
Evaluating the Addition of Non-Transactional
Loads to HTM

Yehuda Afek1 and Hillel Avni2

1 Tel Aviv University
2 Ben-Gurion University

Abstract. A non transactional load (NTL), is a load instruction, which
is invisible to the transactional system, even if done within a transaction.
It ignores and suppose to be ignored by the other concurrent transac-
tions, thus NTL does not introduce any conflicts. An analysis of the
potential benefits of NTL and the issues in introducing it are discussed.
The two unique characteristics of NTL are: (a) if called inside an HTM
transaction, an NTL will not be added to the transaction read-set, and
(b) if called inside or outside of a transaction, will not cause the abort
of another concurrent transactions. Implementing (a) seems to be easy,
but (b) is more difficult. If a load accesses a cache line that has been
modified in a concurrent transaction T, than according to the requester
wins policy [1] of the HTM, T is aborted. We suggest a potential solution
to (b) and analyze it, and discuss the added value the NTL may have,
e.g., in COP operations [2].

Keywords: Transactional-Memory, Consistency Oblivious Programming, Data-
Structures

1 Introduction

In HTM, all addresses accessed by a transaction are marked in the cache for
monitoring. To reduce the chance of contention, it is desirable to avoid marking
some of the accessed addresses, as long as it does not hamper correctness. Two
possible ways to exclude cache lines from the read and write sets are, (1) to
unmark addresses that already joined the transaction, i.e., early release (ER),
and (2) is to keep addresses from being added to the transaction data set, i.e.,
access the addresses with NTL that will not mark them.

NTL existed in the design of Rock and ASF HTM blocks which were canceled
[3], and ASF also contained an instruction for ER, but both are absent in Intel
TSX. This paper is exploring the potential benefits of adding NTL and ER, and
than, after concluding that NTL is more useful than ER, considers the obstacles
which make the addition of NTL complicated.

1.1 Potential Benefits

Following is a list of potential usecases for NTL and ER, and why they are
justifiable or not.

Local Variables The GCC compiler STM support [4] automatically makes
use of selective annotation to avoid protecting the local threads stack whenever
possible. This feature can be adapted to HTM by using NTL or ER to exclude
the local thread addresses from the transaction. However, the lines stay in the
cache, so hardware resources are not saved, and contention is not reduced, as
local variables are not contended.

HyTM Optimizations Hybrid-NOrec [5] describes the implementation of a
hybrid TM system on best effort HTM. The design allows software and hard-
ware transactions to coexist, although concurrency among such transactions is
restricted rather severely. High-performance variants of this approach require
the ability to issue NTL from within a transactional context. In these variants,
Hybrid-NOrec polls a seqlock out of an HTM transaction in the verification of
software transactions, and writes the seqlock transactionally in the commit of a
hardware transaction, so with the NTL issue, the HTM committer is at risk of
aborting because of a software transaction verification. Now, in the window be-
tween writing the seqlock and committing, the HTM transactions are vulnerable
to abort by an STM transaction that reads the seqlock. The window is short,
but it is still significant, as the STM polls the seqlock after each transactional
access.

ER Data Structures ER requires a RELEASE instruction as was planed in ASF
[3], which explicitly unmark an address. The RELEASE can be used to unmark
addresses that are not required for the correctness of the ongoing transaction, as
done in [6, 7]. The problem with HTM RELEASE instruction, is the composition of
operations. If a transaction T executes an operation op1 and then an operation
op2, and op1 marks address A which is required for its safety, then if op2 reads
A and later decides to release it, op1 will no longer be safe. With STM, there
can be two instances of an address in the read-set, so ER would release only one
of them and be composable, however, with HTM, there can be only one instance
of an address in the cache.

COP Composition The COP method [2, 8] allows, under certain restrictions,
the creation of data structures with smaller transactional footprint. With HTM
and NTL, the COP operations will be composable, and as a result, more appli-
cations will be able to use them. Other techniques, which have similar ideas, will
also benefit from NTL in the same way [9, 10].

We summarize that COP composition and hybrid NoRec optimization justify
the addition of NTL, but not ER, to HTM. We elaborate on COP composition
with NTL in Section 2.

1.2 Issues with NTL Implementation

If an NTL generates a coherency request to a cache line that has been modified
inside transaction T, according to the requester wins [1] eager conflict resolu-
tion, T aborts. This violates our requirement that the NTL will be invisible to
the transactional system. However, to design a load that does not generate a
coherency request is not feasible, as it is like a read without a read. In Section 3
we sketch a solution that involves a change to the coherence protocol and the
HTM commit microcode.

