
Decentralised Land Registration and Transaction
with Blockchain and Self-Sovereign Identity

Pedro C. Henriques Miguel Correia

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Lisboa, Portugal
{pedro.carvalho.henriques, miguel.p.correia}@tecnico.ulisboa.pt

Abstract—Land registry systems maintain public records of
land ownership, transactions, and property boundaries, offering
legal documentation and information on titles and associated
rights. However, there are challenges in the security, accuracy,
efficiency, and transparency of the current registries. The paper
proposes the Decentralised Land Registry (DLR), a system
that leverages a permissioned blockchain, Hyperledger Fabric,
enabling a secure and controlled environment for land regis-
tration and transaction validation. The use of smart contracts
ensures consensus and immutability and allows support for
legitimate property transactions overseen by registry authorities.
Decentralised identities and ownership proofs are issued using a
Self-Sovereign Identity approach, leveraging Hyperledger Indy as
the ledger and Hyperledger Aries as the agent representing gov-
ernment entities and issuing these credentials. This solution would
mark a pivotal shift in land registry systems, revolutionising
traditional practices by addressing their limitations and fostering
a transparent, reliable, and efficient landscape for managing
property rights and transactions.

I. INTRODUCTION

Land registry systems are the backbone of a country’s land
ownership infrastructure. Given that land is a valuable asset,
secure, accurate and up-to-date records are critical. Currently,
land registry systems are viewed as complex and vulnerable,
packed with inefficiencies, and susceptible to fraudulent ac-
tivity. One of the main problems of these systems lies in the
methods used to record and manage land ownership. These
usually involve paper documents which, even if digitalised, are
not in a manageable and semantic format, causing constraints
when trying to provide accessible and up-to-date land informa-
tion and also discrepancies in record-keeping [1]. Moreover,
centralised databases create single points of failure, increasing
the risks of unauthorised access, tampering, and loss, while
also raising concerns about transparency, which can lead to
disputes and prolonged transaction times [2].

Blockchain technology enables transforming current sys-
tems into transparent, efficient, and highly secure platforms.
Using distributed ledgers, it is possible to issue and store
ownership proofs in a secure manner, across a network of
nodes that prevent changes to existing data. Furthermore, since
blockchains are immutable, a system with these characteristics
creates an authentic and accurate record of ownership that
users can trust. As ownership proofs can be created and
emitted using a predefined and manageable format, the ease
of tracking and updating data increases drastically. Through
smart contracts, which are self-executing contracts that are

programmed to depend on certain conditions and enforce and
execute actions, the number of intermediaries can be reduced.
In a system like this, users need to have their identity verified,
which is also possible through blockchain, leveraging Self-
Sovereign Identity (SSI) solutions [3]. In this way, individual
decentralised identities can be created, ensuring that only the
real owner of an identity can execute actions on its behalf.

This paper presents the Decentralised Land Registry (DLR),
the first land registry system proposal that brings together the
following characteristics. DLR is a decentralised application
on a permissioned blockchain, ensuring land registry and trans-
action efficiency while guaranteeing integrity, confidentiality,
authenticity, and transparency; DLR leverages decentralised
identity to provide users with full control over their identity, in-
creasing privacy, authentication, integrity, and user autonomy.
DLR offers land ownership proofs in digital form, granting
users with control and authority over their land. DLR supports
seamless and efficient land transactions by leveraging smart
contracts and stablecoin payments, reducing the number of
intermediaries. Finally, DLR supports an accurate definition
of land limits with mapping and georeferencing techniques,
following a GeoJSON norm to store property areas.

DLR is a decentralised application (DApp) that uses
three blockchains: a smart contract platform (a permission-
less blockchain), an SSI blockchain, and a cryptocurrency
blockchain. The first allows users to register and execute
transactions on their land, like buying or selling, leveraging
smart contracts. The second allows users to have full control
over their identity, the actions performed in their name and
also over their land. The third is used for payments.

There is related work on blockchain-based land registry [1],
[4], [5], [6], [7], [8], [9], which mostly considers land registry
but not transactions. They also do not use SSI technologies.
None of them provides all the characteristics of DLR. There
are also related works on real estate transactions and rental,
but not on land registration [10], [11], [12].

