
Think about Performance but Do Not Forget about
Concurrency

Vincent Gramoli
NICTA and University of Sydney

Petr Kuznetsov
Télécom ParisTech

Srivatsan Ravi
TU Berlin

Predicting the performance of concurrent programs
synchronized with a given primitive on a specific chip
multiprocessor is nearly impossible. The crux of the prob-
lem is that performance is affected by various causes: Two
chip multiprocessors may typically offer different cache
line sizes, requiring different cache padding to avoid false
sharing. The synchronization used to write a concurrent
program impacts the number of context switches (e.g.,
due to classic mutexes), the number of cache invalida-
tions (e.g., due to test-and-set bouncing) and the metadata
management overhead (HTM vs. STM). The underlying
memory model may be more or less conservative (PSO
vs. TSO). In fact, predicting performance requires to be an
expert in concurrent algorithms, programming languages
and micro-architectures. In this position paper, we argue
in favor of studying concurrency rather than performance.

1 The Chip Multiprocessor Model
Consider a system of n threads sharing memory words
m1, ...,mk by reading and writing them through accesses
r(mi) and w(mj , v). (We omit access arguments when
they are not necessary.) We assume that no two accesses
can occur simultaneously. A sequential program is a
finite-state automaton P with final states reachable from
an initial state through a series of transitions correspond-
ing to accesses. Intuitively, a sequential program repre-
sents all its possible executions. Branching conditions in
the control flow of the program are illustrated by the mul-
tiple final states of P1 and P2 in Figure 1. (In P1 a pro-
gram may terminates in state 3 or reach state 4 if a predi-
cate holds.)

Synchronizations. A synchronization techniques, is a
means to prevent data races in concurrent program by pro-
tecting memory accesses.

A lock is a blocking primitive in that when a thread
acquires a lock then other threads trying to acquire the
same lock block until the lock gets released.

A read-modify-write (rmw) primitive allows to read a
memory word, executes a series of accesses before execut-
ing a write that is conditional to the state of the previously
read memory word. We only consider single-word read-
modify-write. The read is often referred to as a load-link
whereas the conditional write is often referred to as a store
conditional, however, we will simply use the compare-
and-swap (CAS) notation that is used on most common
architectures. The corresponding synchronization event,
denoted by cas(mi, v1, v2), is a CAS on memory word
mi that changes its value to v2 and returns true only if its
current value is v1. If the current value is not v1, then the
CAS returns false.

Transactions consist of a compound statement that en-
capsulates a region of accesses that execute optimistically:
the sequence of accesses within a transaction executes
in isolation (the stores effect are not visible from other
threads point of view) until the transaction commit. A
transaction may abort depending on the interleaving of
accesses that occur during the execution and the transac-
tional memory algorithm used to implement these transac-
tions, in which case the transaction rolls its changes back
and restarts later on.

Concurrent programs. A concurrent program is a
finite-state automaton C that results from the cartesian
product of sequential programs 〈P1, ..., Pn〉 executed by
threads p1, ..., pn. Intuitively, a concurrent program C
describes the executions that are all possible interleav-
ings of all memory accesses of the sequential programs
P1, ..., Pn, so we denote it by C = P1 ‖ ... ‖ Pn. Fig-
ure 2 depicts the concurrent program that result from the
cartesian product of the sequential programs P1, P2 exe-
cuted by separate threads. Note that all interleavings are
represented here, below we discuss how to prune the in-
correct interleavings out.

A synchronized program Ssync
C of a concurrent pro-

gram C is a concurrent program whose accesses are en-
capsulated within synchronization events of synchroniza-
tion technique sync. The way concurrent programs are

1



1 2 3 4
r(x) r(y) w(x)

P1 5 6 7

9

r(x) r(y)

w(x)

P2
8r(z)

Figure 1: Sequential programs P1 and P2 with initial states 1 and 5 and final states {3, 4} and {8, 9}, respectively

synchronized is assumed to be correct, more details can
be found in a technical report [6].

Correctness. We define a function atomic as a binary
relation over shared memory accesses π and π′ of a sin-
gle transaction within an execution α: atomic(π, π′) is
true if π and π′ appear in α as if they were both occurring
at one common indivisible point of the execution. It is
important to notice that this relation is not transitive, i.e.,
atomic(π1, π2) ∧ atomic(π2, π3) 6⇒ atomic(π1, π3). In
fact, as π2 may appear to have executed at several con-
secutive points of the execution, the points at which π1
and π2 appear to have occurred may be disjoint from the
points at which π2 and π3 appear to have occurred.

