
STMGC-C7

Fast Software Transactional Memory
for Dynamic Languages

Remi Meier
Department of Computer Science

ETH Zürich

Armin Rigo
www.pypy.org

Current Situation

● Dynamic languages popular (Python, Ruby,
PHP, JavaScript)

● Parallelization is a problem
● GIL

○ Atomicity & isolation for bytecode instructions
○ No real parallelism

● Multi-process
○ Exchanging data explicitly
○ Only suitable for some kinds of applications

Transactional Memory: Our Goals

● Goal 1: A transaction executes N bytecodes
○ Parallelization for existing multithreaded programs
○ The whole program runs in transactions

→ good performance is essential

● Goal 2: Improved multithreading model
○ Better model for the programmer
○ Transaction boundaries controlled by the program
○ Much longer transactions

→ HTM is far too limited for now

Background: STM Overhead

● Often 100% - 1’000%
● Major source of STM overhead is barriers

○ All over the place
○ Isolation (Copy-On-Write, Locking, …)
○ Validation (conflict detection)

○ Reference resolution (for COW):

O = read(O)

return O

return find_right_version(O)

right version

slowpath

C7: A nice trick

How to avoid reference resolution in barriers if
using Copy-On-Write?

A single reference must resolve
automatically to different memory

locations in different threads!

Threads
automatically see
the right version
(no find_right_version)

Threads need
private versions
(COW isolation)

C7: Segmentation

● Partition virtual memory into segments
● 1 segment per thread
● Each segment is a copy

 → same contents in all segments
● All copies of an object are at the same

segment offset (SO) in each segment
Segment 0 Segment 1

Virtual Memory Pages

SO SO

C7: Segmentation

● Use SO as object reference
● Need to translate to linear address (LA):

 LA = segment address + SO
● Hardware supported ⇒ on every SO access
● SO translated to different LAs in different

threads

SO SO

segment address
for a thread

segment address for
another thread

LA₁
LA₂

LA
: N

U
LL

C7: Segment Offset

● One SO → multiple LAs
● Extremely inefficient:

a. N-times the memory
b. 1 allocation ⇒ N allocations
c. 1 write ⇒ N writes

✓

How to share memory?

SO SO

segment address
for a thread

segment address for
another thread

LA₁
LA₂

LA
: N

U
LL

C7: Page Sharing

Partition virtual memory into segments: each
segment is backed by different memory

a b c d e f a’ b’ c’ d’ e’ f’

Segment 0 Segment 1

Virtual Memory Pages

Virtual File Pages

1:1 mapping

C7: Page Sharing

Remap segment 1: Both segments share the
same memory

a b c d e f

Segment 0 Segment 1

Virtual Memory Pages

Virtual File Pages

N:1 mapping

C7: Page Sharing

We can unshare / privatize pages

a b c d e f c’

Segment 0 Segment 1

Virtual Memory Pages

Virtual File Pages

copy…

mixed mapping

C7: Read Barrier

● Address translation on each object access:
a. segment address + SO → LA
b. LA → memory location (private / shared)

● SO never changes
● SO always translates to the right version

→ no “right version” check
→ no find_right_version()

● Read barrier only has to mark it as read

C7: Write Barrier

● Objects created in the same transaction are
ignored

● Copy-On-Write
○ Privatize all pages of the object
○ Only on first access to a page
○ Re-share pages at major collections

● Low-cost, page-level COW
● Object-level conflict detection

C7: Total Costs

● Extremely cheap barriers
● Integrated with garbage collection

○ Most new objects die quickly and don’t need barriers
○ One write barrier for both STM and GC

● Commit-time costs
○ Detecting read-write conflicts
○ Copy modifications in private pages to other

segments

Results

● Python interpreter (GIL version vs. STM version)

43% 43%

35% 25%

1.8x 2.0x

1.3x 1.5x

Summary

● Total STM overhead < 50%
● Large address space needed (64bit)
● Optimized for low #CPUs
● Optimized for dynamic language VMs
● STM, not HTM

 → flexibility and long transactions