II. DLR SYSTEM DESIGN

This section presents the design of the DLR platform.
First, two SSI concepts have to be introduced, both defined
by the World Wide Web Consortium (W3C). Decentralised
Identifiers (DIDs) are unique subject identifiers that enable
verifiable and decentralised digital identities [13]. Verifiable
Credentials (VCs) are digitally signed, tamper-evident digital



documents that can represent the same information that a
physical credential represents [14].

A. Roles and Use Cases

1) Users: We use the term users to mean citizens, land
owners, and private entities. To be able to use our platform,
they need to have a decentralised identity, which is issued
by the SSI Identity Agent owned by a government entity,
interacting with the SSI ledger. This identity is represented
by a VC and is used for registers, log-ins, and authentications
on the platform. After this, users are able to register their land
and execute transactions.

During the land registration process, users are required to
provide information about their land, including its location,
postal code, and GeoJSON mapping, which is a JSON file
containing the coordinates of a polygon that defines the land
boundaries. In addition, users need to submit a pdf document
of the land registry record and, if they wish, to set the land for
sale and define a price. This information is then automatically
validated in a smart contract and, if successful, the SSI Land
Agent issues a VC proving the ownership of the land.

Regarding the transaction process, users can buy or sell land
using our platform. In this process, the owner of the land is
required to submit the ownership VC related to the property
in question. After this, if the smart contract’s agreement terms
are fulfilled, it is able to execute on its own and interact with
a cryptocurrency network to send the agreed payment for the
land from the buyer’s to the seller’s cryptocurrency wallet.
At the same time, the SSI Land Agent revokes the ownership
proof from the previous owner and issues an ownership proof
to the new one; this way, the transaction is settled.

2) Government Entities: Government entities have a differ-
ent role than normal users. One of their purposes is to maintain
the land registry blockchain and execute consensus algorithms
to decide whether or not registries and transactions are valid.
In addition to this, these entities can assign government
inspectors that can verify land registry information manually if
needed. Government entities are also responsible for managing
two SSI agents that issue VCs. The first is the identity agent,
which is responsible for issuing decentralised identities to
users containing their personal information. The second one
is the land agent, which is responsible for issuing ownership
proofs related to the user’s land.

B. Design Options

During the design of the solution, several options were
considered. In terms of blockchain type, a permissioned
blockchain model was chosen to put authorised entities in
control (government nodes, in our case). The technology cho-
sen was Hyperledger Fabric, due to its modular architecture,
flexible consensus mechanisms, scalability, privacy features,
and strong community support.

The registry of users in our platform is based on an account
creation using basic information like their name and fiscal
number. As we wanted to employ a SSI solution, we decided
that user identities would be tied to a previously issued identity

VC, that needs to be stored in a SSI wallet. This means that
after filling out a basic registry form, users need to connect
their wallet to the platform. Then, a request is sent through
the established connection and they are able to share this
VC with our system, proving their identity. In this way, we
defined the first SSI agent, the identity agent, which should
be maintained by the government entity responsible for citizen
IDs, and which is responsible for issuing these decentralised
identities to users, containing their personal information and
substituting physical IDs. Thanks to this decision, we enable
users to register, login and authenticate themselves while being
compliant with an SSI solution. The same logic applies to the
login process, where authentication occurs through the wallet
connection and the sharing of the identity VC. Moreover, when
a land registry or transaction happens, the second SSI agent,
the land agent, is able to issue a VC proving the ownership
of the newly registered land. Overall, VCs are saved by the
user and contain both their DID as well as the organisation’s
one and therefore, they can easily be validated and verified.
As previously mentioned, Hyperledger Aries and Indy were
the main SSI technologies studied in this work, due to their
compatibility with Hyperledger Fabric and the possibility of
issuing VCs. In this way, we decided to use them to implement
the SSI layer of our system.

Land registry and transaction operations are implemented
in smart contracts. In this way, we enable verifications before
the contract executes, streamlining the whole process. Smart
contracts also integrate payments in a simplified manner. In
this case, using stablecoin cryptocurrencies to ensure quick
and efficient transactions, reducing the time taken for settle-
ments compared to traditional banking systems, fees, and also
increasing the overall decentralisation of the system. Solutions
like Stripe or PayPal were not considered, mainly because
they are centralised and would require a lot of work with
integrations and bureaucracy to be able to function with our
system.

