
1

Lecture 8: Transactional Memory – TCC

• Topics: “lazy” implementation (TCC)



2

Other Issues

• Nesting: when one transaction calls another
flat nesting: collapse all nested transactions into one

large transaction
closed nesting: inner transaction’s rd-wr set are included

in outer transaction’s rd-wr set on inner
commit; on an inner conflict, only the 
inner transaction is re-started

open nesting: on inner commit, its writes are committed
and not merged with outer transaction’s
commit set

• What if a transaction performs I/O? (buffering can help)



3

Useful Rules of Thumb

• Transactions are often short – more than 95% of them will
fit in cache

• Transactions often commit successfully – less than 10%
are aborted

• 99.9% of transactions don’t perform I/O

• Transaction nesting is not common

• Amdahl’s Law again: optimize the common case!



4

Design Space

• Data Versioning
Eager: based on an undo log
Lazy: based on a write buffer

• Conflict Detection
Optimistic detection: check for conflicts at commit time
(proceed optimistically thru transaction)
Pessimistic detection: every read/write checks for
conflicts (so you can abort quickly)



5

Detecting Conflicts – Overview

• Writes can be cached (can’t be written to memory) – if the
block needs to be evicted, flag an overflow (abort transaction
for now) – on an abort, invalidate the written cache lines

• Keep track of read-set and write-set (bits in the cache) for
each transaction

• When another transaction commits, compare its write set
with your own read set – a match causes an abort

• At transaction end, express intent to commit, broadcast
write-set (transactions can commit in parallel if their 
write-sets do not intersect)



6

“Lazy” Implementation (Partially Based on TCC)

• An implementation for a small-scale multiprocessor with
a snooping-based protocol

• Lazy versioning and lazy conflict detection

• Does not allow transactions to commit in parallel



7

Handling Reads/Writes

• When a transaction issues a read, fetch the block in
read-only mode (if not already in cache) and set the
rd-bit for that cache line

• When a transaction issues a write, fetch that block in
read-only mode (if not already in cache), set the wr-bit
for that cache line and make changes in cache

• If a line with wr-bit set is evicted, the transaction must
be aborted (or must rely on some software mechanism
to handle saving overflowed data) (or must acquire
commit permissions)



8

Commit Process

• When a transaction reaches its end, it must now make
its writes permanent

• A central arbiter is contacted (easy on a bus-based system),
the winning transaction holds on to the bus until all written
cache line addresses are broadcasted (this is the commit)
(need not do a writeback until the line is evicted or written
again – must simply invalidate other readers of these lines)

• When another transaction (that has not yet begun to commit)
sees an invalidation for a line in its rd-set, it realizes its
lack of atomicity and aborts (clears its rd- and wr-bits and
re-starts)



9

Summary of Properties

• Lazy versioning: changes are made locally – the “master copy” is
updated only at the end of the transaction

• Lazy conflict detection: we are checking for conflicts only when one of
the transactions reaches its end

• Aborts are quick (must just clear bits in cache, flush pipeline and
reinstate a register checkpoint)

• Commit is slow (must check for conflicts, all the coherence operations
for writes are deferred until transaction end)

• No fear of deadlock/livelock – the first transaction to acquire the bus will
commit successfully

• Starvation is possible – need additional mechanisms



10

TCC Features

• All transactions all the time (the code only defines
transaction boundaries): helps get rid of the baseline
coherence protocol

• When committing, a transaction must acquire a central
token – when I/O, syscall, buffer overflow is encountered,
the transaction acquires the token and starts commit

• Each cache line maintains a set of “renamed bits” – this
indicates the set of words written by this transaction –
reading these words is not a violation and the read-bit is
not set



11

TCC Features

• Lines evicted from the cache are stored in a write buffer;
overflow of write buffer leads to acquiring the commit token

• Less tolerant of commit delay, but there is a high degree
of “coherence-level parallelism”

• To hide the cost of commit delays, it is suggested that a
core move on to the next transaction in the meantime –
this requires “double buffering” to distinguish between
data handled by each transaction

• An ordering can be imposed upon transactions – useful for
speculative parallelization of a sequential program



12

Parallel Commits

• Writes cannot be rolled back – hence, before allowing
two transactions to commit in parallel, we must ensure
that they do not conflict with each other

• One possible implementation: the central arbiter can
collect signatures from each committing transaction
(a compressed representation of all touched addresses)

• Arbiter does not grant commit permissions if it detects
a possible conflict with the rd-wr-sets of transactions
that are in the process of committing

• The “lazy” design can also work with directory protocols



13

Title

• Bullet


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

