
Department of Computer, Control, and Management Engineering

Adaptive Transactional Memories:
Performance and Energy
Consumption Trade-offs

Diego Rughetti, Pierangelo Di Sanzo, Alessandro Pellegrini

DIAG – Sapienza, University of Rome

WTM 2014

HPDCS Research Group

NCCA 2014

Concurrency Control in TMs

Optimistic transaction execution

s

massive exploitation of available

resources (CPU-cores)

generally, better performance

than pessimistic (e.g. lock-based)

execution

What about energy?

aborted transaction wasted work wasted energy

more concurrent threads (more active CPU-cores) higher transaction abort rate
 more wasted energy

HPDCS Research Group

NCCA 2014

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

threads

Throughput and electric power vs. concurrency level

Transactional Memories: How Many Threads?

concurrency level too low:

performance is penalized due to

limitation of parallelism and

underutilization of hardware

resources

concurrency level too high:

performance loss due

to high data contention entailing

transaction aborts and re-runs.
optimal

performance

committed

transactions

per second

watts

(CPUs + memory system)

HPDCS Research Group

NCCA 2014

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
threads

sp
ee

d
u

p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
threads

sp
ee

d
u

p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
threads

sp
ee

d
u

p

Additionally, the optimal concurrency level may change depending

on the application execution phase.

phase 1 phase 2 phase 3

The optimal concurrency depends on:

• application logic

• workload profile

• hardware architecture

Identifying the optimal concurrency level...

optimal concurrency level: 10 optimal concurrency level: 8 optimal concurrency level: 14

HPDCS Research Group

NCCA 2014

The study

• Adaptivity in TM implementations can improve performance

• Adaptivity approaches:

• transaction scheduling

• thread scheduling

• Performance / energy consumption evaluation study

● six software transactional memory implementations

● both transaction and thread scheduling algorithms

● different scheduling mechanisms

● different concurrency control algorithms

• Again: what about energy?

HPDCS Research Group

NCCA 2014

• TinySTM: STM implementation based on Encounter-Time Locking

(ETL) algorithm. Used as baseline.

• SAC-STM: adaptive STM implementation based on TinySTM.

Thread scheduling based on neural network performance prediction

scheme.

• SCR-STM: adaptive STM implementation based on TinySTM.

Thread scheduling based on analytic model performance prediction

scheme.

Compared STM Implementations

HPDCS Research Group

NCCA 2014

• ATS-STM: adaptive STM implementation based on transaction-

scheduling algorithm relying on run-time measurement of the

transaction Contention Intensity (CI).

• Shrink: adaptive STM implementation based on transaction-

scheduling algorithm relying on temporal locality (basic idea:

consecutive transactions executed by a thread access the same

data objects).

• R-STM: adaptive STM implementation based on dynamic selection

of the concurrency control algorithm.

Compared STMs

HPDCS Research Group

NCCA 2014

Hardware:

HP ProLiant Server:

 2 x 8-cores AMD Opteron Processor :16 cores total

 32 GB RAM

 OS: Linux Debian 6 – kernel 2.7.32-5-amd64

STAMP Benchmarks:

 intruder (Network Intrusion Detection System) – Time spent in transactions is

relatively moderate

 yada (Delaunay Mesh Refinement) – The overall execution time is relatively long,

with a high duration of transaction operations and a significantly higher number

of memory operations.

Energy consumption measurement:

 pTop monitoring tool (per-process measurements, exploits Linux kernel

Performance Counters management architecture).

Experimental Environment

HPDCS Research Group

NCCA 2014

Application throughput Energy consumption per transaction

Results: Intruder Benchmark

HPDCS Research Group

NCCA 2014

Performance speed up = throughputk-thread/throughput1-thread

Energy scaling =Joule per transaction k-thread / Joule per transaction 1-thread

Results: Intruder benchmark

Performance speed up / Energy scaling

Application throughput

HPDCS Research Group

NCCA 2014

Application throughput Energy consumption per transaction

Results: Yada benchmark

HPDCS Research Group

NCCA 2014

Results: Yada benchmark

Performance speed up / Energy scaling

Application throughput

HPDCS Research Group

NCCA 2014

Summary of Findings

Energy consumption

Less cores than the optimal value:

 Overhead associated to adaptivity mechanisms little affects energy consumption

More cores than the optimal value:

 adaptive transaction/thread scheduling schemes effectively reduce energy

consumption

 adaptive concurrency control algorithm selection (R-STM) is not adequate to

avoid/reducing energy consumption

 best results are achieved by using application-specific performance schemes

HPDCS Research Group

NCCA 2014

Summary of Findings

Performance vs. Energy consumption

 Extra energy consumption may be required for achieving maximum performance

 Anyway, if we do not really want maximum performance (e.g. SLAs are satisfied

with lower performance) a performance/energy trade-off exists:

• There is a concurrent threads range in which application speed-up increases

faster than the energy cost per transaction

Adaptivity is a strictly necessary requirement
to reduce energy consumption in STM systems

HPDCS Research Group

NCCA 2014

Thanks for your attention!

Questions?