This relation can be used to trim out all incorrect sched-
ules from a concurrent program as it gives an informa-
tion on how and where to use synchronization in the con-
current program. Given a correctness constraint defined
by ∀i, atomic(r(x)i, w(x)i), one has simply to prune out
state 〈4, 9〉 from C depicted on Figure 2 to obtain a correct
concurrent program C’. Informally, this property requires
that the value of x read by a thread p should remain un-
changed until p writes it. Note that this can be achieved
by either acquiring a lock before reading x and releasing
it after writing x or using a CAS1 that takes three argu-
ments: the memory word x, the previously read address v
and the argument of the write. However, both would not
lead to the same level of concurrency as the lock-based
approach would prevent other threads from reading x as
well when the lock is held.

Concurrency. As opposed to performance, concur-
rency can simply be expressed independently from archi-
tectural artifacts, making a definition general enough to
apply to various cases. Input acceptance [5] measures the
variety with which the sequences of accesses of a trans-
actional program can be interleaved, given an ordering
of accesses provided by an adversary. Permissiveness [7]
measures the variety of histories that can be produced by a
transactional program. As opposed to schedules imposed

1Note that this assumes that no ABA problem arises.

1,5

2,5

3,5

4,5

r(x)1

r(y)1

w(x)1

1,6

2,6

3,6

4,6

r(x)1

r(y)1

w(x)1

1,7

2,7

3,7

4,7

r(x)1

r(y)1

w(x)1

1,8

2,8

3,8

4,8

r(x)1

r(y)1

w(x)1

r(x)2

r(y)2

r(z)2

r(x)2

r(y)2

r(z)2

r(x)2

r(y)2

r(z)2

r(x)2

r(y)2

r(z)2
2,9

3,9

4,9

1,9

w(x)2

w(x)2

w(x)2

w(x)2

r(x)1

r(y)1

w(x)1

Figure 2: Concurrent programs C = P1 ‖ P2 with initial
state 〈1, 5〉 and final states {〈3, 8〉, 〈3, 9〉, 〈4, 8〉, 〈4, 9〉}

by an adversary, histories include returned values that can
be chosen randomly to maximize permissiveness.

More recently, a new metric of concurrency measures
the set of schedules any program can accept, regardless
of the way its threads are synchronized [6]. In short,
this metric measures the amount of correct schedules of
memory accesses that a particular synchronized program
accepts without rescheduling it. The fact that the sched-
ule is given by the adversary prevents the synchronization
from rescheduling it. This constraint also ensures that the
computational effort of the synchronization technique is
limited as the synchronization cannot change the sched-
ule without rejecting the original one.

Given such a constraint, the lock-based programs we
consider are all pessimistic: lock acquirement and release
encapsulate memory accesses originally part of the sched-
ule. This precludes the use of optimistic locking tech-

2



niques that require validation a posteriori [9]. Append-
ing extra accesses for validation would change the origi-
nal schedule imposed by the adversary. Transactional and
rmw-based synchronized programs that we consider are
however optimistic: each non successfully compared-and-
swapped or committed sequence of accesses remains in-
visible from other threads, and their accesses are not con-
sidered part of a schedule before becoming visible. This
typically precludes any arithmetic errors, like division-by-
zero, infinite loop and buffer overflow, that could be due
to transient but inconsistent values.

2 Synchronization Techniques

We propose now to investigate the concurrency one can
get when using a particular synchronization technique, re-
gardless of the way he can use it. Recall that we simply
impose the atomic binary relation over the set of accesses
of the program.

Drawback of transactions. Transactions are com-
pound statements that encapsulate a series of accesses
π1, ..., π` that appear to execute atomically. The syntax of
these statements forces the transitive closure of the atomic
property [3]. More precisely, for accesses π1, π2, π3 exe-
cuted by the same thread in a program synchronized with
transactions we have:

atomic(π1, π2) ∧ atomic(π2, π3) ⇒ atomic(π1, π3)

Note that locks do not have this property. In particular,
locks can be held by a single thread at overlapping points
of its program so that a thread can acquire a lock on m2

and release a lock on m1 that it acquired previously with-
out releasing the lock on m2. This is precisely the tech-
nique used by hand-over-hand locking to guarantee that
atomic(π1, π3) is not enforced.

Note that this constraint is known to affect the perfor-
mance in practice as it prevents transactional programs
from accepting simple list-based set schedules [3]: If a
synchronized program consists of three threads p1, p2 and
p3 each executing r(x); r(y); r(z), w(x) and w(z) within
a single transaction, respectively. Figure 3 represents such
an existing schedule. We omitted to represent the corre-
sponding concurrent program for presentation simplicity.
Note, however, that the concurrent program is the product
of the sequential program P1, P2 and P3 that compose the
concurrent program have initial states 1, 5 and 7, and final
states 4, 5, 8, respectively. This limitation has led to the
definition of other transactional models at the expense of

1,5,7

2,5,7

r(x)1

2,6,7

3,6,7

r(y)1

3,6,8

4,6,8

w(x)2

w(z)3

r(z)1

Figure 3: A correct list-based set schedule that is not ac-
cepted by classic transactions [3]

breaking the interface, including open nesting [10], trans-
actional boosting [8], elastic transactions [2], view trans-
actions [1], polymorphic transactions [4].