Regarding land mapping, we opted to do georeferencing
only by submitting a file that contains land boundaries and
complying with the GeoJSON geographic data format. In this
way, we allow users to accurately define the limits of their
land and to submit this information in a manageable format.

C. Architecture

The architecture of the solution is represented in Figure
1. Users interact with the system through the DLR Web App,
which allows them to register or log in to the platform, register
their land, and participate in transactions. As mentioned in the
previous section, users need to have a decentralised identity
to be able to use our platform. This identity is issued by the
SSI Identity Agent owned by a government entity and interacts
with the SSI ledger. This identity, represented by a VC, is used
to both register and log in the platform, where the DLR Web
Server requests the Identity Agent to validate the credential
by checking the SSI ledger.

After the register and login processes, users can register
their land and execute transactions by filling out predefined



User DLR Web Server

Smart Contract

RequestsAccesses

DLR Web App

Permissioned 
Blockchain

Executes

In
te
ra
ct
s

Cryptocurrency Network

SSI Wallet

Owns

Interacts

Government Entities

Participates

O
w
ns

Interacts

Cryptocurrency Wallet

SSI BlockchainIdentity AgentGovernment Entities

Owns

Interacts

Interacts

Interacts

Land Agent

Interacts

Interacts

O
w
ns

Interacts

Database

Interacts

Fig. 1. DLR Architecture Data Flow Diagram

forms in the DLR Web App. If a user tries to execute a
registry, the DLR Web Server interacts with the Permissioned
Blockchain so that the respective smart contract is executed. In
this case, the filled information is distributed between the par-
ticipating government nodes (representing various government
entities) who agree if whether or not the registration complies
with the needed requirements. Each node should perform
some automatic verifications, and, if needed, a government
inspector is notified to manually verify additional information.
If the registry process is successfully executed, the submitted
information is stored in a manageable format inside the ledger.
Subsequently, the DLR Web Server sends a request to the SSI
Land Agent so that it issues a VC using its own DID to the
user’s SSI wallet, which contains the user’s did. Therefore, the
user now has an ownership proof that can be easily verified
by anyone.

Regarding the use case of land transactions, the seller is
required to submit his ownership VC related to the property in
question before he is able to sell it. Buy requests are submitted
by other users, and when the seller chooses the best offer,
both users need to connect their cryptocurrency wallet, then
the smart contract is executed. After this, if the terms of the
smart contract’s agreement are fulfilled, the payment is settled
between the buyer and the seller. At the same time, the SSI
Land Agent revokes the ownership proof from the previous
owner and issues a new one to the new owner.

III. DLR IMPLEMENTATION

A. Permissioned Blockchain

1) Architecture: Our permissioned blockchain was imple-
mented using the Hyperledger Fabric Kubernetes Operator
(HLF Operator), which simplifies the setup of a production-
ready Fabric networks and utilises Kubernetes orchestration.

The HLF Operator allows the use of Custom Resource Defini-
tions (CRDs) to configure the network’s key components while
also providing tools to manage them. The network consists of
two organisations, representing government entities involved
in the land registry process, each with its own Certificate
Authority (CA) and two Peers. It also includes three Orderer
nodes for fault tolerance and network availability. A channel,
accessible only by these two organisations, ensures private
communication for data sharing. The network also has a
Gateway API SDK that supports interaction between external
applications and the network.

2) Assets: In Hyperledger Fabric, an asset represents any
tangible or intangible object or record that is tracked and
managed on the blockchain. These assets are stored as key-
value pairs, each of which is represented by a unique identifier
(which is the key) and its associated properties (the values). We
have two types of assets. The Land Asset represents the land
itself and allows us to know its state, details, and ownership
status. It contains properties describing the land itself, such
as the location, GeoJSON and area, and properties regarding
its status and ownership, such as the forSale Boolean, price,
owner DID and credential exchange id. The owner DID is
used in conjunction with the SSI Land Agent, allowing us to
identify the identity of the owner, and the credential exchange
id ties the Land Asset to the VC issued by the Land Agent.
The Land Transaction Asset allows tracking the purchases
and sales of land. It contains the ID of the land associated
with the transaction. Besides this, it contains details about
the seller and buyer, including their DIDs, cryptocurrency
wallet addresses, and the price and status of the transaction
(pending, accepted, rejected, completed). Besides these, both
assets contain properties regarding their creation and update
timestamps.