To illustrate the potential impact of this issue on an application that uses
COP operations, consider a COP version of the lazy linked list [11] with three
nodes, N1, N2 and N3. A transaction T1 starts by deleting N2. For this purpose,
it writes transactionally the next pointer of N1. Then it continues to do a lot of
other work. At this point, transaction T2 performs a search for N3 using NTL
to read N1 and N2 next pointers. T2 generates coherency requests to N1 next
pointer and forces T1 to abort, although according to the COP semantics, there
is no conflict.

2 Composable COP Requires NTL

A COP operation, is based on a data-structure operation op. We split op to
a read only prefix opROP and to the writing suffix opC . To run op inside a
transaction just execute opC after opROP . However, the COP version of op,
which is embedded in a transaction T, Top, performs the following steps:

– In non-transactional mode: Execute TopROP and record its output. This
part is done without any synchronization, and may pass through inconsistent
states and return inconsistent output.

– In transactional mode: Verify that ROP output is consistent, and if it is
not, abort, otherwise execute TopC .

In [2] the correctness and progress of COP are already demonstrated. We
remind the reader that the verification not only ensures T that the opROP output
was consistent, but also adds the addresses that prove it to the read set for
monitoring of this consistency. Here we assume the correctness and focus on the
performance and composability of COP with HTM, which will require NTL.

The only way to compose COP operations in current TSX, is the one pro-
posed by [9], i.e., execute all ROP parts of the composed operations before
starting the transaction, then, inside the transaction, verify their output and
complete updates. This method allows composition only if an operation is not
writing data that may later be accessed by another operation in the same trans-
action.

To demonstrate this restriction, we split each COP operation opk, which ex-
ecutes in transaction T, Topk

, to TopROP
k

and TopC
k
(verify and complete). Now,

assume op1 precedes op2, and op1 is writing data that op2 is reading. According

to [9], the transaction T, which executes op1 and then op2, will execute the fol-
lowing sequence. xstart means HTM goes into transactional mode, and xend
is HTM commit:

TopROP
1

→ TopROP
2

→xstart→TopC
1
→TopC

2
→xend

As TopROP
2

must execute before TopC
1
, op2 will not see op1 updates, and T

will not be correct.

If instead of op1, T will execute any other transactional code, we will have
to call xstart before op2, so opROP

2 will be in transactional mode. For example,
if T dequeues V and then inserts V to a RB-Tree with a COP operation, then
this operation will not benefit from the usage of COP.

Using NTL allows the composition of any COP operation, with any other
operations, by using NTL in the ROP. Now T executes the ROP with NTL, so
we call the ROP of op opROP−N . If T tries to execute the COP operation op2
after the COP operation op1, it goes through the following sequence:

xstart→TopROP−N
1

→TopC
1
→ TopROP−N

2
→TopC

2
→xend

As TopC
1
executes before TopROP−N

2
, and as both TopC

1
and TopROP−N

2
execute

in the context of T, TopROP−N
2

, correctly sees the updates of both TopC
1

in the

local cache.

3 A Possible Solution to the NTL Issues

Theoretically, it would be possible to solve the issue raised in Section 1.2 if
one could modify the MESI cache coherency protocol and the HTM commit
microcode, as follows; We replace the Exclusive (E) state from MESI with a
locally-transactionally-modified (L) state. The L state resembles the Shared (S)
state in the sense that it never writes back, but also has a similarity to the
Modified (M) state, as the value in the cache is different from the value in main
memory. For any given pair of caches, the permitted states of a given cache line
are as follows:

M L S I
M X X X V
L X V V V
S X V V V
I V V V V

The M, S and I states stay as in MESI, and L is the state of a modified marked
cache line. In HTM, the commit microcode needs first to change the state of the
lines in state L to state M and then send a coherency request for each of them.
Then it proceeds to the standard commit sequence. The HTM stays requester

wins, and not committer wins, and once the line moved to the M state, it can
be aborted by a concurrent load.

We note that the practicality of the suggestion is not clear to us. MLSI
introduces engineering challenges, such as changing the states and sending the
requests efficiently, and probably other, maybe unsolvable, difficulties.

In addition, The MLSI tolerates the existence of doomed transactions, i.e.,
transactions that are in a deadlock and eventually have to abort. For example,
two transactions that have the same cache line in L state. However, unlike their
STM counter parts, these transactions see consistent states. They do not cause
memory corruption, as they eventually abort. A similar issue is discussed in [12]
where they propose Speculative Modified (SM) to allow more readers to commit
successfully, by buffering the writes.

