
1

Lecture 10: TM Implementations

• Topics: wrap-up of eager implementation (LogTM),
scalable lazy implementation

2

Eager Overview
Topics:
• Logs
• Log optimization
• Conflict examples
• Handling deadlocks
• Sticky scenarios
• Aborts/commits/parallelism

3

“Eager” Implementation (Based Primarily on LogTM)

• A write is made permanent immediately (we do not wait
until the end of the transaction)

• This means that if some other transaction attempts a
read, the latest value is returned and the memory may
also be updated with this latest value

• Can’t lose the old value (in case this transaction is
aborted) – hence, before the write, we copy the old
value into a log (the log is some space in virtual memory
-- the log itself may be in cache, so not too expensive)

This is eager versioning

4

Versioning

• Every write first requires a read and a write to log the old
value – the log is maintained in virtual memory and will
likely be found in cache

• Aborts are uncommon – typically only when the
contention manager kicks in on a potential deadlock; the
logs are walked through in reverse order

• If a block is already marked as being logged (wr-set), the
next write by that transaction can avoid the re-log

• Log writes can be placed in a write buffer to reduce
contention for L1 cache ports

5

Conflict Detection and Resolution

• Since Transaction-A’s writes are made permanent
rightaway, it is possible that another Transaction-B’s
rd/wr miss is re-directed to Tr-A

• At this point, we detect a conflict (neither transaction has
reached its end, hence, eager conflict detection): two
transactions handling the same cache line and at least
one of them does a write

• One solution: requester stalls: Tr-A sends a NACK to
Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has
committed and can hand off the latest cache line to B

neither transaction needs to abort

6

Deadlocks

• Can lead to deadlocks: each transaction is waiting for the
other to finish

• Need a separate (hw/sw) contention manager to detect
such deadlocks and force one of them to abort

Tr-A Tr-B
write X write Y
… …
read Y read X

• Alternatively, every transaction maintains an “age” and a young
transaction aborts and re-starts if it is keeping an older transaction
waiting and itself receives a nack from an older transaction

7

Block Replacement

• If a block in a transaction’s rd/wr-set is evicted, the data
is written back to memory if necessary, but the directory
continues to maintain a “sticky” pointer to that node
(subsequent requests have to confirm that the transaction
has committed before proceeding)

• The sticky pointers are lazily removed over time (commits
continue to be fast)

8

Scalable Algorithm – Lazy Implementation

• Probe your write-set to see if it is your turn to write
(helps serialize writes)

• Let others know that you don’t plan to write (thereby
allowing parallel commits to unrelated directories)

• Mark your write-set (helps hide latency)

• Probe your read-set to see if previous writes have
completed

• Validation is now complete – send the actual commit
message to the write set

9

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 1

10

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 1

TID=1

TID=2

11

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 3

TID=1
TID=2

Probe to write-set to
see if it can proceed

No writes here.
I’m done with you.

P2 sends the same set of probes/notifications

12

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 3

TID=1 TID=2

Must wait
my turn

Can go ahead
with my wr

Mark X

Mark messages are hiding the latency for the subsequent commit

13

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 3

TID=1 TID=2

Keep probing
and waiting

Probe read set and
make sure they’re done

14

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 2 NS: 3

TID=1 TID=2

Keep probing
and waiting

Commit

Invalidate sharers;
May cause aborts

15

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 2 NS: 3

TID=1 TID=2

P2: Probe finally successful.
Can mark Z.
Will then check read-set.
Then proceed with commit

16

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