3) Smart Contracts: The smart contract used in our solu-
tion, created using Typescript, defines the business logic of
the network. The smart contract functions are grouped into
three types: general functions, which are private and retrieve
asset information; land asset functions, which retrieve, create,
and update land assets; and land transaction functions, which
retrieve, create, update, and complete transactions. As some
of the functions are complex and execute multiple validations
and operations, we will describe them in more detail:
• CreateLandAsset: Starts by verifying if the land is already

registered using the assetExists function. If not, it then
checks if the GeoJSON data intersects with any existing
land assets using the DoesGeoJSONIntersect function. If
the GeoJSON data is valid, it creates a new land asset using
the following properties: id, cred ex id, ownerDid, location,
forSale, price, GeoJSON, and area and adds it to the ledger.

• UpdateLandAssetSaleStatus: Checks if the land exists and
if the owner is the same as the one making the request.
Then, if the forSale property is set to true, it updates the
sale status and price of the land asset, only in case the price
is valid. Otherwise, it sets the forSale property to false.

• UpdateLandAssetOwner: Is only accessible through the
CompleteTransactionAsset function. It starts by checking if



the land exists, then it checks if the new owner is different
from the current owner, and also if the current owner in fact
owns the land. If successful, it updates the owner and the
credential exchange id of the land asset.

• CreateTransactionAsset: Checks if the land exists and if it is
for sale, then it creates a new transaction asset including the
landId, seller and buyer DIDs, buyer cryptocurrency wallet
address, price proposal and status to pending state. It then
adds the transaction asset to the ledger.

• UpdateTransactionAssetStatus: Checks if the transaction
exists and if the seller is the one making the request. If
so, it updates the status of the transaction asset to either
accepted or rejected based on the seller’s request. In case
it was accepted, it also adds their cryptocurrency wallet
address to the asset.

• CompleteTransactionAsset: Checks if the transaction exists
and if the buyer is the one making the request. If the request
is valid, it updates the seller’s cryptocurrency wallet address
to verify the payment, the owner of the land asset, and the
status of the transaction asset to completed, transferring the
land ownership from the seller to the buyer.

B. Self-Sovereign Identity Layer

1) Architecture: As already mentioned, our SSI layer was
built using Hyperledger Indy and Hyperledger Aries. Starting
with Indy, which is a distributed ledger, we decided that it
would not make sense to deploy an Indy network for our
solution, as it would be too complex and costly, considering
that there are open-source development networks available.
Therefore, we decided to use the BC Gov’s Von Network,
which besides the network itself, includes a ledger browser to
see the status of the nodes as well as to browse and search for
ledger transactions. This network is being openly developed
by the British Columbia government (BC Gov) which provides
other useful sets of tools and libraries to build SSI solutions.1

One of these libraries is called Traction and it was designed as
an API first architecture built on top of the Hyperledger Aries
Cloud Agent Python (ACA-Py) with the goal of streamlining
the process of sending and receiving digital credentials for
governments and organisations. Hyperledger Aries is a toolkit
that allows for trusted peer-to-peer interactions based on
decentralised identities and VCs. It includes several protocols
and tools and supports identities across several blockchains.
Aries serves as the client of an SSI system and allows us to
issue, store, and present VCs through secure communication
channels. However, ACA-Py is simply a cloud agent built on
top of the Aries concepts, therefore serving the same purpose.

Traction is an interoperable tool that supports multi-tenancy,
which is crucial in our case due to the two types of SSI
agents in our system. It enables the deployment of digital trust
services, leveraging verifiable data registries like Hyperledger
Indy through ACA-Py. In this way, Traction offers a reliable
and tamper-proof source of data on issuers and schemas,

1https://www.lfdecentralizedtrust.org/blog/bc-digital-trust-leveraging-
hyperledger-tools-for-digital-trust

enabling secure sharing of digital credentials for organisations.
Besides this, it offers an API first architecture allowing easy
integration into existing applications, without the need to
maintain and manage an instance of ACA-Py. Another key
point is the existence of a Tenant UI, built on top of the API,
allowing us to execute the key functions of the clients in a
simple and user-friendly way, ideal for government entities
managing the system. The most important components are
the Traction Innkeeper UI, which allowed us to create our
two tenants, the Identity Agent and the Land Agent, and the
Traction API, which can be consulted through the Swagger
UI and which allowed us to manage the agents and their
interactions.

