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1 Purpose of the STSM

Deterministic scheduling problems are classified using a system of notation [5, 2]
that facilitates presentation and discussion of scheduling problems. Each deter-
ministic scheduling problem can be described using a triple α|β|γ, where α
describes the processor environment of the problem, β describes the charac-
teristics of the tasks and resources involved in the problem and γ describes
the performance measure. Hence, for instance, a problem of scheduling non-
preemptable, arbitrary-length tasks with precedence constraints on an arbitrary
number of identical processors with the intent of minimizing schedule length can
be denoted simply as described as P |prec|Cmax. The notation is succinct and
unambiguous, and therefore aids communication. In addition, it allows to de-
scribe the entire domain of scheduling problems; and if all scheduling problems
are known a priori, it is easy to find ones which lack solutions.

In a similar vein to the system of classification of scheduling problems, a
framework called ACTA [3] was introduced by the researchers in the field of
database transactions. The framework attempts to unify and describe the spec-
trum of transactional models in terms of a set of characteristics: visibility, con-
sistency, recovery, and permanence. These are captured by specifying what type
of effects transactions can have on each other and on shared objects. I.e., with
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respect to effects on other transactions, transactions can be commit-dependent
or abort-dependent upon one another (a transaction is required to wait for a
previous transaction to commit or abort before it can do so too). This can be
further qualified by adding requirements, e.g., an exclusively-abort-dependent
transaction must not develop more than one abort dependency, and transitive-
commit-dependent transaction is dependent on the committed transactions of
its parent. Furthermore, specific formal conditions for transaction aborts can
be expressed within the ACTA notation. Transactions’ effects on shared ob-
jects are given in terms of a view set, a set of all objects potentially accessible
to a transaction, and an access set, the set of objects actually accessed by the
transaction. When a transaction commits, the values of all objects in its ac-
cess set become persistent. This system also allows to define delegation, by
moving objects from one transaction’s access set to another’s. Limiting what
can be within a transaction’s view and access sets and under what conditions
allows comprehensively to specify transactional behavior. The authors of [3]
suggest that ACTA may be used to specify the behavior and structure of any
transactional model and show this by specifying a the nested, split, joint, and
cooperative transactional models. ACTA allowed the researchers to find a new
model by combining the nested and split transactional models. The framework
also allows to understand the nature of the models better.

However, there is a distinct lack of any tool that would allow formally and
precisely (but also briefly) to describe transactional memory (TM) models. This
is especially true for distributed TM, which is a nebulous term describing very
different systems (e.g., both replicated and non-replicated ones). Therefore, the
goal of this STSM is to look into the properties of TM systems and attempt to
develop a formal and comprehensive taxonomy that could be used as a tool for
their classification.

2 Description of the work carried out during the
STSM

Due to the brevity of the STSM, the researchers focused on trying to identify
the key characteristics of TM systems that need to be taken into account when
creating a comprehensive taxonomy. In this way, the researchers intended to
create a basis for future work on the formalization of the taxonomy. In partic-
ular, the STSM allowed to take a basic survey of the field, however, this survey
needs to be broadened to ensure that the results are comprehensive.

3 Description of the main results obtained

As preliminary results from the STSM, we identified some key characteristics
that describe TM models.
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System Model One of the most fundamental differentiators among TMs is
the system model in which they are used. TMs are used in a variety of sys-
tem models including non-distributed multicore systems and various types dis-
tributed systems. Non-distributed TMs operate in a single machine environment—
this category includes most TM systems, e.g. [4]. Distributed TMs can be either
replicated, partially-replicated, or non-replicated. A replicated TM operates on
a network of nodes, where each node has the same set of shared resources that
are kept consistent (so from a transaction’s point of view, all nodes are the same,
see e.g., [7, 8]). A non-replicated TM operates on a network of nodes, each of
which has a different set of unique resources (so a transaction explicitly points
to nodes it wishes to access resources from, see e.g., [10, 11, 12]). A partially
replicated TM is a hybrid solution, where all resources are replicated, but only
on a subset of the network each. Furthermore, non-distributed TMs can either
allow transactions to access the resources by sending a request to them (this is
the control flow model) or by moving the object to the host of the transaction
(data flow model). In the end, the system model can be briefly characterized as
(where local is the default):

SM =
{
local, repl, prepl, cflow, dflow

}
Concurrency Control Method TMs tend to use the optimistic approach
to concurrency control, where transactions attempt to access shared resources
without synchronization and abort whenever two or more transactions conflict
by accessing the same resource at the same time. This is the more prevalent
approach used e.g., in [4, 10, 12]. The other approach is pessimistic, which
involves preventing conflicts before they happen (see e.g., [1, 9, 11]. Hence
(with opt is the default):

CC =
{
opt, pes

}
Nesting Some TMs allow transactions to be specified inside other transac-
tions. Flat nesting specifies that operations in nested transactions simply be-
come operations of the parent transaction. Close nesting allows for the chil-
dren transactions to execute as transactions, and if they abort, they themselves
restart, but do not cause the parent to abort. Linear nesting transactions are
close nesting transactions with an additional requirement that at most one child
transaction is executed per parent at any time. Open nested transactions as-
sumes that children run at a different level of abstraction than their parents, so
e.g., the parent can commit even if its children abort.

TM =
{
none, flat, close, linear, open

}
API TMs can allow or disallow various operation types to be performed
within. Transactions can distinguish between reads and writes (assumed by
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default), or treat all operations uniformly. They an also allow the user to per-
form manual aborts. Finally, TMs can allow or forbid irrevocable operations
within transactions.

API =
{
op, r/w, mabort, irr

}
Update Management TMs handle executing writes and updating the shared
resources in one of two ways. Some TM systems defer updating shared resources
until they commit (this can be considered the default), while others update in-
place, as soon as the write occurs.

DU =
{
inplace, oncommit

}
Safety and Progress The safety and progress guarantees of a given TM may
also be specified.

Safety =
{
opacity, VWC, TMS1, ...

}
Progress =

{
lockfree, waitfree, ...

}
Notation The characteristics above can be grouped and presented using a
notation similar to those known in scheduling, e.g., as a triple:

SM
∣∣ CC × TM ×UM ×API

∣∣ Safety × Progress

Using this notation a system like Atomic RMI [11] can be described as:

cflow
∣∣ pes, inplace, op, mabort, irr ∣∣ luopacity, strongprog

4 Other

After discussing various research directions during the short visit at EPFL in
September, the researchers involved in the STSM (i.e., Konrad Siek, Pawe l Wo-
jciechowski, and Rachid Guerraoui) agreed that the most interesting avenue for
further joint work on the TM model would be to focus on weakening the con-
sistency property through eventual consistency (EC). Since the parties involved
in the STSM have already worked on the the topic of EC [6, 13], it was decided
to combine our strengths and investigate how EC pertains to the theory and
practice of TM. Hence, as a result of the STSM the researchers were able to
discuss their ideas and, in eect, to plan a future cooperation to work on eventual
consistency with a goal of creating properties that describe EC in the context of
TM. While the work is still preliminary, we expect this aspect of the cooperation
to yield publishable results in the near future (perhaps in 2015).
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5 Confirmation by the host institution of the
successful execution of the STSM
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