Transactional Memory

Parag Dixit Bruno Vavala

Computer Architecture Course, 2012

Overview

* Shared Memory Access by Multiple
Threads

* Concurrency bugs

Transactional Memory (TM)

* Fixing Concurrency bugs with TM
* Hardware support for TM (HTM)

* Hybrid Transactional Memories

* Hardware acceleration for STM

*c Q&A

Shared Memory Accesses

* How to prevent shared data access
by multiple threads?
- Locks : allow only one thread to access.
- Too conservative - performance ?
- Programmer responsibility?

 Other idea ?

- Transactional Memory : Let all threads
access, make visible to others only if
access Is correct.

Concurrency bugs

* Writing correct parallel programs is really hard!

* Possible synchronization bugs :

- Deadlock - multiple locks not managed well

- Atomicity violation - no lock used

- Others - priority inversion etc. not considered
* Possible solutions ?

- Lock hierarchy; adding more locks!

- Use Transactional Memory :

Worry free atomic execution

Transactional Memory

Transactions used in database systems
since 1970s

All or nothing - Atomicity
No interference - Isolation
Correctness - Consistency

Transactional Memory : Make memory
accesses transactional (atomic)

Keywords : Commit, Abort, Spec access,
Checkpoint

Fixing concurrency bug with
Transactional Memory

* Procedure followed
- Known bug database - Deadlock, AV
- Try to apply TM fix instead of lock based
- Come up with Recipes of fixes
* Ingredients :
- Atomic regions
- Preemptible resources
- SW Rollback
- Atomic/Lock serialization

Bug Fix Recipes

Source 1 Source 2 Source 1 Sowurce 2 Source 1 Source & Source 1 Source 2
;‘m-_:h_:ATl jread x | lochk (A
o I Fes il
ook (B) § I_wire_‘_\\} wﬂm:-
i runbochiA)
atomic | | b atomic {
Y ookt || a lock L =N read x
i [X wrile x
soenia ¥
B
¥
[(a) Recipa 1 {d) Racipa 4

* Recipes
- Replace Deadlock-prone locks
- Wrap all
- Asymmetric Deadlock Preemption
- Wrap Unprotected

Bug fix summary

Bug App All Transactional Memory Fixes
Total | R | R2 | R} | R4
Mozilla || 13 9 8(2) - 1) -
DL| Apache || 4 2 I(1) [(1)
MySQL | 5 | 0 [(1] -
Mozilla || 25 0 20012} Bi0)
AV| Apache 1 5 5(3) X(0)
MySQL | 6 f B(2] 40}

T.utl.al J[i) |

43][) | 317 | 3 |

130 |

Bug I Cause Characteristics Fix Perf. | Lines of Code
. Dev | T™
] 1 1% 23 [EL

Mozilla-1 DL Involves locks only 3 25 11 16

Apache-1 || DL [Involves lock and || 3 TR 12 14
wail

Vpache-11 AV [Complete missing Q. 5% 0 5
synchronization

MyS(L-1 AV |Partial Missing + S5 103 E
[synchronization

Table 4. Bugs and corresponding fix recipes applied for demonstra-
tion purposes. Performance is relative to that of developer's fix. Lines
of code {LOC) includes both lines added and lines modifed.

TM fixes usually easier

TM can’t fix all bugs

Locks better in some cases
R3 and R4 more widely
applicable

From Using to Implementing
TM

* How is it implemented ?
- Hardware (HTM)

- Software (STM)

I ! ;

T emory JEEL Memoy
Hardware

Hardware

Hardware Transactional
Memories
Save architectural state to
‘checkpoint’

Use caches to do versioning for
memory

Updates to coherency protocol
Conflict detection in hardware
‘Commit’ transactions if no conflict

‘Abort’ transactions if conflict (or
special cond)

‘Retrv/’ ahonrtaed rrancactinn

BlueGene/Q : Hardware TM

16 core with 4 SMT with 32MB shared
L2

Multi-versioned L2 cache
128 speculative IDs for versioning

L1 speculative writes invisible to
other threads

- Short running mode (L1-bypass)

- Long running mode (TLB-Aliasing)
Upto 10 speculative ways
guaranteed In L2

Execution of a transaction

VS W

Register Context

4)Save & Restore
[compiker ganarabed coda]

}

Transaction 1MW, Max Rodibacks

b Begin Reached
[T runierss coda)

Token Acquisition
e T it mee Coeds |

» Conflict
Transaction L f Arbitration,/ -
Execution *Il"s{w IMV Detection _-Abort
[z piisr gansrated ooda) A |Karred codaj

Bufier Owerflow
Conflict Imberrugts

l

[Transaction | Conflict
d)Commit E) Detection
T o Coda)] hiardwars|
nnnnnn L | Comimnit Fail

Succeeded

* Spcial cases :

- lrrevocable mode -
for forward progress

- JMV example - MMIO

- Actions on commit
fail

- Handling problematic

transaction - single
rollback

HTM vs. STM

Hardware ________ sSoftware

Fast (due to hardware operations)

Light code instrumentation
HW buffers keep amount of

metadata low

No need of a middleware

Only short transactions allowed

(Why?)

Slow (due to software
validation/commit)

Heavy code instrumentation
Lots of metadata

Runtime library needed
Large transactions possible

How would you get the best

of both?

Hybrid-TM

* Best-effort HTM (use STM for long trx)

* Possible conflicts between HW,SW and HW-SW Trx
- What kind of conflicts do SW-Trx care about?
- What kind of conflicts do HW-Trx care about?

* Some Iinitial proposals:

- HyTM: uses an ownership record per memory location
(overhead?)