Advantage of optimism. In our definition, executions
of programs can be dynamic. This means that the set of
accesses are not known prior to execution. In particular,
this is illustrated by the branches that are represented in
state 7 of Figure 1: in some executions a transition may
occur between states 7 and 8 while in others a transition
may occur between states 7 and 9. This decision typically
depends on some predicate that is evaluated at runtime:
this can be, for example, an ‘if’ statement that checks
the value of a node of a linked list. If threads insert and
remove nodes concurrently, then the predicate cannot be
evaluated statically.

Speculative synchronization likes transactions or rmw-
based programs have a significant advantage over pes-
simistic one in dynamic executions: they can take deci-
sion (whether to restart a sequence of accesses) even be-
fore this sequence of accesses effectively took place. By
contrast, a pessimistic synchronization technique would
have to take the decision of protecting some accesses be-
fore they occur without knowing what branch will be se-
lected. This often turns out to be an overly conservative
decision as pessimistic execution do not take risks.

3



1,5

2,5

r(x)1

2,6

3,6

r(y)1

3,7

3,8

r(x)2

r(y)2

r(z)2

1,5

2,5

r(x)1

2,6

3,6

r(y)1

3,7

4,7

w(x)1

r(x)2

r(y)2

4,9

w(x)2

Figure 4: Correct and incorrect schedules that a lock-
based program cannot distinguish [6]

This overly conservatism is represented in Figure 4
where a correct schedule (left side) and an incorrect
schedule (right side) are indistinguishable from the point
of view of a lock-based program until r(y)1 returns.
Note that the decision of acquiring a lock on x has,
however, to be taken before reading y, to guarantee
∀i, atomic(r(x)i, w(x)i). Because a lock-based program
cannot distinguish these two schedules, in order to be cor-
rect it has to take the most conservative decision which
corresponds to rejecting these schedules. If it was to ac-
cept the correct one, then it would accept the incorrect one
as well. This problem arises also in the realistic list-based
set scenarios [6] and is easy to remedy with optimistic
synchronization as was explained in Section 1.

3 Conclusion
Despite the inherent differences of existing synchroniza-
tion techniques provided by chip multiprocessors, in-
cluding read-modify-write, locks, hardware transactional
memory, one can reason on the best suited synchroniza-
tion to maximize the concurrency of an application.

Performance is still the final desirable goal, yet a con-
currency metric helps reasoning in terms of potential per-
formance capabilities. While performance of transactions
is much higher when they are provided in hardware than in
software libraries, their concurrency should remain simi-

lar. Concurrency does not capture hardware optimization
but rather captures the ability for a program to leverage
the shared resources.

As the trend is to increase the number of cores, highly
concurrent programs will certainly become more attrac-
tive to share cores adequately. In particular, a program
that reaches optimal concurrency (without a too large
overhead) should intuitively scale to even more cores that
those that are currently available on one chip.

References
[1] Y. Afek, A. Morrison, and M. Tzafrir. Brief

announcement: View transactions: Transactional
model with relaxed consistency checks. In PODC,
pages 65–66, 2010.

[2] P. Felber, V. Gramoli, and R. Guerraoui. Elastic
transactions. In DISC, pages 93–107, 2009.

[3] V. Gramoli and R. Guerraoui. Democratizing trans-
actional programming. Commun. ACM, 57(1):86–
93, Jan 2014.

[4] V. Gramoli and R. Guerraoui. Reusable concurrent
data types. In ECOOP, Jul 2014.

[5] V. Gramoli, D. Harmanci, and P. Felber. On the input
acceptance of transactional memory. Parallel Pro-
cessing Letters, 20(1):31–50, 2010.

[6] V. Gramoli, P. Kuznetsov, and S. Ravi. Opti-
mism for boosting concurrency. Technical Report
arXiv:1203.4751v6, arXiv, 2014.

[7] R. Guerraoui, T. Henzinger, and V. Singh. Permis-
siveness in transactional memories. In DISC, pages
305–319, sep 2008.

[8] M. Herlihy and E. Koskinen. Transactional boost-
ing: A methodology for highly-concurrent transac-
tional objects. In PPoPP, pages 207–216, 2008.

[9] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A
simple optimistic skiplist algorithm. In SIROCCO,
pages 124–138, 2007.

[10] J. E. B. Moss. Open nested transactions: Semantics
and support. In Workshop on Memory Performance
Issues, February 2006.

4


	The Chip Multiprocessor Model
	Synchronization Techniques
	Conclusion

