
Autonomic Concurrency Regulation in Transactional Memory
Short Term Scientific Mission Relation

Applicant: Diego Rughetti

January 15, 2014

Abstract
Transactional Memory (TM) has emerged as a powerful programming paradigm for concurrent applications. TM allows
encapsulating the access to data shared across concurrent threads within transactions, thus avoiding the need for synchro-
nization mechanisms to be explicitly coded by the programmer. On the other hand, synchronization transparency must not
come at the expense of performance. Hence, TM-based systems must be enriched with mechanisms providing optimized
run-time efficiency. Among the issues to be tackled, a crucial one is related to determining the optimal level of concurrency
(number of threads) to be employed for running the application. When using too low levels of concurrency, the intrinsic
parallelism of applications may not be fully untapped. On the other hand, an excessively high concurrency level may lead to
thrashing phenomena caused by excessive data contention and consequent transaction aborts.

In this relation we present the results of a study aimed to evaluate to what extent existing techniques for self-tuning the
concurrency level of Software Transactional Memory can be effectively used in the context of Hardware Transactional Memory
(Intel TSX). Our study highlights that the techniques developed for STM can exhibit significant drawbacks when employed
in a HTM-based system. This finding has motivated the investigation of two novel approaches for optimal concurrency level
prediction explicitly tailored for Hardware Transaction Memory. By means of an experimental study based on the STAMP
benchmark suite, we show that the proposed techniques are not only lightweight, but also that they can achieve a significantly
higher accuracy than pre-existing optimization techniques proposed for STM.

1 The concurrency problem in STM and HTM
One of the main challenges that a programmer has to face during the design of parallel and distributed applications is how to
ensure its scalability, that is the capacity of an application to increase proportionally its performance increasing the amount of
available computing resources. Focusing our attention on centralized multi-core systems, an ideal parallel application should
scale linearly with the number of available cores. Usually this level of scalability is not reachable due to two main factors:

• contention on physical resource: this issue is experienced by processes/threads that compose the parallel application
when they try to access shared hardware resource (e.g. memory buses). It is strictly related to the specific hardware used
to run the application and keeping under control its impact on performance requires a detailed hardware knowledge;

• contention on logical resource: it is experienced by the processes/threads that compose the parallel application when
they try to concurrently access shared logical resources, like data in shared memory. It is strictly related to the applica-
tion logic and its impact on application performance can often be higher than that caused by the contention on physical
resource.

To limit the impact of logical contention on application scalability and performance the programmer must have a detailed
knowledge of the application logic and of the application data access pattern. In this way the programmer can divide properly
the work between threads minimizing the need for synchronization, and use synchronization mechanisms that minimize
wasted time (when synchronization is strictly necessary). But these tasks are not trivial and, in the context of transactional
applications, TM helps to simplify developer’s work by easing the task of synchronizing access to shared data. This implies
that the logical contention experimented by transactional applications is closely related to the concurrency control mechanism
implemented by the TM.

As we will show in section 3, unlike STM, in many HTM-based applications the main transaction abort reason is not
the logical contention. Performance and scalability still depend from the application transactional profile but the transactions

1

abort reasons change. In HTM a large number of transaction aborts is due, together with shared data conflicts, to the limited
cache size or to a plethora of different micro-architectural reasons.

Despite of these relevant differences, HTM-based applications are also likely to exhibit suboptimal peformance when de-
ployed using a wrong level of parallelism. Like in STM systems, HTM-based applications are prone to thrashing phenomena
(caused by excessive transaction rollbacks) in case the degree of parallelism in the execution is excessively high. On the
other hand, for too low parallelism levels, the achievable speedup may still be suboptimal. So the dynamic control of the
concurrency level is still one of the main technique that can be used to pursue optimal efficiency in HTM-based applications.

The remainder of this report is structured as follow. Section 2 is devoted to providing an overview of the state of the art
on adaptive solutions for TM systems. In Section 3, we discuss the issues and limitations associated with the employment,
in the context of HTM, of solutions originally designed to self-tune the degree of parallelism in STM. Section 4 presents the
novel adaptive solutions that were specifically designed, during this STSM, to optimize the parallelism level of HTM-based
applications. Section 5 presents the results of an experimental evaluation based on the STAMP benchmark. Finally, Section 6
concludes the report and presents future work.

2 Adaptivity in Transactional Memories
An effective way to face performance tuning and dynamic resource allocation problems is to develop some kind of model that
allows to predict the system performance given a specific input and a specific system configuration, so that the model can be
used to choose the better configuration given the current system’s input. The methodologies for developing such a model can
be coarsely classified in three main classes:

• White box approach: this class includes techniques that require the explicit modelling of the internal system dynamics.

• Black box approach: this approach is the exact opposite of the previous one. Black box techniques observe only
inputs, context and outputs of the system and use statistical methods (like machine learning) to identify internal system’s
patterns and rules.