The last component of our SSI layer is the wallet used to
store the VCs and manage the interactions with the two agents.
In our case, we decided to use the BC Gov’s SSI wallet, which
is a mobile application that allows users to receive, store, and
present digital credentials in a secure way.

2) Agents: Having created the agents using the Traction
Innkeeper UI and receiving their respective wallet ID and
private key, we were able to use the Traction Tenant UI to
execute the initial configurations. This included registering
the agents in the BC Gov’s Von Network and receiving a
ledger published public DID turning them into VC issuers.
The second step to be able to issue VCs was to create the
VC schema and credential definition and publish them in the
ledger. The VC schema is basically its structure, representing
the claims that the VC will contain, while the credential
definition is the cryptographic material used to sign the VC.
It links the Issuer’s DID with the schema and contains the
public key needed to verify the presentations of the credential,
which can be done by anyone with the help of the ledger. We
also created a Revocation Registry, linked to the credential
definition, that allows the issuer to revoke credentials when
necessary. This is useful when a land transaction happens and
the old owner’s VC needs to be revoked.

3) Verifiable Credentials: Following the process of defining
and publishing the VC schema and the credential definition,
we created the VCs that are used in our system, these being
the Identity VC and the Land Ownership VC.

The Identity VC is issued by the Identity Agent and contains
the user’s name and fiscal number. Its purpose is to allow users
to register and log in the system and, therefore, to prove their
identity. For development purposes, we issued a few Identity
VCs to some SSI mobile wallets, using the Traction Tenant UI,
instead of creating a frontend dedicated to this single purpose,
to be able to implement and test all the requirements of the
system. This was considered not to be part of the scope of the
paper, so in a real system, the Identity VC would be issued by
the government entity responsible for the user’s citizen IDs in
a separate application.

The Land Ownership VC is issued by the Land Agent and
contains the land ID, location, area, and GeoJSON of the land.
Its purpose is simple, to allow users to truly have an ownership
proof for the land they possess. This VC can be issued in
two different scenarios, when the user first registers their



land in our system, or after they complete a land purchase.
Additionally, it can be revoked, in case the user sells the
land and, lastly, it needs to be presented in case the user
wants to prove ownership of their land. The schema of our
Land Ownership VC was created with the goal of accurately
representing any land. It is important to note that no predefined
schemas for the land registry use case were found, and even
if such schemas exist, they would have to both be suitable for
our system and be registered in the Von Network Indy ledger,
which is not the case.

4) Processes: Having understood how the SSI Agents
work, we will now describe the main SSI related processes
that occur in our system:

• User Registration and Login: Users can register and log in
using the respective forms in the frontend. Starting with the
registry process, the App sends a request to create a Single
Use Connection link, which the User can scan with their
SSI wallet to establish a secure connection with our system.
With the connection in place, the App then sends a present
proof request which the user can accept, sharing some of the
information of their Identity VC, validating their identity in
both the register and login scenarios.

• Land Registration: The user can register a new land by
filling in the respective form in the frontend. The App then
sends a issue credential request for the Land Ownership
VC, containing the land details, which the user can accept,
receiving their ownership proof for the land.

• Land Transaction: Land transactions occur after a user
sends a buy request for a specific land. After the request
is accepted by the seller, the App sends him a present
proof request to make sure he is the owner of the land.
Afterwards, the App sends an issue credential request with
Land Ownership VC for the buyer, while also sending
a revoke credential request for the seller, revoking their
ownership of the land.

5) Traction API: The following are the key API functions
we leveraged to help us manage the SSI Agents and their
interactions with the user’s SSI wallets:

• Authentication: Handles the process of retrieving a JWT
token to be able to use the other API requests by posting
the tenant’s API key to the authentication endpoint /multi-
tenancy/tenant/tenantId/token.

• Creating Connection Invitations: Creates an invitation to
establish a secure connection with another entity (in this
case, the user’s SSI Wallet) using the /connections/create-
invitation endpoint.

• Sending Presentation Requests: Issues a VC presentation
request via the /present-proof-2.0/send-request endpoint.
The user receives this request in the SSI Wallet and accepts
it, sharing the requested VC attributes. We use two types
of requests: identityPresentationRequest to verify personal
details (first name, last name, NIF); and landPresentation-
Request to verify land credentials (location, area, geojson).

