STMGC-C7

Armin Rigo

Remi Meier

www.pypy.org

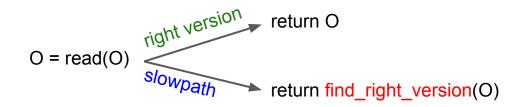
Department of Computer Science ETH Zürich

Fast Software Transactional Memory for Dynamic Languages

Current Situation

- Dynamic languages popular (Python, Ruby, PHP, JavaScript)
- Parallelization is a problem
- GIL
 - Atomicity & isolation for bytecode instructions
 - No real parallelism

Multi-process


- Exchanging data explicitly
- Only suitable for some kinds of applications

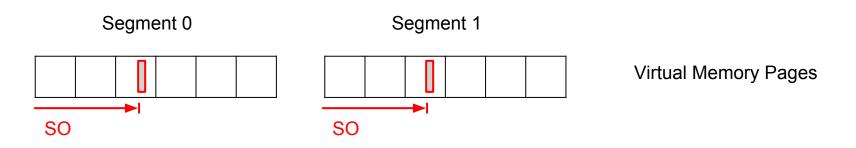
Transactional Memory: Our Goals

- **Goal 1:** A transaction executes N bytecodes
 - Parallelization for existing multithreaded programs
 - The **whole** program runs in transactions \rightarrow good performance is essential
- Goal 2: Improved multithreading model
 - Better model for the programmer
 - Transaction boundaries controlled by the program
 - Much **longer** transactions
 - \rightarrow HTM is far too limited for now

Background: STM Overhead

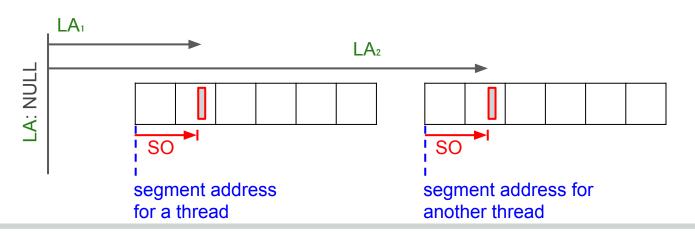
- Often 100% 1'000%
- Major source of **S**TM overhead is **barriers**
 - All over the place
 - Isolation (Copy-On-Write, Locking, ...)
 - Validation (conflict detection)
 - **Reference resolution** (for COW):

C7: A nice trick


How to avoid reference resolution in barriers if using Copy-On-Write?

Threads need private versions (COW isolation) Threads automatically see the right version (no find_right_version)

A single reference must resolve automatically to different memory locations in different threads!


C7: Segmentation

- Partition virtual memory into segments
- 1 segment per thread
- Each segment is a **copy**
 - \rightarrow same contents in all segments
- All copies of an object are at the same segment offset (SO) in each segment

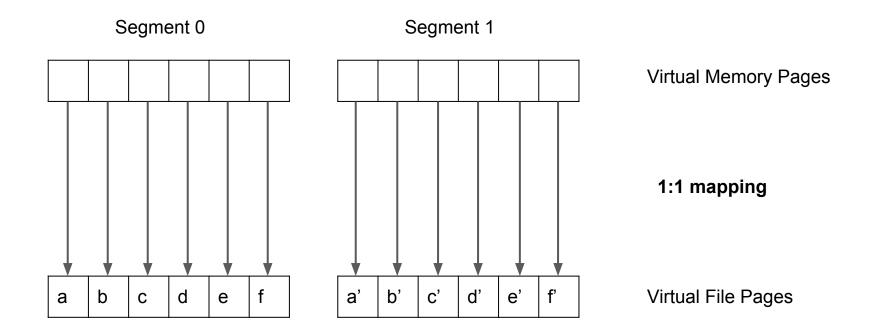
C7: Segmentation

- Use SO as object reference
- Need to translate to *linear address* (LA):
 LA = segment address + SO
- Hardware supported \Rightarrow on every SO access
- SO translated to different LAs in different threads

