
Self-Tuning Intel TSX

Nuno Diegues and Paolo Romano

3rd Euro-TM Workshop on Transactional Memory

to appear on the 11th USENIX ICAC 2014

Using TSX

_xbegin
!
// your transactional code
!
_xend

Using TSX

_xbegin
!
// your transactional code
!
_xend

May Abort

Using TSX

_xbegin
!
// your transactional code
!
_xend

May Abort

• Data contention
• Forbidden

instructions
• Hardware buffers’

capacity
• Signals and faults

Using TSX

_xbegin
!
// your transactional code
!
_xend

May Abort

• Data contention
• Forbidden

instructions
• Hardware buffers’

capacity
• Signals and faults

Transparently!
Restarts

Using TSX

Best-effort nature!
we cannot rely exclusively on TSX

Best-effort nature Not *that* specific
to Intel TSX.

IBM HTMs apply
partly here too

Best-effort nature Not *that* specific
to Intel TSX.

IBM HTMs apply
partly here too

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code
!
goto begin
!
!
!
code:
// your transactional code
!
!
 _xend
!

Best-effort nature Not *that* specific
to Intel TSX.

IBM HTMs apply
partly here too

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code
!
goto begin
!
!
!
code:
// your transactional code
!
!
 _xend
!

!
!
!
 goto code // fast path
!
!
!
!
!
!
!
!
!
 _xend // fast path
!

Best-effort nature Not *that* specific
to Intel TSX.

IBM HTMs apply
partly here too

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code
!
goto begin
!
!
!
code:
// your transactional code
!
!
 _xend
!

!
!
!
 goto code // fast path
!
!
!
!
!
!
!
!
!
 _xend // fast path
!

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code // fast path
if (shouldRetry) // retry policy
 goto begin
!
!
!
code:
// your transactional code
!
if (shouldRetry)
 _xend // fast path
!

Best-effort nature Not *that* specific
to Intel TSX.

IBM HTMs apply
partly here too

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code
!
goto begin
!
!
!
code:
// your transactional code
!
!
 _xend
!

!
!
!
 goto code // fast path
!
!
!
!
!
!
!
!
!
 _xend // fast path
!

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code // fast path
if (shouldRetry) // retry policy
 goto begin
!
!
!
code:
// your transactional code
!
if (shouldRetry)
 _xend // fast path
!

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code // fast path
if (shouldRetry) // retry policy
 goto begin
else
 acquire(lock) // fallback
!
code:
// your transactional code
!
if (shouldRetry)
 _xend // fast path
else
 release(lock) // fallback

Best-effort nature Not *that* specific
to Intel TSX.

IBM HTMs apply
partly here too

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code
!
goto begin
!
!
!
code:
// your transactional code
!
!
 _xend
!

!
!
!
 goto code // fast path
!
!
!
!
!
!
!
!
!
 _xend // fast path
!

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code // fast path
if (shouldRetry) // retry policy
 goto begin
!
!
!
code:
// your transactional code
!
if (shouldRetry)
 _xend // fast path
!

begin:
unsigned int status = _xbegin
if (status == ok)
 goto code // fast path
if (shouldRetry) // retry policy
 goto begin
else
 acquire(lock) // fallback
!
code:
// your transactional code
!
if (shouldRetry)
 _xend // fast path
else
 release(lock) // fallback

Transactions need
to be aware of this

Summary of issues

• Lemming effect!
• Number of attempts!
• Retry policy!
• Management of fall-back

Summary of issues

0

1

2

3

 1 2 3 4 5 6 7 8

sp
ee

du
p

threads

GCC
(Possible) Self-Tuning

none-giveup-1

aux-giveup-3

wait-giveup-4

wait-stubborn-4

wait-stubborn-4
wait-half-8 wait-half-11

wait-stubborn-11

Genome from STAMP suite

Number of attempts

1

2

4

2 4 6 12 14 16

s
p
e
e
d
u
p

retries

high contention

low contention

Kmeans from STAMP

Number of attempts

1

2

4

2 4 6 12 14 16

s
p
e
e
d
u
p

retries

high contention

low contention

Kmeans from STAMP

Gradient Descent!

for exploration

Gradient Descent
tuning the number of attempts

#attempts

performance

?
optimization

round

Gradient Descent
tuning the number of attempts

#attempts

performance

1
?