• Validating Presentations: Retrieves presentation proofs after
the user accepts the presentation request via the /present-

proof-2.0/records/id endpoint. This validation is also divided
into two functions to verify if the requested attributes
(personal identity or land details) match the expected values.

• Issuing Credentials: Issues a Land Ownership VC by post-
ing data to the /issue-credential-2.0/send-offer endpoint. The
process includes sending an offer to the user’s SSI Wallet
and issuing the credential if the user accepts.

• Revocation of Credentials: Revokes a credential using the
/revocation/revoke endpoint. We also check the revocation
status via the /revocation/credential-record endpoint.

C. Web Application

The DLR Web Application was built using Next.js, a
modern React framework that enables the creation of server-
side rendered applications. This framework allows us to create
server actions, removing the need for a dedicated backend and
API. Therefore, the Web App is composed by the Frontend
and the Server Actions, while also interacting with two addi-
tional components. These include the Solana cryptocurrency
network, for the land transaction payments, and a simple
PostgreSQL database, to store the user’s basic information
as well as the connections to their SSI wallets. Regarding
the land transaction payments, we chose the Solana network
because it includes major tokens, such as USDC and EURC,
which are Dolar and Euro stablecoins. Additionally, we chose
it because of the low transaction fees and high performance,
which are crucial for our system as we need to execute a high
number of transactions in a short period of time. The actual
implementation of the stablecoin payments was not included
in the development due to their nonexistence in the Solana
devnet. For the purpose of the demo we included payments
with the native Solana token (SOL), which allowed us to test
the payment process without incurring in real costs. Regarding
the database, we created two tables: one for the users and
another for the connections. The users table contains their
name and fiscal number, as well as a representative ID and
their DID (from the SSI wallet). This table is then related to the
connections table, which contains the connection ID (between
the SSI wallet and the Land Agent), an alias to identify the
connection and the user ID.

1) Server Actions: The server actions are divided into two
main types, Fabric Actions and SSI Actions, each one re-
sponsible for interacting with the respective component of the
system. The Fabric Server actions use the Fabric Gateway API
to interact with the underlying blockchain network, allowing
our web application to submit transactions and query data
directly from the smart contracts. For example, when a user
registers a new land asset or submits a buy/sell request, server
actions invoke the appropriate smart contract functions, sim-
plifying the interaction with the blockchain while ensuring that
all transactions are immutably recorded. An important point
is that each smart contract function autonomously verifies
the identity of the user who is making the request through
their DID, ensuring that only authorised users can execute
certain operations. This setup provides an efficient and secure
mechanism for blockchain interaction, leveraging our Web



Send Rate (TPS)

La
te

nc
y 

(s
)

0

5

10

15

200 400 600 800 1000

CreateLandAsset UpdateLandAssetSaleStatus GetLandAssetsByOwner GetLandAssetsForSaleExcludingUser

Fig. 2. Land Asset Functions Send Rate vs. Latency

Server which acts as a trusted intermediary between the user
and the Fabric network.

On the other hand, the SSI Server actions represent a
tenant using the Traction API, allowing our app to manage
VCs and secure connections with users’ SSI Wallets. When
a user registers or logs into the system, the server actions
are responsible for creating connection invitations, sending
presentation requests, and validating the user’s credentials
through the Traction API. For instance, when a user scans
a QR code to establish a connection with the system, or when
they verify their identity through their SSI wallet, the Traction
API handles the validation of identity VCs. This ensures that
the users’ interactions with the web application remain private
and fully decentralised, relying on the verifiable claims shared
from their SSI wallet to validate transactions securely.

IV. EVALUATION

This section summarizes the evaluation we did of the DLR
platform, focusing on the performance of its blockchain layer.
We used Hyperledger Caliper, a blockchain benchmarking tool
designed to measure the performance of different blockchain
networks. The benchmarks were executed on a MacBook Pro
with a 10-core M1 Pro chip and 16GB of RAM. This machine
provided sufficient computational resources for the execution
of accurate measurements under varying loads, while main-
taining a stable environment for both the Fabric network
and the benchmarking tool. The benchmarking consisted of
ten rounds, each for every smart contract function, with
transactions per second controlled at a fixed rate to ensure
uniform testing conditions. The number of requests per round
began at 100 and scaled up to 1000, allowing us to measure
how the system handles increasing transaction volumes. The
workloads were carefully created to ensure that each smart
contract function executed successfully under load, simulating
real scenarios, where the execution parameters are valid and
not supposed to throw execution errors.

