
Scientific Report for STSM project

Vesna Smiljković

vesna.smiljkovic@bsc.es

January, 2013

Reference Code COST-STSM-ECOST-STSM-IC1001-100912-021990

STSM title Compiler-guided techniques for reducing overhead in

TM-based fault-tolerant systems

STSM Period 2012-09-10 to 2012-12-07

Participant Vesna Smiljković

Barcelona Supercomputing Center, Spain

Host Prof. Christof Fetzer

Technische Universität Dresden, Germany

2

1 Purpose of the STSM

Transactional Memory (TM) [1, 2] has been proposed as a concurrency control
mechanism to simplify multithreaded programing. TM ensures that a group of
load and store operations is executed atomically and in isolation, and that pro-
grammers do not have to take care of locking and unlocking data accessed in
these operations. Therefore, TM provides robustness and scalability of applica-
tions. Many researchers have been interested in TM in last decades. Numerous
implementations in software (e.g. as a library [3] or a compiler extension [4]) and
in hardware (as parts of mainstream processors [5, 6]) motivate researchers to
investigate even further - to find other possible purposes of TM.

FaulTM [7] is a fault-tolerance technique that exploits hardware TM charac-
teristics to ensure fault detection and recovery. A programmer defines a vulner-
able section of an application and FaulTM executes it in two parallel threads, as
transactions. At the end of the transactions, any mismatch in write sets indicates
faulty execution. In case of a mismatch, transactions have to be re-executed. In
order to provide full error coverage, it is essential to compare the register file as
well, since a soft error in registers can be propagated to other components. The
register file comparison introduces additional overhead.

The purpose of this short term scientific mission (STSM) was to implement
compiler-guided techniques to decrease TM and reliability costs while remain-
ing the full error coverage. To reduce the comparison overhead, we proposed
analyzing variables and registers liveness and transforming code to decrease the
lifetime of a variable, i.e. to decrease the vulnerability.

According to the latest FaulTM paper [7], the comparison of the register
file is performed in the commit phase of transactions and produces overhead of
13% on average for SPEC2006 benchmarks. To reduce this, authors propose an
optimization - comparing hash-based signatures of write sets and register files.

After an initial research on this topic, we conclude that we would not be able
to reasonably reduce this overhead further. First, code transformations could
affect only the general purpose registers, and their number is relatively small.
Second, we assume that code transformations might introduce additional over-
head (e.g. due to register spilling), which was not considered in the proposal.
Therefore, we decided to change the plan of this STSM and to investigate another
interesting topic - deterministic execution of TM applications.

In general, multithreaded programs are nondeterministic. Threads interleave
in a nondeterministic order and might produce a different output in each execu-
tion started with the same input. Sources of nondeterminism are other processes
running in parallel, the state of memory, caches and the state of any microar-
chitecture structure [8].

Non-deterministic programs are hard to test, debug, and tolerant to faults.
On the other hand, determinism provides repeatability - for the same input
each execution gives the same output, and repeatability provides easier testing,
debugging and fault tolerance. A programmer can estimate the output of correct
execution and compare it with the output got from the program’s execution.
If there is a mismatch, the program contains a bug, and the programmer re-

3

executes the program expecting that the bug manifests again, which is important
for debugging. Importantly for fault-tolerant system, any mismatch in replicas’
outputs should be only due to faulty execution one of the replicas, rather than
due to non-deterministic threads interleaving.

Previous implementations of systems for deterministic multithreaded execu-
tion [9, 8, 10, 11] focus on lock-based applications and provide the deterministic
order of lock acquisitions (weak determinism) or memory accesses (strong deter-
minism). Our goal is to provide deterministic execution of TM applications. We
take advantage of functionalities of TM tools and libraries: a TM compiler instru-
ments memory accesses and distinguishes shared data accesses from thread-local
data accesses, and a TM library provides the synchronization of the shared data
accesses.

We rely on an existing TM library and provide deterministic execution of
TM benchmarks. Our modifications remain within the TM library and do not
require modifications of neither system library nor benchmarks. We suggest sev-
eral different implementations, evaluate and compare performance with non-
deterministic execution. In addition, our modifications can improve performance
of benchmarks with high contention.

2 Description of the work carried out during the STSM

We provide a description of four different implementations of a deterministic
TM system: Serial-run, Write-with-token, Abort-others and Write-X-times.

2.1 Serial-run

The first implementation is a modified global-lock TM implementation. Origi-
nally, TM serializes execution of all threads in the way that threads acquire the
global lock when they start their atomic sections. The first thread that becomes
the lock’s owner can continue the execution, and others have to wait for the lock
to be released. However, the order of threads executing in serial order can be
arbitrary.

