper not only provides an abstraction from every token
type (e.g., ERC-20, Fabric token, etc.) but also leverages the
inherent logging features of DLTs.

Additionally, the Wrapper Contract receives an ontology
each time the wrap method is called. This ontology describes
how the wrapped token should be interpreted and interacted
with on the underlying ledger.

Rather than interacting directly with the assets, the SATP
protocol works with the Wrapper Contract, abstracting the
complexities of different asset implementations. This interme-
diary layer serves two primary purposes: creating consistent
bridging processes for interoperability regardless of asset im-
plementation and managing structured metadata about locked
assets on the source chain to ensure transparency and facilitate
easier tracking of bridging transactions.

3https://www.collinsdictionary.com/dictionary/english/bascule- bridge

When the Wrapper Contract receives an asset from the
bridge, it converts the incoming metadata and instructions into
appropriate function calls for the corresponding fungible asset
smart contracts or chain code, aided by the shared ontology.

Every Wrapped Asset has several key attributes. A unique
ID, known as the Identifier, is used to initiate bridging opera-
tions on the escrowed asset. The Amount Approved represents
the user’s approved quantity for bridging, while the Amount
Locked indicates the amount currently held in escrow during
an ongoing bridging operation. The Owner is the entity that
owns the Wrapped Asset and serves as both the sender and
recipient in bridging. The Token Type refers to the specific
token classification of a fungible token. Lastly, the Bridge
ID is a unique identifier assigned to the bridge instance that
manages the transaction, including the holding account of
locked assets. Additional attributes can be added, depending
on the DLTs utilized. For example, EVM-based networks
might require a Contract Address, while Hyperledger Fabric
[16] can have MSP ID, Channel Name, or Contract Name
to act as organizational identification or describe chaincode
specifications.

7) Other Plugins Used: During the development of the
gateway, several pre-existing modules were utilized to en-
hance system integration and provide additional function-
alities, although they fall outside the scope of this paper.
The BUNGEE [17] plugin*, a view generator, standardizes
blockchain proofs of state across different ledger technologies
by creating snapshots of states and transactions, ensuring
integrity and confidentiality through Merkle tree roots and par-

“https://github.com/hyperledger-cacti/cacti/tree/main/packages/
cactus-plugin-bungee-hermes



ticipant signatures. The Consortium Plugin® enables dynamic
membership management in blockchain networks, allowing
nodes to join by proving identity and awareness of shared
policies, with a policy model for organizing rules. Hyperledger
Cacti® Connectors, including Fabric, Besu, and Ethereum
Connectors, provide seamless integration between different
blockchain ecosystems and external applications, simplifying
smart contract deployment and transaction management while
ensuring security and scalability. The database is integrated
with the gateway using Knex, which allows the usage of
various SQL databases and distributed databases like IPF'S.

A. SATP Implementation

The SATP implementation is designed around a series of
stateless services that are logically separated into four stages
of the SATP.

Each stage is then divided into two components — a client
gateway side and a server gateway side — to maintain clear
boundaries for responsibilities and operations, allowing a
gateway to work as a client and server in the same transfer. The
client gateway serves as the orchestrator of the SATP process.

Each request is made by the client gateway to the server
gateway, and the request passes through assigned handlers on
the server gateway that deploy each SATP service and pass
them on via gRPC. This layered approach comprises separate
stages, distinct client and server components, and clearly
defined interfaces. It creates a unique session for handling the
value and details of each transfer. Each session carries its own
ID and contains two sets of data: one for the client side and
one for the server side.

Each SATP message includes the following 14 common
fields; however, some messages of the protocol may define
additional fields. Because the protocol may evolve over time,
each message specifies a Version to ensure that all participating
parties run the same SATP specification. The Message Type
indicates the function of the message, while the Session ID
identifies the specific multi-party session to which the message
applies. In sessions where multiple concurrent transfers occur,
a Transfer Context ID pinpoints which transfer context a given
message addresses.