Fig. 2 shows how latency increases with send rates for land
asset functions. Fig. 3 presents how throughput varies with
increasing send rates for the same land asset functions.

Acknowledgments. This work was financially supported by Project
Blockchain.PT - Decentralize Portugal with Blockchain Agenda (Project no

Send Rate (TPS)

Th
ro

ug
hp

ut

0

100

200

300

400

500

200 400 600 800 1000

CreateLandAsset UpdateLandAssetSaleStatus GetLandAssetsByOwner GetLandAssetsForSaleExcludingUser

Fig. 3. Land Asset Functions Send Rate vs. Throughput

51), WP6: Digital Assets Management, Call no 02/C05-i01.01/2022, funded
by the Portuguese Recovery and Resilience Program (PPR), The Portuguese
Republic and The European Union (EU) under the framework of Next
Generation EU Program. This work was also supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT) with reference
UIDB/50021/2020 (INESC-ID).

REFERENCES

[1] R. Khan, S. Ansari, S. Jain, and S. Sachdeva, “Blockchain based land
registry system using Ethereum blockchain,” Journal of Xi’an University
Architecture and Technology, vol. 12, pp. 3640–3648, 2020.

[2] M. Themistocleous et al., “Blockchain technology and land registry,”
Cyprus Review, vol. 30, no. 2, pp. 195–202, 2018.

[3] C. Allen, “The path to self-sovereign identity,” https://www.
lifewithalacrity.com/article/the-path-to-self-soverereign-identity/, 2016,
accessed: 2024-12-12.

[4] R. Benbunan-Fich and A. Castellanos, “Digitization of land records:
From paper to blockchain,” in ICIS 2018 Proceedings, 2018, p. 15.

[5] S. Krishnapriya and G. Sarath, “Securing land registration using
blockchain,” Procedia Computer Science, vol. 171, pp. 1708–1715,
2020.

[6] A. Sahai and R. Pandey, “Smart contract definition for land registry in
blockchain,” in IEEE 9th International Conference on Communication
Systems and Network Technologies (CSNT), 2020, pp. 230–235.

[7] M. Shuaib, S. M. Daud, S. Alam, and W. Z. Khan, “Blockchain-based
framework for secure and reliable land registry system,” TELKOMNIKA
(Telecommunication Computing Electronics and Control), vol. 18, no. 5,
pp. 2560–2571, 2020.

[8] A. S. Yadav and D. S. Kushwaha, “Digitization of land record through
blockchain-based consensus algorithm,” IETE Technical Review, vol. 39,
no. 4, pp. 799–816, 2022.

[9] A. S. Yadav, N. Singh, and D. S. Kushwaha, “A scalable trust based
consensus mechanism for secure and tamper free property transaction
mechanism using DLT,” International Journal of System Assurance
Engineering and Management, vol. 13, no. 2, pp. 735–751, 2022.

[10] H. P. Wouda and R. Opdenakker, “Blockchain technology in commercial
real estate transactions,” Journal of Property Investment & Finance,
vol. 37, no. 6, pp. 570–579, 2019.

[11] R. M. Garcia-Teruel, “Legal challenges and opportunities of blockchain
technology in the real estate sector,” Journal of Property, Planning and
Environmental Law, vol. 12, no. 2, pp. 129–145, 2020.

[12] J. F. Santos, M. Correia, and T. R. Dias, “Blockchain-based rental
documentation management with audit support,” in 6th Conference
on Blockchain Research & Applications for Innovative Networks and
Services (BRAINS), 2024.

[13] M. Sporny, A. Guy, M. Sabadello, and D. Reed, “Decentralized identi-
fiers (DIDs) v1.0: Core architecture, data model, and representations,”
W3C, W3C Recommendation, Jul. 2022.

[14] G. Cohen, T. Thibodeau Jr, M. Jones, I. Herman, and M. Sporny, “Ver-
ifiable credentials data model v2.0,” W3C, Candidate Recommendation,
Sep. 2024.