Minor modifications of a TM implementation with the global lock provide de-
terministic execution. Adding a global counter for counting beginnings of trans-
actions (begin_counter) and a condition:

begin_counter % thread_number == thread_id (1)

ensures that only one thread can acquire the global lock. Other threads spin.
In the codition, thread_number is the total number of threads running, and

thread_id is in the range [0, thread_number-1].
However, this solution is only sufficient when all threads have the equal num-

ber of transactions to execute. If that is not the case, one thread can finish its
execution and exit, and the other threads spin and wait on the condition that is
true only for the finished thread. Therefore, we implemented a sorted list with

4

thread ids (list_ids) to maintain the round-robin order. An id is added when a
thread is created, and it is removed at the end of the round in which the thread
finished its execution. We use turn instead of begin_counter, and change the
condition (1) to:

list_ids[turn] == thread_id (2)

At the end of a transaction, a thread increments the turn value (modulo
number of threads), so the next thread can acquire the global lock.

This implementation provides no parallelism, and therefore, we propose three
other implementations to rely on TM functionalities and exploit parallelism in
deterministic execution.

2.2 Write-with-token

In this implementation threads are allowed to execute write operations only
when it is their turn, i.e. when they have the token. Otherwise, they spin.

Transactions execute in parallel if they access thread-local data or if they read
shared data. However, when they try to update shared data for the first time,
they will spin until they get the token. With the token, a transaction executes,
commits and passes the token.

In Figure 1 we show an example where three threads access global variables a,
b and c within transactions. The code we show is before and after a TM compiler
transformation: all memory accesses to shared variables within transactions are
transformed to transactional memory accesses, i.e. TX_READ and TX_WRITE.

In Figure 2 we show pseudocode of a write-through TM implementation with
modifications to provide deterministic execution. Our modifications include: a
thread has a permission to write shared data or to commit changes only if it is
its turn (lines 2 and 8), i.e. it is the owner of a single global token, and the turn
is changed at the end of the commit phase (the line 12), so the next thread in
the round-robin order can execute its transaction.

Read-only transactions benefit from this implementation since they can ex-
ecute in parallel and only wait at commit. However, a thread that does not

while(!stop)

 atomic {

 a=11;

 b=21;

 }

while(!stop)

 atomic {

 b=22;

 a=12;

 l=a;

 ...

 ...

 }

while(!stop)

 atomic {

 c++;

 }

th1 th2 th3

while(!stop){

 TX_BEGIN();

 TX_WR(a,11);

 TX_WR(b,21);

 TX_COMMIT();

}

while(!stop){

 TX_BEGIN();

 TX_WR(b,22);

 TX_WR(a,12);

 TX_RD(a);

 ...

 ...

 TX_COMMIT();

}

 a=10; b=20; c=0;

th_create(th1,th2,th3);

while(!stop){

 TX_BEGIN();

 TX_RD(c);

 l=c+1;

 TX_WR(c,l);

 TX_COMMIT();

}

th1 th2 th3

 a=10; b=20; c=0;

th_create(th1,th2,th3);

 TM compiler

transformation

Fig. 1: An example of three threads running transactions in parallel - pseudo source
code and compiler’s transformed code.

5

Fig. 2: Write-with-token implementation. TM functions TX_WR (transactional write)
and TX_COMMIT (commit of a transaction) modified to provide deterministic exe-
cution.

Fig. 3: Abort-others implementation. TM functions TX_WR (transactional write) and
TX_COMMIT (commit of a transaction) modified to provide deterministic execution.

conflict with the owner of the token will spin when it tries to update another
shared data (in our example - the thread th3 from Figure 1). To provide more
parallelism, we propose Abort-others and Write-X-times.

2.3 Abort-others

In this implementation all threads speculatively run in parallel and our system
guarantees that the owner of the token always executes with progress and finally
commits. If there is a conflict with another thread, the system aborts the other
thread. Identically to Write-with-token, the owner of the thread releases the
token at the commit time. Figure 3 shows our modifications (lines 2, 3, 4, and
10, 14).

6

Fig. 4: Write-X-times implementation. TM functions TX_WR (transactional write)
and TX_COMMIT (commit of a transaction) modified to provide deterministic exe-
cution.

2.4 Write-X-times

In the previous implementation, the thread th3 from Figure 1 contains a short
transactions with only one update and has to wait for its turn for a long time
just to be able to commit the short transaction once.

In this proposal, we provide a fair token possession. The owner of the token
executes at least the X number of write operations before it releases the token.
When the owner executes X write operations, it continues the execution until
the next commit, where it releases the token. The modifications are based on
Abort-others and extended by the counter for write operations (Figure 4, lines
15, 16, 17).

2.5 Strong Determinism

Since the TM library provides weak atomicity and does not instrument memory
accesses out of transactions, our modifications presented so far provide only weak
determinism. However, an application can have data races for memory accesses
out of transactions. Different interleaving of these accesses might lead to non-
deterministic execution.

To prevent data races and to provide full determinism of a system, we propose
wrapping non-transactional code into new transactions and executing them in
the deterministic order.