4 Simulation and Evaluation

To examine the potential contribution of COP to applications, we added the
COP RB-Tree from [2] to the STAMP testing suite. Inside the STAMP, we
executed Yada, Intruder, and Vacation tests. These tests are the ones that use
a map, which is implemented as an RB-Tree. We simulate the NTL over GCC
STM, by using TM-Pure [4] attribute for the ROP function. Our goal is to
demonstrate the benefit of NTL and COP in some applications.

We execute the standard configuration of Vacation (vacation-high from [13]).
Each transaction in this application is accessing several 1M RB trees, several
times each, and these transactions are a significant portion of the workloads.

GCC-COP GCC-STM

Transactional Loads 0.4 G 2.4 G

Aborts Rate 0.5% 3.0%

Fig. 1: STAMP Vacation Statistics (G = 109)

In Figure 1 we count transactional loads and aborts for the Vacation bench-
mark. We count the transactional loads when the whole application is executing
on a single thread, to get the most accurate number. The aborts count is taken
when all eight hardware threads execute. We see that plain STM is performing
more than five times the transactional loads of COP with NTL, and there are
six times more aborts in plain STM.

In Figure 2 we compare the conflicts rate on a COP red-black tree vs. plain
STM one. The tree keys range is 1K and it is half full, thus it is small and has
a lot of mutations, which cause relatively high contention. Each update, i.e.,
insert or delete is a transaction that consists of the update and four lookups,
to demonstrate COP operations composition. As each transaction is retried up
to 20 times, the number of conflict aborts can be higher that the number of
successful transactions. We can see that contention on the plain STM is rising
much faster and on 100% updates, i.e., 50% inserts and 50% deletes, STM has
6 times more aborts than COP.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50

c
o
n
fl
ic
ts
 %

x% insert / x% delete

Lower is Better

STM

COP

Fig. 2: Aborts vs. update rates on a small red-black that executes on eight
threads.

5 Conclusion and Future Work

In this paper we showed that adding NTL to HTM will allow applications to use
COP data structures inside transactions. We showed with the STAMP bench-
mark, that using COP, can significantly reduce the contention in a transactional
application. We also observe and discuss the difficulties in implementing NTL,
which may overshadow its potential benefits.

6 Acknowledgements

We are grateful to Raanan Sade from Intel for pointing out the issues with NTL
Implementation.

References

1. : Intel architecture instruction set extensions programming reference. (http:
//software.intel.com/file/41604)

2. Afek, Y., Avni, H., Shavit, N.: Towards consistency oblivious programming. In:
OPODIS. (2011) 65–79

3. Christie, D., Chung, J.W., Diestelhorst, S., Hohmuth, M., Pohlack, M., Fetzer, C.,
Nowack, M., Riegel, T., Felber, P., Marlier, P., Rivière, E.: Evaluation of amd’s
advanced synchronization facility within a complete transactional memory stack.
In: Proceedings of the 5th European Conference on Computer Systems. EuroSys
’10 (2010) 27–40

4. Riegel, T.: Software Transactional Memory Building Blocks. PhD thesis, Technis-
chen Universitat Dresden, geboren am 1.3.1979 in Dresden (2013)

5. Dalessandro, L., Carouge, F., White, S., Lev, Y., Moir, M., Scott, M.L., Spear,
M.F.: Hybrid norec: a case study in the effectiveness of best effort hardware
transactional memory. In: ASPLOS. (2011) 39–52

6. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: DISC. (2009)
93–107

7. Afek, Y., Morrison, A., Tzafrir, M.: Brief announcement: view transactions: trans-
actional model with relaxed consistency checks. In: PODC. (2010) 65–66

8. Avni, H., Kuszmaul, B.C.: Improving htm scaling with consistency-oblivious pro-
gramming. In: TRANSACT. (2014)

9. Xiang, L., Scott, M.L.: Composable partitioned transactions. In: WTTM. (2013)
10. Xiang, L., Scott, M.L.: Compiler aided manual speculation for high performance

concurrent data structures. In: Proceedings of the 18th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. PPoPP ’13 (2013)
47–56

11. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A
lazy concurrent list-based set algorithm. In: Proceedings of the 9th International
Conference on Principles of Distributed Systems. OPODIS’05, Berlin, Heidelberg
(2006) 3–16

12. Armejach, A., Titos-Gil, R., Negi, A., Unsal, O.S., Cristal, A.: Techniques to im-
prove performance in requester-wins hardware transactional memory. ACM Trans.
Archit. Code Optim. 10 (2013) 42:1–42:25

13. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional
applications for multi-processing. In: IISWC. (2008) 35–46