optimization
round

Gradient Descent
tuning the number of attempts

#attempts

performance

1

randomly search some direction; explore it while profitable

?
optimization

round

Gradient Descent
tuning the number of attempts

#attempts

performance

1

2

randomly search some direction; explore it while profitable

?
optimization

round

Gradient Descent
tuning the number of attempts

#attempts

performance

1

23
4

randomly search some direction; explore it while profitable

?
optimization

round

Gradient Descent
tuning the number of attempts

#attempts

performance

1

23
4

revert direction when not profitable
randomly search some direction; explore it while profitable

?
optimization

round

Gradient Descent
tuning the number of attempts

#attempts

performance

1

23
4

revert direction when not profitable

threshold for
stabilization

randomly search some direction; explore it while profitable

?
optimization

round

Gradient Descent
tuning the number of attempts

#attempts

performance

1

23
4

revert direction when not profitable

threshold for
stabilization

randomly search some direction; explore it while profitable

random jumps to avoid local minima

5

random
jump

?
optimization

round

Gradient Descent
tuning the number of attempts

#attempts

performance

1

23
4

revert direction when not profitable

threshold for
stabilization

randomly search some direction; explore it while profitable

random jumps to avoid local minima

5

random
jump

6

?
optimization

round

Gradient Descent
tuning the number of attempts

#attempts

performance

1

23
4

revert direction when not profitable

threshold for
stabilization

randomly search some direction; explore it while profitable

random jumps to avoid local minima

5

random
jump

6

7

?
optimization

round

Gradient Descent
tuning the number of attempts

#attempts

performance

1

23
4

revert direction when not profitable

threshold for
stabilization

randomly search some direction; explore it while profitable

random jumps to avoid local minima

5

random
jump

6

7

recover from
unlucky jumps

memorize maxima

?
optimization

round

Retry policy

• Give up on capacity aborts?

• How should we “consume” the attempts’ budget?

• How to manage the fall-back?

Retry policy

Reinforcement learning!

Upper Confidence Bound

UCB
tuning the retry policy

Lever A Lever B Lever C

? ? ?

UCB
tuning the retry policy

Lever A Lever B Lever C

A quest for exploration vs benefit from current knowledge

? ? ?

UCB
tuning the retry policy

Lever A Lever B Lever C

A quest for exploration vs benefit from current knowledge

UCB adapts the strategy to maximize reward
Logarithmic bound on the optimization error

? ? ?

UCB
tuning the retry policy

Model the belief about capacity aborts:
• giveup — exhaust attempts
• half — drops half the attempts
• stubborn — decrements attempts

Reward:
 function of processor cycles (RDTSC)

Adaptation
of one atomic block in Yada

Adaptation
of one atomic block in Yada

optimizers!
 are *not*!

independent

Transparency to the User
atomic_begin

fetch atomic

block's stats yes

no

fetch last

configuration

Profile cycles

Begin Tx

procedure

atomic_end

execute

atomic block

End Tx

Procedure

Re-optimize?

application

logic

Profile cycles

Run grad()
Run ucb()

changes next

configurationyes

no

continue

program

govern retry

management

abort

retry

Re-optimize?

gcc libitm

gcc libitm

Transparency to the User
atomic_begin

fetch atomic

block's stats yes

no

fetch last

configuration

Profile cycles

Begin Tx

procedure

atomic_end

execute

atomic block

End Tx

Procedure

Re-optimize?

application

logic

Profile cycles

Run grad()
Run ucb()

changes next

configurationyes

no

continue

program

govern retry

management

abort

retry

Re-optimize?

gcc libitm

gcc libitm

Transparency to the User
atomic_begin

fetch atomic

block's stats yes

no

fetch last

configuration

Profile cycles

Begin Tx

procedure

atomic_end

execute

atomic block

End Tx

Procedure

Re-optimize?

application

logic

Profile cycles

Run grad()
Run ucb()

changes next

configurationyes

no

continue

program

govern retry

management

abort

retry

Re-optimize?

gcc libitm

gcc libitm

Summary of Evaluation

Summary of Evaluation

Peek view on results

1

2

3

4

 1 2 3 4 5 6 7 8

“ideal”

self-tuning

sp
ee

du
p

threads

Intruder from STAMP

1

2

3

5 20 25

th
ro

ug
hp

ut
 (1

00
0

tx
s/

se
c)

execution time (sec)

GCC
Heuristic

AdaptiveLocks
Tuner

benchmark
finished

Peek view on results
Yada with 8 threads

Summary

• Best-effort HTMs need proper tuning

• No one-size fits all

• We used lightweight exploration/learning techniques

• Transparent to the programmer

Self-Tuning Intel TSX
Nuno Diegues and Paolo Romano

Thank you!
Questions?

to appear on the 11th USENIX ICAC 2014

