
Transactional Memory

Parag Dixit Bruno Vavala

Computer Architecture Course, 2012

Overview

• Shared Memory Access by Multiple
Threads

• Concurrency bugs
• Transactional Memory (TM)
• Fixing Concurrency bugs with TM
• Hardware support for TM (HTM)
• Hybrid Transactional Memories
• Hardware acceleration for STM
• Q & A

Shared Memory Accesses

• How to prevent shared data access
by multiple threads?

– Locks : allow only one thread to access.
– Too conservative – performance ?
– Programmer responsibility?

• Other idea ?
– Transactional Memory : Let all threads

access, make visible to others only if
access is correct.

Concurrency bugs

• Writing correct parallel programs is really hard!
• Possible synchronization bugs :

– Deadlock – multiple locks not managed well
– Atomicity violation – no lock used
– Others – priority inversion etc. not considered

• Possible solutions ?
– Lock hierarchy; adding more locks!
– Use Transactional Memory :
Worry free atomic execution

Transactional Memory

• Transactions used in database systems
since 1970s

• All or nothing – Atomicity
• No interference – Isolation
• Correctness – Consistency
• Transactional Memory : Make memory

accesses transactional (atomic)
• Keywords : Commit, Abort, Spec access,

Checkpoint

Fixing concurrency bug with
Transactional Memory

• Procedure followed
– Known bug database – Deadlock, AV
– Try to apply TM fix instead of lock based
– Come up with Recipes of fixes

• Ingredients :
– Atomic regions
– Preemptible resources
– SW Rollback
– Atomic/Lock serialization

Bug Fix Recipes

• Recipes
– Replace Deadlock-prone locks
– Wrap all
– Asymmetric Deadlock Preemption
– Wrap Unprotected

Bug fix summary

• TM fixes usually easier
• TM can’t fix all bugs
• Locks better in some cases
• R3 and R4 more widely

applicable

From Using to Implementing
TM

• How is it implemented ?
– Hardware (HTM)
– Software (STM)

Hardware

Memory

T
h
re

a
d

1

T
h
re

a
d

2

T
h
re

a
d

3

Hardware

Memory

T
h
re

a
d

1

T
h
re

a
d

2

T
h
re

a
d

3

STM

Hardware Transactional
Memories

• Save architectural state to
‘checkpoint’

• Use caches to do versioning for
memory

• Updates to coherency protocol
• Conflict detection in hardware
• ‘Commit’ transactions if no conflict
• ‘Abort’ transactions if conflict (or

special cond)
• ‘Retry’ aborted transaction

BlueGene/Q : Hardware TM

• 16 core with 4 SMT with 32MB shared
L2

• Multi-versioned L2 cache
• 128 speculative IDs for versioning
• L1 speculative writes invisible to

other threads
– Short running mode (L1-bypass)
– Long running mode (TLB-Aliasing)

• Upto 10 speculative ways
guaranteed in L2

– 20 MB speculative state (actually much
smaller)

Execution of a transaction

• Spcial cases :
– Irrevocable mode –

for forward progress
– JMV example – MMIO
– Actions on commit

fail
– Handling problematic

transaction – single
rollback

HTM vs. STM

Hardware Software

Fast (due to hardware operations) Slow (due to software
validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of
metadata low

Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed
(why?)

Large transactions possible

How would you get the best
of both?

Hybrid-TM

• Best-effort HTM (use STM for long trx)
• Possible conflicts between HW,SW and HW-SW Trx

– What kind of conflicts do SW-Trx care about?
– What kind of conflicts do HW-Trx care about?

• Some initial proposals:
– HyTM: uses an ownership record per memory location

(overhead?)
– PhTM: HTM-only or (heavy) STM-only, low

instrumentation

Hybrid NOrec

• Builds upon NOrec (no fine-grained shared metadata, only one global sequence lock)

• HW-Trx must wait SW-Trx writeback
• HW-Trx must notify SW-Trx of updates
• HW-Trx must be aborted by HW,SW-Trx

How to reduce
conflicts?

Instrumentation

• Subscription to SW commit
notification

– How about HW notification?

• Separation of subscribing and
notifying

– How about HW-Trx conflicts?

• Coordinate notification through
HW-Trx

– How about validation overhead?

How to Avoid the Narrow Waist?

• Update 1 variable atomically to access the whole memory
• Single counter, multiple threads/cores/processors
• Even worse in Norec, seqlock used for validation/lock

Cnt

Thread
s

Memor
y

STM

OK for
random
access

How to Avoid the Narrow Waist?

• Seqlock (or c-lock) used for serial order
• Update 1 variable atomically to access the whole

memory
• Single counter, multiple threads/cores/processors

Cnt

Thread
s

Memor
y

STM

Cnt1
Cnt2

Thread
s

Memory1
Memory2

OK for
random
access

Better if
memory
accesses
follow
patterns

HTM vs. STM
Hardware Software

Fast (due to hardware operations) Slow (due to software
validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of
metadata low

Lots of metadata

No need of a middleware Runtime library needed

Expensive to implement/change Many versions currently available

Different support from different
vendors

Flexible middleware

Only short transaction allowed Large transactions possible

How would you get the best
of both?

(HINT: current HW support implemented on processors, at the core of
the platform, which means hard design)

TMACC

• FARM: FPGA coherently connected to 2 CPUs
• Mainly used for conflict detection

(why not using it for operations on memory?)
• Asynch. Comm. with TMACC (possible? why is it good?)

TMACC Performance
On- chip

Off-chip

SW

Thank you.

Hardware Transactional
Memory

• Natively support transactional operations
– Versioning, conflict detection

• Use L1-cache to buffer read/write set
• Conflict detection through the existing coherency protocol
• Commit by checking the state of cache lines in read/write set

Hardware Software

Fast (due to hardware operations) Slow (due to software
validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of
metadata low

Lots of metadata (to keep
consistent)

No need of a middleware Runtime library needed

E.g., Intel Haswell
Microarch.,
 AMD Advanced Synch.
Facility

	Slide 1
	Overview
	Shared Memory Accesses
	Concurrency bugs
	Transactional Memory
	Fixing concurrency bug with Transactional Memory
	Bug Fix Recipes
	Bug fix summary
	From Using to Implementing TM
	Hardware Transactional Memories
	BlueGene/Q : Hardware TM
	Execution of a transaction
	HTM vs. STM
	Hybrid-TM
	Hybrid NOrec
	Instrumentation
	How to Avoid the Narrow Waist?
	How to Avoid the Narrow Waist?
	HTM vs. STM
	TMACC
	TMACC Performance
	Thank you.
	Slide 23
	Slide 24
	Hardware Transactional Memory