3 Description of the main results obtained

Figure 5 shows preliminary evaluation of the implementation of determinis-
tic execution with the global lock (Serial-run). In our example, threads exe-
cute small conflicting transactions with one counter increment. The number of

7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 6 8

S
p

e
e

d
u

p

Number of threads

Write-through
Global lock

Global lock - deterministic

(a) with 80% abort rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 6 8

S
p

e
e

d
u

p

Number of threads

Write-through
Global lock

Global lock - deterministic

(b) with 88% abort rate

Fig. 5: Performance of a counter increment example. Since it is a modified existing
global lock TM implementation, it performs worse than it, but due to high contention,
in some cases it performs better than the write-through implementation.

threads is: 1, 2, 4, 6, or 8. TinySTM++ (C++ implementation of TinySTM
[3]) Write-through implementation shows a significant abort rate (for 8 threads
running, up to 80% (left) and 88% (right)). We compare three implementations
of TinySTM++: Write-through, Global lock and Global lock - deterministic.
We show speedup normalized to single-threaded Write-through execution. Our
modifications slowdown the original Global lock implementation. However, due
to the high contention running with Write-through, Global lock performs better,
and even Global lock - deterministic performs better in some cases.

For a benchmark with the abort rate less or equal than 80%, Global lock -
deterministic performs worse thanWrite-through, e.g. with the abort rate exactly
80%, Global lock - deterministic is 2.8% slower for 8 threads (Figure 5a). But if
the abort rate increases, Global lock - deterministic performs better, e.g. with
the abort rate 88%, it is 23.9% faster for 8 threads (Figure 5b).

Serial-run provides deterministic execution with low or no overhead for
benchmarks with very high contention. For benchmarks with lower contention,
we suggest other three implementations.

4 Future collaboration with host institution

The participant sides (BSC and TUD) intent to continue the collaboration on
deterministic execution. Apart from finishing the implementation and evaluation
parts of this work, we want to 1) investigate other deterministic orders, rather
than using only round-robin, 2) provide partially parallel commits, and 3) and
finally publish a joint paper containing the work started in this STSM.

8

5 Confirmation by the host institution of the successful

execution of the STSM

Prof. Christof Fetzer has sent the confirmation directly to the STMS coordina-
tors.

References

1. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th annual international symposium
on computer architecture. ISCA ’93 (1993) 289–300

2. Harris, T., Larus, J., Rajwar, R.: Transactional memory. Synthesis Lectures on
Computer Architecture 5(1) (2010) 1–263

3. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based
software transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming. PPoPP ’08, New York,
NY, USA, ACM (2008) 237–246

4. Felber, P., RivieÌĂre, E., Moreira, W., Harmanci, D., Marlier, P., Diestelhorst,
S., Hohmuth, M., Pohlack, M., Cristal, A., Hur, I., Unsal, O., StenstroÌĹm, P.,
Dragojevic, A., Guerraoui, R., Kapalka, M., Gramoli, V., Drepper, U., TomicÌĄ,
S., Afek, Y., Korland, G., Shavit, N., Fetzer, C., Nowack, M., Riegel, T.: The velox
transactional memory stack. Micro, IEEE 30(5) (sept.-oct. 2010) 76 –87

5. Haring, R., Ohmacht, M., Fox, T., Gschwind, M., Satterfield, D., Sugavanam, K.,
Coteus, P., Heidelberger, P., Blumrich, M., Wisniewski, R., Gara, A., Chiu, G.T.,
Boyle, P., Chist, N., Kim, C.: The ibm blue gene/q compute chip. Micro, IEEE
32(2) (march-april 2012) 48 –60

6. J., R.: Transactional synchronization in haswell. (february 2012)
7. Yalcin G., Unsal O., C.A.: Faultm: Error detection and recovery using hardware

transactional memory. The Design, Automation, and Test in Europe Conference
(DATE) (march 2013)

8. Devietti, J., Lucia, B., Ceze, L., Oskin, M.: Dmp: deterministic shared memory
multiprocessing. In: Proceedings of the 14th international conference on Archi-
tectural support for programming languages and operating systems. ASPLOS ’09,
New York, NY, USA, ACM (2009) 85–96

9. Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: efficient deterministic multi-
threading in software. SIGPLAN Not. 44(3) (march 2009) 97–108

10. Bergan, T., Anderson, O., Devietti, J., Ceze, L., Grossman, D.: Coredet: a compiler
and runtime system for deterministic multithreaded execution. In: Proceedings
of the fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems. ASPLOS ’10, New York, NY, USA, ACM (2010)
53–64

11. Devietti, J., Nelson, J., Bergan, T., Ceze, L., Grossman, D.: Rcdc: a relaxed
consistency deterministic computer. SIGPLAN Not. 47(4) (2011) 67–78