To counter replay attacks and preserve message ordering,
each message is tagged with a Sequence Number that incre-
ments with every communication. In addition, the Resource
URL references the resource or asset involved in the transfer,
and any outcome of an action invoked by the message is
conveyed through the Action Response field. The Credential
Block ensures that only authorized participants can operate or
witness the transfer, embedding the necessary proofs or tokens.

For message content regarding assets or transaction details,
the Payload Profile describes how to interpret the supple-
mentary data in the Payload field. To verify conversation
continuity, messages include the Previous Message Hash, a
cryptographic link to the previous message in the chain. Any

Shttps://github.com/hyperledger-cacti/cacti/tree/main/packages/
cacti-plugin-consortium- static
Shttps://github.com/hyperledger-cacti/cacti

problems during processing are flagged by the Error and Error
Code fields.

Finally, every SATP message is accompanied by a Signa-
ture to ensure authenticity and provide non-repudiation. This
mechanism verifies that the content was not tampered with
and that the message originated from the claimed sender.
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B. Stage 0

The SATP white paper [18] outlines what should be done,
but it does not yet define a protocol for Stage 0. Our imple-
mentation helps guide the specification for Stage 0. There are
preliminary steps that must occur before the standard protocol
stages can proceed. These steps include the creation of a
session (session data is a record used by SATP to manage
and track each transfer session) for each transfer between the
involved Gateways and the wrapping of assets on both the
source and destination networks. To address this, we have
introduced Stage 0 to encompass these critical initial actions.

Stage 0 messages have the same format as the other SATP
messages, ensuring consistency across protocol stages.

In Stage O (see Figure 3), G1 initiates a session by re-
questing it from G2, who acknowledges with acceptance or
rejection (possibly suggesting an alternative session ID if



conflicts exist); once accepted, G1 wraps the asset within the
source network (NW1) and sends proof to G2 as a pre-SATP
transfer request containing wrap assertion claims and asset
information for both networks, after which the asset is wrapped
on the destination network (NW2) and G2 confirms this by
sending proof back to GI.

Our stage 0 proposal for the SATP protocol addresses the
gap in the original white paper [18] by defining the preliminary
steps that are essential for seamless asset transfers. This stage
ensures that a session is established between gateways and that
assets are properly wrapped (mapped in the Wrapper Contract)
on both the source and destination networks before proceeding
with the standard SATP stages.

C. Token Ontology

This module is a critical component that improves inter-
operability among various blockchain networks by providing
a bridge that contains a wide range of interfaces to connect
to a certain smart contract. Every interaction is controlled by
an ontology, defined in OWL, a known language to represent
ontologies, which dictates the exact format, permitted actions,
and expected behavior applicable to a specific token category.
This 1:1 mapping between the ontology and the token type
ensures that each operation is validated against a single
authoritative source, maintaining both the token’s functional
consistency and overall integrity.

Beyond supporting a single token, this ontology-driven ap-
proach is designed to be flexible, accommodating multiple het-
erogeneous tokens across diverse platforms. Figure 4 displays
a knowledge graph of the ontology of an ERC-20 token within
an EVM environment, showing how basic actions such as
unlocking, locking, minting, burning, assigning and approving
are assigned to the corresponding names and parameters of the
Solidity function. This mapping also specifies any availability
constraints, reflecting whether these actions are permitted in a
given deployment. In addition, the ontology includes several
key attributes that define the structure and behavior of a token.
A unique identifier distinguishes the token definition; each
ontology should have a unique ID. The contract specification
indicates the smart contract language used for implementation,
confirming its execution environment. The compiled bytecode
provides the low-level machine-readable representation of the
contract, enabling it to be deployed on the blockchain. A cryp-
tographic signature ensures the authenticity of the contract’s
deployment or interactions. In addition, a cryptographic hash
serves as a unique fingerprint of the contract.

