
Towards validating
software transactional

memory libraries
Martin Nowack (martin@se.inf.tu-dresden.de);

Christof Fetzer
TU Dresden, Germany

WTM 2014 @ Eurosys

mailto:martin@se.inf.tu-dresden.de

Motivation
• Goal: Provide easy-to-use synchronisation

mechanism for Joe Programmer
➡ Ease reasoning by providing illusion  

of atomic behaviour of code sections

• Development of (S)TM algorithms and
libraries are a daunting task

TM
Algorithm

TM
Implementation

implement

refine refine
refine

void parallel_executed_function() {
 atomic {
 // shared memory access I
 ...
 }
 atomic {
 // shared memory access II
 ...
 }
}

How to validate?
TM

Algorithm
TM

Implementation

implement

refine refine
refine

Model checking Software Testing
→unit test [3]
→stress test [3]

[1] “Towards Formally Specifying and Verifying Transactional Memory” Doherty et al., ENTCS, 2009
[2] “Implementing and Evaluating a Model Checker for Transactional Memory Systems”, Baek et al., ICECCS, 2010
[3] “TMunit: Testing software transactional memories”,Harmanci et al., Transact, 2009

[1,2]

→Abstract 
but systematic →Real Code

How to Validate
Implementations?

• How to test TM? 
Test different combinations of
that protocol

• Two types of bugs [1]:

• Bohr: sequentially executed
code trigger bugs in the
general case

• Heisen: hard to trigger, e.g.
due to concurrency

begin() abort()

read()

write()

commit()

TM API and protocol

1. Gray, Jim. "Why do computers stop and what can be done about it?." Symposium on reliability in distributed software and
database systems. 1986.

TM
Implementation

Symbolic Execution
(i > x) !(i > x)

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

unsigned char foo(unsigned char i) {
 if (i > x) {
 // true branch
 i++;
 } else {
 // false branch
 i = i + 2;
 }

 assert(i != 0);

 return i;
}

i := ?

i := (?+1) i := (?+2)

(i != 0)

unsigned char x = 5;

!(i != 0) (i != 0) !(i != 0)

? ? ? ?

2.

4. 7.

10. 10. 10.

✓ ✓ ✕
i := 9 i := 2 no solutioni := 255

✓

2.

10.

Ask solver:

[1] “Symbolic Execution and Program Testing ” King, ComACM, 1976

[1,2]

State Space Explosion

Symbolic Execution for
Multithreaded Application

• Generalized Symbolic
Execution [1]:

• Symbolic Execution

• Extended with Model
Checker

• Check all possible inter
leavings

• interleaving only on lock
operation

• Partial-order reduction [2]

pthread_create()

T1

T2

[1] “Generalized Symbolic Execution for Model Checking and Testing ” Khurshid, TACAS, 2003
[2] “Dynamic Partial-order Reduction for Model Checking Software”, Flanagan, POPL, 2005

State Space Explosion

Symbolic Execution for Multithreaded
Application

Our Approach I
• Insight: We just want to test

the library calls and their
invocation

• library calls contain small
and finite number of steps

• library calls are typically
symmetric across threads

• Goals: 
First, we go for coverage;
Second, we go for TM
correctness

T1 T2

Rx

Ry

Wy

Rx

X

Shared
Variables

Y

Read() Write()

Symbolic Execution for Multithreaded
Application

Our Approach II
• start with all interleavings of sequential

execution of threads without symbols

• only one path is taken through the
code

• register read and write operations to
shared data structures per thread

• re-execute function under observation
with values symbolised restricted to
the concrete values observed

• new code paths are taken

• interferences between threads are
tract and incorporated (e.g.
breaking busy loops)

T1 T2

Rx

Ry

Wy

Rx

X

Shared
Variables

Y

Read() Write()

Current Prototype

• Extension of Symbolic Execution Engine KLEE [1] (which is based
on LLVM [2] Compiler framework 3.4)

• exercises TM ABI used by TM compiler (GCC, ICC, DTMC)

• partial support for inline assembler (e.g. support libatomic_ops
on x86)

• multithreading extension

[1] “KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs”Cadar et al., OSDI, 2008
[2] “LLVM: a compilation framework for lifelong program analysis transformation”, Lattner et al.,CGO, 2004

Results for TM
TinySTM++

• Modifications we made to
TinySTM++ [1]

• replace assembler-
based setjmp/longjmp
version with C-code
based solution

• Bugs we found:

• Timing issue in Txn-
Initialisation per thread -
> wrongly protected
access might lead to
lost update operation

• Bug in read operation
returning wrong value
with write operation by
other thread

[1] “Dynamic performance tuning of word-based software transactional memory” Felber et al., PPOPP, 2008

WIP/ Future Work

• Exercising different protocol
operations more thoroughly -
in an automated way

• Independent execution allows
to test on cluster of machines

Summary & Outlook

• Developed tool based on
symbolic execution which
allows to exercise TM libraries
in a systematic way

void parallel_executed_function() {
 atomic {
 // shared memory access I
 ...
 }
 atomic {
 // shared memory access II
 ...
 }
}
!
!
int main() {
!
 ...

 parallel_executed_function();

 ...
!
!
}

Whole Application

Thank you.
!

Questions?

Example
Error: memory error: out of bound pointer!
File: /home/martin/tinystmplusplus/src/transaction.h: 82!
Stack:!
! #0 00007638 in tinystm::TransactionBase::getPublicState (this=0) at src/transaction.h:82!
! #1 00009090 in tinystm::TransactionBaseSTMBound<tinystm::wt::STMTraits>::isActive (this=0) at src/transaction.h:181!
! #2 00009020 in tinystm::TransactionBaseSTMBound<tinystm::wt::STMTraits>::begin (this=0, abiCodeProps=1) at src/transaction.h:157!
! #3 00007251 in tinystm::TransactionBaseABI<tinystm::wt::STMTraits, tinystm::TxnalMemMgmnt<tinystm::wt::STMTraits,!
! ! ! ! tinystm::wt::STMTraits>, true>::begin (this=0, flags=1, jmpbuf=105699145786208) at /home/martin/tinystmplusplus/src/
! ! ! ! transaction.h:227!
! #4 00005067 in GTM_begin_transaction (flags=1, jmpbuf=105699145786208) at /home/martin/tinystmplusplus/src/c-interface.h:69!
! #5 00005419 in _ITM_beginTransaction (nr=1) at /home/martin/tinystmplusplus/src/stm-wt.cpp:263!
! #6 00000184 in simple_read () at /home/martin/tinystmplusplus/test/simple/simple.c:20!
Info:!
! address: 104 (0x68)!
! next: object at 47974457809056 (0x2ba1ec8418a0) of size 4!
! ! MO30[4] (no allocation info)