• Gray box approches: in case black and white box approaches are combined, the resulting, hybrid solutions are often
referred to as (Grey box approaches).

In [1] an analytical modeling approach that capture dynamics related to the execution of both transactional read/write
memory access and non-transactional operation has been proposed. The model is used to evaluate the performance of STM
applications as a function of the number of concurrent threads and other workload configuration parameters (E.g. execution
cost of transactional and not-transactional operations, cost of begin, commit and abort operations). This kind of approach
is targeted at building mathematical tools allowing the analysis of the effects of the contention management scheme on
performance. To develop that models a detailed knowledge of the specific conflict detection and management scheme used
by the target STM is required.

The work in [2] presents an analytical model taking as input a workload characterization of the application expressed in
terms of transaction profiles (length of transactions, transactions arrival frequency, number of checkpoints and computing cost
of transactions), contention probability and hardware resources consumption. The model predicts the application execution
time (estimating the wasted time due to conflicts) as function of the number of concurrent threads sustaining the application,
however the prediction is a representation of the average system behaviour over the whole lifetime of the application. In this
approach the input parameters need to be calculated by running the application and profiling the workload and by inspect-
ing the application code. Predictions are related to the execution scenario of the profiled application as determined by the
workload configuration used to run the application. Hence, changing the workload configuration of the application, a new
profiling may be required. In addition, predictions are related to the entire execution of the application. Because during the
lifetime of an application some features, as the workload profile and the transaction conflict probability, can change, then it is
not possible to perform dynamic predictions on basis of the current workload of the application.

The proposal in [3] is targeted at evaluating scalability aspects of STM systems. It relies on the usage of different types of
functions (such as polynomial, rational and logarithmic functions) to approximate the performance of the application when
considering different amounts of concurrent threads. The approximation process is based on measuring the speed-up of the
application over a set of runs, each one executed with a different number of concurrent threads, and then on calculating
the proper function parameters by interpolating the measurements, so as to generate the final function used to predict the
speed-up of the application vs the number of threads. This approach doesn’t require any knowledge of the system and of the
workload but it has a limitation due to the fact that the workload profile of the application is not taken into account. Hence the
prediction may prove unreliable when the profile gets changed wrt the one used during measurement and interpolation phases.
If it changes, e.g. in terms of transaction profiles, over the lifetime of the application, the performance achieved with a given

2

number of concurrent threads can changes. As a consequence, the calculated performance function may become unreliable,
unless calculating it again by taking new measurements.

In [4] a control algorithm dynamically changes the number of threads which can concurrently execute transactions on
basis of the observed transaction conflict rate. It is decreased when rate exceeds an threshold while it is incremented when
the rate is lower than another threshold.

In the approach proposed in [5], incoming transactions are enqueued and sequentialized when an indicator, referred to as
contention intensity CI , exceeds a pre-established threshold. The contention intensity is calculated, by each concurrent thread,
as a dynamic average depending on the number of aborted vs. committed transactions. In this approach the scheduler doesn’t
take scheduling decision for all the executed transactions but only for those that start under high contention. This infrequent
access allows the scheduler to be implemented as a centralized module, thereby enabling an advanced and coherent system-
wide scheduling scheme. Such approach doesn’t affect negatively the performance when the contention is low and it limits
the performance degradation when the contention grows.

In the proposal presented in [6], a transaction is sequentialized when a potential conflict with other running transactions
is predicted. The prediction leverages on the estimation of the expected transaction read-set and write-set (on the basis of the
past behaviour of other or the same transaction). Actually, the sequentializing mechanism is activated only when the amount
of aborted vs. committed transactions exceeds a given threshold. The authors state that the scheduler can be integrated with
any STM that uses visible writes (e.g. [7, 8, 9]).

All the above proposals do not directly estimate the wasted time due to aborted transactions (vs the level of concurrency).
They only indirectly attempt to control the wasted time according to heuristics schemes.

As for machine learning, to the best of our knowledge, it has been used in the context of transactional memories by
three works. In [10] machine learning techniques are used to select the best performing conflict detection and management
algorithm. Conversely, in [11], machine learning is used to select the most suitable thread mapping, i.e., the placement of
application threads on different CPU-cores in order to get the best performance. The goals of both these works are different
and orthogonal with respect to our one, which focus on the regulation of the overall concurrency level in the system. In
[12], a pure Neural Network based approach is used to regulate the level of parallelism STM based applications with the
aim of optimize performance, but a weak point of this approach is that to obtain good performance prediction it is necessary
to collect a consistent number of samples, the most possible distributed in the input parameter space. This is due to the
low extrapolation/generalization capacity of Neural Network approach when a very limited view of the system behaviour is
available (a very limited training set).

In [13], an analytical modelling approach is used to regulate the level of parallelism of STM based applications with the
aim of optimize performance. In this approach a model is developed through the interpolation of real performance samples
using some predefined type of mathematical functions.