- PhTM: HTM-only or (heavy) STM-only, low
iInstrumentation

Hybrid NOrec

* Builds upon NOrec (no fine-grained shared metadata, only one global sequence lock)

SW_BEGIN
snapshot = seqlock
« HW-Trx must wait SW-Trx writeback if (snapshot & 1)

* HW-Trx must notify SW-Trx of updates goto 16

« HW-Trx must be aborted by HW,SW-Trx
SW_COMMIT

if (writes.empty())
return

while (! CAS(&seglock, snapshot,
snapshot + 1))

How to reduce SWVALDATE
ConfliCtS? xaddr = val

seqlock = seqlock + 1
reads. reset (), writes. reset ()

Instrumentation

* Subscription to SW commit
notification
- How about HW notification?

* Separation of subscribing and
notifying
- How about HW-Trx conflicts?

* Coordinate notification through
HW-Trx

- How about validation overhead?

HW_POST_BEGIN
if (seglock & 1)
while (true) // await abort

HW_PRE-COMMIT
seqlock = seglock + 2

HW_POST_BEGIN
if (seglock & 1)
while (true) // await abort

HW_PRE_.COMMIT
counter = counter + 1

HW_POST_BEGIN
if (seglock & 1)
while (true) // await abort

HW_PRE_.COMMIT
counter[id] = counter[id] + 1

How to Avoid the Narrow Waist?

SW_BEGIN
snapshot = seqglock
if (snapshot & 1)

goto 16

SW_COMMIT

if (writes.empty())
return

while (!CAS(&seqlock, snapshot,

snapshot + 1))

SW_VALIDATE

foreach (addr, val) in writes
*addr = val

seqlock = seqglock + 1

reads. reset (), writes. reset ()

* Update 1 variable atomically to access the whole memory
* Single counter, multiple threads/cores/processors
* Even worse in Norec, seqlock used for validation/lock

How to Avoid the Narrow Waist?

Better if

random accesse Crt2
access follow

patterns

* Seqglock (or c-lock) used for serial order

* Update 1 variable atomically to access the whole
memory

* Single counter, multiple threads/cores/processors

HTM vs. STM
_______ Hardware | Software

Fast (due to hardware operations)

Light code instrumentation

HW buffers keep amount of
metadata low

No need of a middleware
Expensive to implement/change

Different support from different
vendors

Only short transaction allowed

Slow (due to software
validation/commit)

Heavy code instrumentation
Lots of metadata

Runtime library needed
Many versions currently available
Flexible middleware

Large transactions possible

How would you get the best

of both?

TMACC

/ \ / \ / Altera Stratix [I FPGA (132k Logic Gates) \

1.8GHz 1.8GHz 1.8GHz wseez || (T — . .
Core 0 Core 3 Core 4 Core 7 | . . |
64K L1 64K L1 64K L1 64K L1 MMR g User Application !

e m—————— || A T AT T YA
512KB 512KB 512KB 512KB
1.2 Cache L2 Cache 1.2 Cache L2 Cache Cache Interface
Configurable
IMB IMB Data Stream Interface Coherent Cache
L3 Shared Cache L3 Shared Cache Data Transfer Engine
32 Gbps
Hyper > Hyper 6.4 Gbps :} cHTCore™
Transport 4 Transport < Hyper Transport (PHY, LINK)
\ 32 Gbps 6.4 Gbps /

AMD Barcelona ~60 ns ~380 ns

* FARM: FPGA coherently connected to 2 CPUs

* Mainly used for conflict detection
(why not using it for operations on memory?)

* Asynch. Comm. with TMACC (possible? why is it good?)

TMACC Performance

On- chip

T 3 /4
6 - —p— SigTM :
—@— TMACC-L1 /7Off-Ch|p
%- 5 TMACC-MEM
el TL2
2 4 ., SW
E
m 2
1 ¥
0 - T T 1
z 4 H 16

of Processors

Speedup

(b) impact of transaction size o
& ~ 100 21
7 = = G0 14
| e Gl ¢ ¢ o D 184
5 ‘* 70 8 154
5+ - &0 E 14
] _-'"-s.._‘_‘_sn E 124
. ’..—-- = |- o g1
l| .-"&—30 084
& e 20 087
L - -'__+"* 4 4
e - 10
o v AT —— . 02
o 100 2040 300 400 0 -

Vacation-Low Vecation-High (enome Kmeans-Low Kmeans-High — 55CAZ2 Labyrinth Average

Thank you.

Hardware Transactional
Memory

E.q., Intel Haswell @ %

Microarch., —
AMD Advanced Synch. = E—‘

. pa?jrﬁliyt pport transactional operations
—_ e 4

rsionthg, conflict detection
* Use L1-cache to buffer read/write set
* Conflict detection through the existing coherency protocol
« Commit by checking the state of cache lines in read/write set

_______ Hardware | Software

Fast (due to hardware operations) Slow (due to software
validation/commit)

Light code instrumentation Heavy code instrumentation
HW buffers keep amount of Lots of metadata (to keep
metadata low consistent)

NA nanAdA AF A miAAlLAw A ra DiinFirmma lihrsrvs nanAdAAA

	Slide 1
	Overview
	Shared Memory Accesses
	Concurrency bugs
	Transactional Memory
	Fixing concurrency bug with Transactional Memory
	Bug Fix Recipes
	Bug fix summary
	From Using to Implementing TM
	Hardware Transactional Memories
	BlueGene/Q : Hardware TM
	Execution of a transaction
	HTM vs. STM
	Hybrid-TM
	Hybrid NOrec
	Instrumentation
	How to Avoid the Narrow Waist?
	How to Avoid the Narrow Waist?
	HTM vs. STM
	TMACC
	TMACC Performance
	Thank you.
	Slide 23
	Slide 24
	Hardware Transactional Memory

