
Department of Computer, Control, and Management Engineering

Adaptive Transactional Memories:
Performance and Energy
Consumption Trade-offs

Diego Rughetti, Pierangelo Di Sanzo, Alessandro Pellegrini

DIAG – Sapienza, University of Rome

WTM 2014

HPDCS Research Group

NCCA 2014

Concurrency Control in TMs

Optimistic transaction execution

s

massive exploitation of available

resources (CPU-cores)

generally, better performance

than pessimistic (e.g. lock-based)

execution

What about energy?

aborted transaction  wasted work  wasted energy

more concurrent threads (more active CPU-cores)  higher transaction abort rate
 more wasted energy

HPDCS Research Group

NCCA 2014

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

threads

Throughput and electric power vs. concurrency level

Transactional Memories: How Many Threads?

concurrency level too low:

performance is penalized due to

limitation of parallelism and

underutilization of hardware

resources

concurrency level too high:

performance loss due

to high data contention entailing

transaction aborts and re-runs.
optimal

performance

committed

transactions

per second

watts

(CPUs + memory system)

HPDCS Research Group

NCCA 2014

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
threads

sp
ee

d
u

p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
threads

sp
ee

d
u

p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
threads

sp
ee

d
u

p

Additionally, the optimal concurrency level may change depending

on the application execution phase.

phase 1 phase 2 phase 3

The optimal concurrency depends on:

• application logic

• workload profile

• hardware architecture

Identifying the optimal concurrency level...

optimal concurrency level: 10 optimal concurrency level: 8 optimal concurrency level: 14

HPDCS Research Group

NCCA 2014

The study

• Adaptivity in TM implementations can improve performance

• Adaptivity approaches:

• transaction scheduling

• thread scheduling

• Performance / energy consumption evaluation study

● six software transactional memory implementations

● both transaction and thread scheduling algorithms

● different scheduling mechanisms

● different concurrency control algorithms

• Again: what about energy?

HPDCS Research Group

NCCA 2014

• TinySTM: STM implementation based on Encounter-Time Locking

(ETL) algorithm. Used as baseline.

• SAC-STM: adaptive STM implementation based on TinySTM.

Thread scheduling based on neural network performance prediction

scheme.

• SCR-STM: adaptive STM implementation based on TinySTM.

Thread scheduling based on analytic model performance prediction

scheme.

Compared STM Implementations

HPDCS Research Group

NCCA 2014

• ATS-STM: adaptive STM implementation based on transaction-

scheduling algorithm relying on run-time measurement of the

transaction Contention Intensity (CI).

• Shrink: adaptive STM implementation based on transaction-

scheduling algorithm relying on temporal locality (basic idea:

consecutive transactions executed by a thread access the same

data objects).

• R-STM: adaptive STM implementation based on dynamic selection

of the concurrency control algorithm.

Compared STMs

HPDCS Research Group

NCCA 2014

Hardware:

HP ProLiant Server:

 2 x 8-cores AMD Opteron Processor :16 cores total

 32 GB RAM

 OS: Linux Debian 6 – kernel 2.7.32-5-amd64

STAMP Benchmarks:

 intruder (Network Intrusion Detection System) – Time spent in transactions is

relatively moderate

 yada (Delaunay Mesh Refinement) – The overall execution time is relatively long,

with a high duration of transaction operations and a significantly higher number

of memory operations.

Energy consumption measurement:

 pTop monitoring tool (per-process measurements, exploits Linux kernel

Performance Counters management architecture).

Experimental Environment

HPDCS Research Group

NCCA 2014

Application throughput Energy consumption per transaction

Results: Intruder Benchmark

HPDCS Research Group

NCCA 2014

Performance speed up = throughputk-thread/throughput1-thread

Energy scaling =Joule per transaction k-thread / Joule per transaction 1-thread

Results: Intruder benchmark

Performance speed up / Energy scaling

Application throughput

HPDCS Research Group

NCCA 2014

Application throughput Energy consumption per transaction

Results: Yada benchmark

HPDCS Research Group

NCCA 2014

Results: Yada benchmark

Performance speed up / Energy scaling

Application throughput

HPDCS Research Group

NCCA 2014

Summary of Findings

Energy consumption

Less cores than the optimal value:

 Overhead associated to adaptivity mechanisms little affects energy consumption

More cores than the optimal value:

 adaptive transaction/thread scheduling schemes effectively reduce energy

consumption

 adaptive concurrency control algorithm selection (R-STM) is not adequate to

avoid/reducing energy consumption

 best results are achieved by using application-specific performance schemes

HPDCS Research Group

NCCA 2014

Summary of Findings

Performance vs. Energy consumption

 Extra energy consumption may be required for achieving maximum performance

 Anyway, if we do not really want maximum performance (e.g. SLAs are satisfied

with lower performance) a performance/energy trade-off exists:

• There is a concurrent threads range in which application speed-up increases

faster than the energy cost per transaction

Adaptivity is a strictly necessary requirement
to reduce energy consumption in STM systems

HPDCS Research Group

NCCA 2014

Thanks for your attention!

Questions?