This structured approach ensures consistency in how tokens
are handled across different environments while allowing for
extensibility to new token standards and blockchain ecosys-
tems. In addition to listing these fundamental operations, the
ontology includes important metadata such as the contract’s
bytecode, digital signature, and cryptographic hash. These
components are important in maintaining integrity by allow-
ing unauthorized changes to be prevented. By retrieving the
ontology from a controlled local repository, administrators can

tightly govern revisions, preventing unauthorized or accidental
changes that might compromise security or functionality.

1V. EVALUATION

In this section, we evaluate the IM, the SATP Gateway
with the Stage O Implementation, and the implications of
the ontology definition implementation. We go through the
evaluation process to assess the performance of the SATP
Gateway under different conditions and assumptions.

A. Goals

Before proceeding with the evaluation of the proposed
solutions, it is essential to outline the goals and objectives
of this evaluation:

1) What is the performance, in terms of latency, of making
one cross-chain transfer between two gateways?

2) What is the added latency of the Stage O step?

3) What is the performance, in terms of latency, of making
one cross-chain transfer between one gateway using the
SATP gateway implementation?

4) What is the impact, in terms of latency, of using a
Wrapper Smart Contract, which utilizes ontologies to
facilitate semantic interoperability, compared to directly
calling the Asset contract?

B. Experimental Environment

To evaluate the solutions, we set up a testing environment.
We set up an Ubuntu 24.04 LTS virtual machine with 12GB
RAM, 6-core CPU, and 128GB SSD in a server running a
Hypervisor OS, Proxmox 8.2.2. The server was running an 8th
Gen Intel(R) Core(TM) i17-8700 @ 3.20GHz processor with
64GB 2666mhz DDR4 RAM. Our test environment incorpo-
rated two distinct blockchain networks using preconfigured test
ledgers from the Cacti project repository: Hyperledger Fabric
(Fabric Samples’ config) and Besu (we used a custom genesis
configuration, the genesis file specifies a lightweight Ethash
consensus mechanism with a fixed mining difficulty, enables
the London hard fork from block zero, and sets a very high
gas limit to allow unrestricted smart contract execution)®. The
testing was carried out in a dedicated Cacti branch® by running
the various tests present in the satp-hermes package. Every test
was executed 50 times.

1) Wrapper Smart Contracts With Ontology Implementa-
tion: We begin by evaluating the performance implications
of calling methods through the Wrapper Contract. Table I
shows the time necessary to execute the SATP methods called
directly and through the Wrapper Contract in a Besu and
Hyperledger Fabric environment. In Besu, using the Wrapper
Contract increased the execution time for the Assign method
by 3.07% and the Burn method by 0.05%, while reducing the
execution time for the Lock and Mint methods by 0.88% and
7.19%, respectively. The largest improvement was observed in

https://github.com/hyperledger/fabric-samples

8https://github.com/hyperledger-cacti/cacti/blob/main/tools/docker/
besu-all-in-one/genesis.json

“https://github.com/LordKubaya/cacti_fork/tree/thesis-test



TABLE I
EXECUTION TIME FOR SATP METHODS IN BESU AND HYPERLEDGER FABRIC: DIRECT CALL VS. WRAPPER

Method Besu Fabric
Direct(ms) O(ms) Wrapper(ms) O (ms) Diff(%) Direct(ms) O (ms) Wrapper(ms) O (ms) Diff(%)
Assign 1022.12 296 1053.46 420 3.07 4176.58 139 4179.22 165 0.63
Burn 1019.44 323 1020.00 308 0.05 4192.88 180 4244.40 213 1.23
Lock 1019.76 328 1010.74 321  -0.88 4190.78 138 4226.08 253 0.84
Mint 1076.84 439 999.40 298 -7.19 4216.14 189 4246.40 195 0.72
Unlock 2061.00 473 1081.92 358 —-47.50 4210.18 229 4192.54 194 -0.42
400 40
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m SATP transaction
300 30
g Set up target gateway g
§ 250 B Set up source gateway § 2 Stage 3
% 200 m Set up SQlite databases % 20 Stage 2
‘% 150 W Fabric contracts deployment '% 15 Stage 1
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Fig. 5. SATP e2e test including ledger configuration, contract and SQLite ~ Fig. 6. SATP execution between two Gateways divided into the different

deployment, and two gateways setup

the Unlock method, with a 47.50% reduction in execution time.
The Wrap and Unwrap operations averaged 1030.29 ms (o =
395.94 ms) and 1086.20 ms (¢ = 362.04 ms), respectively, in
the Besu environment.

