Lecture 10: TM Implementations

 Topics: wrap-up of eager implementation (LogTM),
scalable lazy implementation



Eager Overview

Topics:

* Logs

* Log optimization

* Conflict examples

» Handling deadlocks

* Sticky scenarios

» Aborts/commits/parallelism



“Eager” Implementation (Based Primarily on LogTM)

« A write Is made permanent immediately (we do not wait
until the end of the transaction)

* This means that if some other transaction attempts a
read, the latest value is returned and the memory may
also be updated with this latest value

« Can't lose the old value (in case this transaction is
aborted) — hence, before the write, we copy the old
value into a log (the log is some space in virtual memory
-- the log itself may be in cache, so not too expensive)

This Is eager versioning



Versioning

* Every write first requires a read and a write to log the old
value — the log is maintained in virtual memory and will
likely be found in cache

* Aborts are uncommon — typically only when the
contention manager kicks in on a potential deadlock; the
logs are walked through in reverse order

e If a block is already marked as being logged (wr-set), the
next write by that transaction can avoid the re-log

e Log writes can be placed in a write buffer to reduce
contention for L1 cache ports



Conflict Detection and Resolution

 Since Transaction-A’s writes are made permanent
rightaway, It is possible that another Transaction-B’s
rd/wr miss is re-directed to Tr-A

e At this point, we detect a conflict (neither transaction has
reached its end, hence, eager conflict detection): two
transactions handling the same cache line and at |least
one of them does a write

* One solution: requester stalls: Tr-A sends a NACK to
Tr-B; Tr-B walts and re-tries again; hopefully, Tr-A has
committed and can hand off the latest cache line to B
- neither transaction needs to abort



Deadlocks

e Can lead to deadlocks: each transaction is waiting for the
other to finish

* Need a separate (hw/sw) contention manager to detect
such deadlocks and force one of them to abort

Tr-A Tr-B
write X write 'Y
read Y read X

* Alternatively, every transaction maintains an “age” and a young
transaction aborts and re-starts if it is keeping an older transaction
waiting and itself receives a nack from an older transaction 0



Block Replacement

e If a block in a transaction’s rd/wr-set is evicted, the data
IS written back to memory If necessary, but the directory
continues to maintain a “sticky” pointer to that node
(subsequent requests have to confirm that the transaction

has committed before proceeding)

 The sticky pointers are lazily removed over time (commits
continue to be fast)



Scalable Algorithm — Lazy Implementation

* Probe your write-set to see if it is your turn to write
(helps serialize writes)

 Let others know that you don’t plan to write (thereby
allowing parallel commits to unrelated directories)

« Mark your write-set (helps hide latency)

* Probe your read-set to see if previous writes have
completed

 Validation is now complete — send the actual commit
message to the write set



Example

Rd X
Wr X

TID
Vendor

NS: 1
D: XZ

NS: 1
D: Y

RdAY
Wr Z



Example

TID TID=2
Vendor

RdAY
Wr Z

Rd X
Wr X

TID=1

N
‘//

NS: 1 NS: 1
D: XZ D: Y




Example

TID
Vendor

RdY
Wr Z

Rd X
Wr X

Probe to write-set t

see if it can procee I'm done with your

NS: 1 NS: 3
D: XZ D: Y

P2 sends the same set of probes/notifications

11



Example

TID
Vendor

TID=1

Mark X

NS: 1
D: XZ

Mark messages are hiding the latency for the subsequent commit

TID=2

NS: 3
D: Y

12



Example

TID
Vendor

Rd X
Wr X

Probe read set and
make sure they’re done

NS: 1
D: XZ

NS: 3
D: Y

13



Example

Rd X
Wr X

Commit

TID=1

NS: 2
D: XZ|

nvalidate sharers;
May cause aborts

NS: 3
D: Y

14



Example

Rd X
Wr X

NS: 2
D: XZ

TID
Vendor

TID=2

RdY
Wr Z

NS: 3
D: Y

P2: Probe finally successful.
Can mark Z.
Will then check read-set.
Then proceed with commit

15



Title

e Bullet

16



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

