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Using TSX

Best-effort nature!
we cannot rely exclusively on TSX



Best-effort nature Not *that* specific 
to Intel TSX. 

IBM HTMs apply 
partly here too



Best-effort nature Not *that* specific 
to Intel TSX. 

IBM HTMs apply 
partly here too

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code    
!
goto begin 
!
!
!
code: 
// your transactional code 
!
!
 _xend     
!



Best-effort nature Not *that* specific 
to Intel TSX. 

IBM HTMs apply 
partly here too

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code    
!
goto begin 
!
!
!
code: 
// your transactional code 
!
!
 _xend     
!

!
!
!
 goto code   // fast path 
!
!
!
!
!
!
!
!
!
 _xend    // fast path 
!



Best-effort nature Not *that* specific 
to Intel TSX. 

IBM HTMs apply 
partly here too

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code    
!
goto begin 
!
!
!
code: 
// your transactional code 
!
!
 _xend     
!

!
!
!
 goto code   // fast path 
!
!
!
!
!
!
!
!
!
 _xend    // fast path 
!

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code   // fast path 
if (shouldRetry) // retry policy 
 goto begin 
!
!
!
code: 
// your transactional code 
!
if (shouldRetry) 
 _xend    // fast path 
!



Best-effort nature Not *that* specific 
to Intel TSX. 

IBM HTMs apply 
partly here too

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code    
!
goto begin 
!
!
!
code: 
// your transactional code 
!
!
 _xend     
!

!
!
!
 goto code   // fast path 
!
!
!
!
!
!
!
!
!
 _xend    // fast path 
!

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code   // fast path 
if (shouldRetry) // retry policy 
 goto begin 
!
!
!
code: 
// your transactional code 
!
if (shouldRetry) 
 _xend    // fast path 
!

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code   // fast path 
if (shouldRetry) // retry policy 
 goto begin 
else 
 acquire(lock) // fallback 
!
code: 
// your transactional code 
!
if (shouldRetry) 
 _xend    // fast path 
else  
 release(lock) // fallback



Best-effort nature Not *that* specific 
to Intel TSX. 

IBM HTMs apply 
partly here too

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code    
!
goto begin 
!
!
!
code: 
// your transactional code 
!
!
 _xend     
!

!
!
!
 goto code   // fast path 
!
!
!
!
!
!
!
!
!
 _xend    // fast path 
!

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code   // fast path 
if (shouldRetry) // retry policy 
 goto begin 
!
!
!
code: 
// your transactional code 
!
if (shouldRetry) 
 _xend    // fast path 
!

begin: 
unsigned int status = _xbegin 
if (status == ok)  
 goto code   // fast path 
if (shouldRetry) // retry policy 
 goto begin 
else 
 acquire(lock) // fallback 
!
code: 
// your transactional code 
!
if (shouldRetry) 
 _xend    // fast path 
else  
 release(lock) // fallback

Transactions need 
to be aware of this



Summary of issues

• Lemming effect!
• Number of attempts!
• Retry policy!
• Management of fall-back
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Gradient Descent!

for exploration
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Retry policy

• Give up on capacity aborts?

• How should we “consume” the attempts’ budget?

• How to manage the fall-back?



Retry policy

Reinforcement learning!

Upper Confidence Bound
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UCB
tuning the retry policy

Lever A Lever B Lever C

A quest for exploration vs benefit from current knowledge

UCB adapts the strategy to maximize reward 
Logarithmic bound on the optimization error

? ? ?



UCB
tuning the retry policy

Model the belief about capacity aborts: 
• giveup — exhaust attempts 
• half — drops half the attempts 
• stubborn — decrements attempts

Reward: 
 function of processor cycles (RDTSC)
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Adaptation
of one atomic block in Yada

optimizers!
 are *not*!

independent
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Peek view on results
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Summary

• Best-effort HTMs need proper tuning 

• No one-size fits all 

• We used lightweight exploration/learning techniques 

• Transparent to the programmer
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