Based on the previous analysis, methods that require only
a single contract call show an average time difference of
approximately 1.24%, which is largely negligible. However,
when a SATP method involves multiple calls to the contract,
there are significant performance improvements. This outcome
can be attributed to the fact that the connector call accounts
for most of the overall execution time.

In Hyperledger Fabric, the Wrapper Contract led to execu-
tion time increases of 0.63% for the Assign method, 1.23% for
Burn, 0.84% for Lock, and 0.72% for Mint, while the Unlock
method saw a 0.42% decrease. The average execution times
for Wrap and Unwrap were 4220.82 ms (o = 166.58 ms) and
4206.02 ms (o = 180.09 ms), respectively, in the Hyperledger
Fabric environment.

According to the Fabric analysis, the average difference
across all methods is under one percent, indicating that the
additional overhead introduced by the Wrapper Contract is
effectively negligible.

2) SATP Gateway: Figure 5 shows the execution of one
test that performs a SATP transfer between two gateways. The
time necessary to setup the local and remote SQLite database,
the Besu network and respective contracts, the Hyperledger
Fabric network and respective contracts, two gateways, and
running a SATP transfer between both gateways were 0.15,
13.64, and 13.64, 190.65 and 111.87, 0.03, and 36.15 seconds,
respectively. The duration of setting up the Hyperledger Fabric
network is what consumes the majority of the time, followed

stages

by the deployment of the Fabric contracts, taking 53.54%
and 31.41% of the total time, respectively. The SATP transfer
execution only takes 36.15% of the total time. In both the
Hyperledger Fabric and Besu network setups, we deploy a pair
of smart contracts, the asset and wrapper contracts. Naturally,
the deployment and execution of each can vary greatly in
duration.

Our next goal is to examine how latency is distributed
among the different stages of a single SATP execution. Figure
6 depicts both the overall runtime of SATP and the time spent
in Stages 0, 1, 2, and 3. In Stage 0, the gateways receive
the ontology for each ledger of the asset being transferred.
After the ontology is loaded into the Wrapper Contract, and
at this point, a session is also created. In Stage 1, only a few
messages are exchanged, and both gateways perform various
validations. In stage 2, the gateways perform the locking of
the asset on the source blockchain, an action that requires an
on-chain transaction. Finally, in Stage 3, the gateways fulfill
their commitments from the earlier phases: the locked asset
on the source blockchain is burned, and is minted on the
destination blockchain. This final step involves issuing two
new transactions.

The latency of the SATP stage is proportional to the com-
plexity of the transaction and the frequency of the interaction
with the ledgers. Stage 3 has the highest impact (62.61%,
22.63s), involving multiple complex transactions (burn in
Besu; mint and transfer in Hyperledger Fabric) requiring cross-
ledger coordination. Stage O comes next (32.71%, 11.82s) with
wrap operations in both the Besu and Fabric ledgers. Stage 2
has minimal impact (3.27%, 1.18s), performing only a single
lock operation in Besu. Stage 1 contributes the lowest impact



(1. 41%, 0.51 s) as it does not require ledger transactions. The
total SATP process takes 36.14 seconds.

C. Qualitative Assessment

Belchior et al. [19] propose a comprehensive evaluation
framework to help stakeholders choose the right solution
for blockchain interoperability. This framework is particularly
useful, as it takes into account a wide range of qualitative
factors, allowing for a thorough assessment. It evaluates each
solution across three dimensions: Potentiality, Compatibility,
and Performance, picturing both the strengths and limitations
of a given approach.

