

Concurrent Message Processing using Transactional Memory in the Actor Model

WTM 2013

Pascal Felber, Derin Harmanci,

Yaroslav Hayduk and Anita Sobe

first.last@unine.ch

The Actor Model

 Hewitt & Baker - "Laws for Communicating Parallel Processes"

 Motivated by the prospect of highly parallel computing machines with many microprocessors + own local memory

The Actor Model – basic principles

- everything is an actor (VS an object)
- asynchronous message passing
- has access to its local state only
- strong encapsulation
- inherently concurrent

OOP and Actors: Communication

Essential Actor properties

- Processes one message at a time
 - Yey! No race conditions or other hazards
- No (access to) shared state
- Can send messages to other actors only
- Switch its behavior

Behind the (Actor) scenes

Main issues

1.

The processing of **one** message at a time

Notable Related Work

- Scholliers et al. Parallel Actor Monitors
 - does not use STM for processing messages concurrently
- Shams et al. Habanero Scala
 - async-finish programming model
 - processes parts of one message (and not many messages) concurrently

Idea:

Process multiple messages concurrently

- Problem: the list can be easily corrupted
- Solution: Wrap each message processing in an STM transaction. When conflicts happen, (roll back and) repeat the message processing

Concurrent message processing

Coordinated Transactions

Local Actor Sum: Zoom-in

Main issues

2.

Extensive blocking of actors involved in a coordinated transaction

Idea:

Remove blocking; process other messages speculatively

- Pre-commit the local coordinated transaction
- Process other messages in a transaction speculatively

Non-blocking coordinated transactions

Evaluation

List Actors = 8, Writes = 98%, Sum = 1%

Evaluation

List Actors = 16, Writes = 98%, Sum = 1%

Summary

- By using speculation, we can achieve a higher message throughput in the Actor Model
- By using STM we guarantee that the Actor's state is never corrupted

Thank you Questions?