
1

Lecture 7: Transactional Memory Intro

• Topics: introduction to transactional memory,
“lazy” implementation

2

Transactions

• New paradigm to simplify programming
instead of lock-unlock, use transaction begin-end

• Can yield better performance; Eliminates deadlocks

• Programmer can freely encapsulate code sections within
transactions and not worry about the impact on
performance and correctness

• Programmer specifies the code sections they’d like to see
execute atomically – the hardware takes care of the rest
(provides illusion of atomicity)

3

Transactions

• Transactional semantics:
when a transaction executes, it is as if the rest of the
system is suspended and the transaction is in isolation
the reads and writes of a transaction happen as if they
are all a single atomic operation
if the above conditions are not met, the transaction
fails to commit (abort) and tries again

transaction begin
read shared variables
arithmetic
write shared variables

transaction end

4

Applications

• A transaction executes speculatively in the hope that there
will be no conflicts

• Can replace a lock-unlock pair with a transaction begin-end
the lock is blocking, the transaction is not
programmers can conservatively introduce transactions
without worsening performance

lock (lock1) transaction begin
read A read A
operations operations
write A write A

unlock (lock1) transaction end

5

Example 1

lock (lock1)
counter = counter + 1;

unlock (lock1)

transaction begin
counter = counter + 1;

transaction end

Is the transactional code any better?

6

Example 2

Producer-consumer relationships – producers place tasks at the tail of
a work-queue and consumers pull tasks out of the head

Enqueue Dequeue
transaction begin transaction begin

if (tail == NULL) if (head->next == NULL)
update head and tail update head and tail

else else
update tail update head

transaction end transaction end

With locks, neither thread can proceed in parallel since head/tail may be
updated – with transactions, enqueue and dequeue can proceed in
parallel – transactions will be aborted only if the queue is nearly empty

7

Example 3

Hash table implementation
transaction begin

index = hash(key);
head = bucket[index];
traverse linked list until key matches
perform operations

transaction end

Most operations will likely not conflict transactions proceed in parallel

Coarse-grain lock serialize all operations
Fine-grained locks (one for each bucket) more complexity, more storage,

concurrent reads not allowed,
concurrent writes to different elements not allowed

8

Example 4

Is it possible to have a transactional program that deadlocks?

9

Example 4

Is it possible to have a transactional program that deadlocks?

flagA = flagB = false;
thr-1 thr-2

lock(L1) lock(L2)
while (!flagA) {}; flagA = true;
flagB = true; while (!flagB) {};

* *
unlock(L1) unlock(L2)

• Somewhat contrived
• The code implements a barrier before getting to *
• Note that we are using different lock variables

10

Atomicity

• Blindly replacing locks-unlocks with tr-begin-end may
occasionally result in unexpected behavior

• The primary difference is that:
transactions provide atomicity with every other transaction
locks provide atomicity with every other code segment
that locks the same variable

• Hence, transactions provide a “stronger” notion of
atomicity – not necessarily worse for performance or
correctness, but certainly better for programming ease

11

Other Constructs

• Retry: abandon transaction and start again

• OrElse: Execute the other transaction if one aborts

• Weak isolation: transactional semantics enforced only
between transactions

• Strong isolation: transactional semantics enforced beween
transactions and non-transactional code

12

Summary of TM Benefits

• As easy to program as coarse-grain locks

• Performance similar to fine-grain locks

• Speculative parallelization

• Avoids deadlock

• Resilient to faults

13

Detecting Conflicts – Basic Implementation

• Writes can be cached (can’t be written to memory) – if the
block needs to be evicted, flag an overflow (abort transaction
for now) – on an abort, invalidate the written cache lines

• Keep track of read-set and write-set (bits in the cache) for
each transaction

• When another transaction commits, compare its write set
with your own read set – a match causes an abort

• At transaction end, express intent to commit, broadcast
write-set (transactions can commit in parallel if their
write-sets do not intersect)

14

Design Space

• Data Versioning
Eager: based on an undo log
Lazy: based on a write buffer

• Conflict Detection
Optimistic detection: check for conflicts at commit time
(proceed optimistically thru transaction)
Pessimistic detection: every read/write checks for
conflicts (so you can abort quickly)

15

Design Issues and Challenges

• Nested transactions
Closed nesting: nested transaction’s read/write set are included in
parent’s read/write set on inner commit; on inner conflict, only
nested transaction is re-started; easier for programmer
Open nesting: on inner commit, writes are committed and not
merged with outer read/write set

• I/O – buffering can help

• Interaction with other non-TM applications (OS)

• Large transactions that cause overflows (less than 1% of all
transactions are large)

• Low overheads for rollback and commit

16

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