Our solution has a Potentiality Assessment of P4 (P1-
P4). This indicates that our solution is capable of connecting
with different blockchain networks, both those using the same
protocol and those built on different architectures. Through
testing, we perform asset transfers between Hyperledger Fabric
and Besu networks, both with distinct architectures.

In terms of Compatibility Assessment, our solution is at
the C2 level (C1-C3). It provides a basic level of semantic
and organizational interoperability. This means that systems
using our solution can understand and process data from
each other using shared formats (these shared formats being
the ontology framework developed) and basic agreements.
However, other integrations, such as governance models or
legal frameworks, are still a work in progress. This is largely
due to the early stage of development of the consortium plugin,
which currently allows some policy sharing across networks.

For Performance Assessment, our solution is at the PEl1
level (PE1-PE3), which reflects acceptable throughput and
latency. As discussed in Section IV-B1, the speed of cross-
chain transactions is mainly determined by the underlying
consensus protocols of the connected blockchains. We did not
assess the cost of operation in detail, since we focus on private
networks, where cost is not as important as it is for public
networks. However, running the system on public blockchains
such as Ethereum Mainnet could result in higher fees.

V. RELATED WORK

Current blockchain interoperability solutions vary from re-
quiring intermediary entities to facilitate exchanges or trans-
fers. A comprehensive survey on blockchain interoperabil-
ity [4] categorizes these solutions into three types: Public
Connectors, Blockchain of Blockchains (BoB), and Hybrid
Connectors. Public Connectors enable interoperability between
public blockchains through mechanisms such as sidechains,
notary schemes [4], or Hash Time Lock Contracts (HTLC)
[20]. BoB solutions support the development of application-
specific blockchains that can interoperate with each other [4];
the best known examples include Polkadot [21] and Cosmos
[22]. Solutions that do not fit into the first two categories are
classified as Hybrid Connectors, which are designed for both
public and private environments, such as those providing an
abstraction layer for interacting with underlying ledgers, SATP
according to [4] is in the Hybrid Connectors category [23].
While Polkadot enables communication between its parachains

through a relay chain architecture, and Cosmos connects inde-
pendent blockchains via its Inter-Blockchain Communication
protocol, both require chains to conform to their respective
frameworks.

Our solution focuses on semantic interoperability through
ontologies that formalize the understanding of asset con-
tracts across blockchains. Unlike the solutions mentioned
above, which require substantial architectural modifications,
our method minimizes implementation changes while enabling
direct asset transfers between heterogeneous blockchains.

VI. CONCLUSION

We propose an innovative approach to blockchain inter-
operability, utilizing ontologies that describe the methods of
asset contracts necessary for the SATP protocol. This paper
contributes to SATP gateways that have the ability to transact
different fungible assets between heterogeneous blockchains
using the SATP protocol. We propose an ontology model that
enables smart contracts to interoperate without additional code
changes, offering a unified asset definition across multiple
DLTs.

We evaluated our implementation of this architecture using
the SATP protocol within Hyperledger Cacti. Our assessment
focused on the performance of the SATP Gateway and the
impact of incorporating Stage 0 and Wrapper Contracts that
support ontologies. We found that the additional steps in
Stage 0 represented 32.71% of the overall SATP process time.
However, the use of the Wrapper Contract had a negligible
effect on latency.

We are currently extending our solution to support non-
fungible tokens, including the development of an ontology
system designed to accommodate these unique digital assets.
In addition, the ontologies used in our solution are not dis-
tributed or shareable. Future research could explore the use of
DLT for ontology storage and management via smart contracts,
allowing easier sharing and interoperability between bridges.
Smart contracts could support version control and secure
data sharing, allowing the ontology to evolve with system
requirements while maintaining integrity through consensus-
based updates. This would decentralize control, reduce manual
intervention, and ensure compatibility across the network.
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