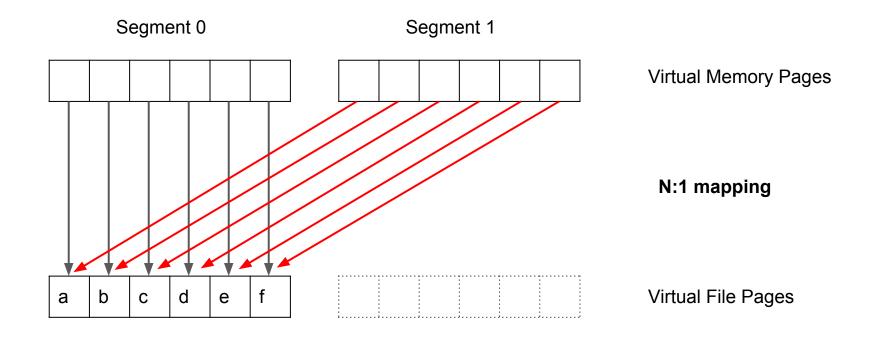
C7: Segment Offset

• One $SO \rightarrow$ multiple LAs

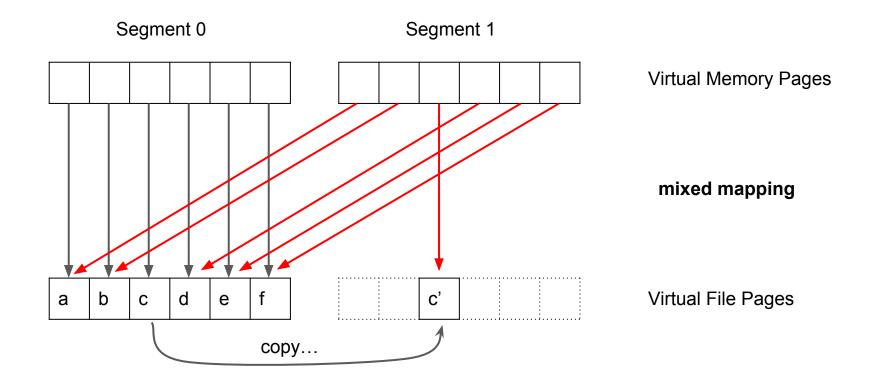
• Extremely inefficient:


- a. N-times the memory
- b. 1 allocation \Rightarrow N allocations
- c. 1 write \Rightarrow N writes

- How to share memory?


C7: Page Sharing

Partition virtual memory into segments: each segment is backed by different memory


C7: Page Sharing

Remap segment 1: Both segments share the same memory

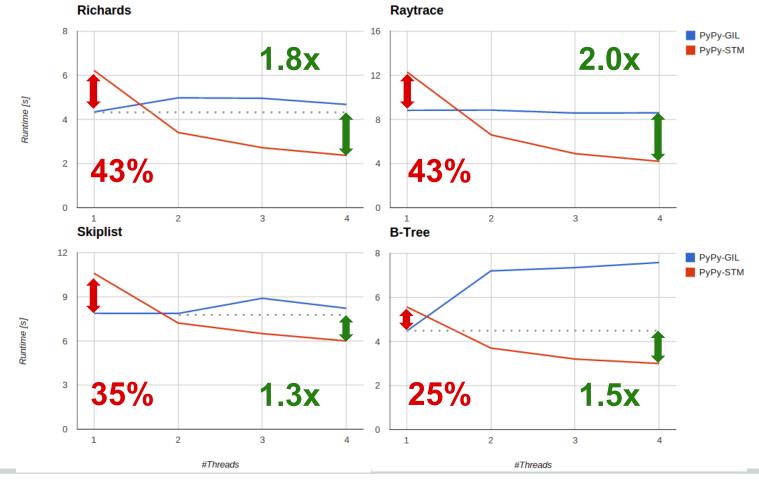
C7: Page Sharing

We can unshare / privatize pages

C7: Read Barrier

- Address translation on each object access:
 a. segment address + SO → LA
 - b. LA \rightarrow memory location (private / shared)
- SO never changes
- SO always translates to the right version
 - \rightarrow no "right version" check
 - \rightarrow **NO** find_right_version()
- Read barrier only has to **mark** it as read

C7: Write Barrier


- Objects created in the same transaction are ignored
- Copy-On-Write
 - Privatize all pages of the object
 - Only on first access to a page
 - Re-share pages at major collections
- Low-cost, page-level COW
- Object-level conflict detection

C7: Total Costs

- Extremely cheap barriers
- Integrated with garbage collection
 - Most new objects die quickly and don't need barriers
 - One write barrier for both STM and GC
- Commit-time costs
 - Detecting read-write conflicts
 - Copy modifications in private pages to other segments

Results

• Python interpreter (GIL version vs. STM version)

Summary

- Total STM overhead < 50%
- Large address space needed (64bit)
- Optimized for low #CPUs
- Optimized for dynamic language VMs
- **S**TM, not **H**TM

 \rightarrow flexibility and long transactions