In [14] an exploration-based approach that periodically performs on-line monitoring of the number of transaction commits
and aborts and then decides to increase or decrease the level of parallelism has been developed (hill climbing technique
maximizing transaction commit rate). For Distributed Transactional memories (STM) two approaches have been developed:
transactional auto scaler (TAS) and self correcting transactional auto scaler (SCTAS). TAS[14] relies on a mixed AM/ML
approach in which the AM is used to capture the data contention dynamics and the ML is used to predict the inter-node
communication latencies in a DTM platform. The advantage of using ML lies in its black-box nature, which makes it a
very well-fitting choice for coping with performance forecasting of components in cloud infrastructures, where typically
there is little knowledge of the hardware system architecture, particularly as concerns the network. SC-TAS[14] extends TAS
exploiting the idea of learning, by means of on-line ML techniques, a correction function to the output of TAS, hence allowing
to minimize the prediction errors of TAS’ AM-based forecaster.

3 Using already developed approaches with HTM based applications
In this section I will present in more detail two solutions [12, 13] for tuning the parallelism level of STM-based applications,
which I have co-authored during the course of my PhD programme, and prior to performing this STSM. Next, I will discuss
how these approaches should be adapted to be applied to the case of HTM, and what effectiveness is expectable that such
mechanisms achieve, when adapted to operate with HTM-based applications.

Until now we have developed two approaches: one based on neural network [15] and one based on a family of analyt-
ical functions (whose parameters are learnt on-line using regression) to build forecasting models that allow to predict the
application performance while varying the concurrency level. These predictions are then used runtime to choose the better
concurrency level for application execution.

More in detail these performance prediction techniques rely on run-time monitoring of parameters characterizing the
execution of the application, which are fed as input parameters of black-box performance models that allow to predict the

3

Figure 1: Adaptive STM architectures

average wasted time of transactions, i.e. the average execution time spent by all the aborted runs of a transaction. More
formally, the performance model can be seen as the following function:

wtime = f(rssize, wssize, rwaff , wwaff , ttime, ntctime, k),

where wtime is the average wasted time of transactions, rssize is the average read-set size of transactions, wssize is the
average write-set size of transactions, rwaff is an index providing an estimation that an object read by a transaction could also
be written by another concurrent transaction, wwaff is an index providing an estimation that an object written by a transaction
could also be written by another concurrent transaction, ttime is the average execution time of the committed transaction runs
(i.e. the average execution time of the transaction runs that do not get aborted), ntctime is the average execution time of
non-transactional code blocks and k is the number of concurrently running threads.

A key issue with this approach is that the values of the parameters ttime and ntctime can change significantly as the
concurrency level changes. Hence, if one were to measure the values of these parameters when running an application at a
concurrency level k, and used these values as input of the function f to predict wtime at a different concurrency level k′, the
prediction’s accuracy would be most likely significantly degraded.

To cope with this issue both solutions use a, so called, correction function to predict the values of ttime and ntctime in
the target configuration of the parallelism level k′, given the currently measured values of the set of input parameters. This
correction function is tipically simpler (often linear) than f , and can be implemented in various ways, ranging from a simple
polinomial regression approach [13] to neural networks [12]. In this way, as depicted in figure 1, we obtain 2-steps approaches
to predict application performance: in the first step the values of ttime,k and ntctime,k at different level of parallelism k are
evaluated (via the correction function) starting from the ttime,j and ntctime,j sampled at the currently used level of parallelism
j, in the second step we evaluate

wtime,k = f(rssize, wssize, rwaff , wwaff , ttime,k, ntctime,k, k)

and than we use wtime,k to predict, via the performance model, the application throughput for each level of parallelism K:

k

wtime,k + ttime,k + ntctime,k
(1)

In the first phase of the STSM I have been working on adapting/extending this approach (originally conceinved for STM)
to HTM-based systems. The following considerations apply:
1. monitoring overhead: tracing the input features used in these approaches would be too costly in HTM. In order to obtain
informations like readset/writeset size would require instrumenting every single transactional operation, paying a cost analo-
gous to STM instrumentation. Also, some of these features are quite onerous to compute (e.g., rwaff) in STM environments,
and these cost would result relatively amplified in a HTM system (which incurs no instrumentation costs).
2. inadequacy of the input features: As already mentioned, a crucial difference between HTM and STM is that, in the for-
mer, data conflicts are only a possible source of transaction aborts. The input parameters for the performance models used
in [12, 13] are focused in logical contention, and do not to capture the dynamics of aborts due to architectural constraints. As
shown in Table 1, this kind of aborts actually represents the dominant source of aborts in all the STAMP benchmarks, which
highlights the relevance of capturing these phenomena.

4

These considerations led us, first of all, to reconsider the set of input features to be used in the performance model, which
was redefined as follows:

wtime = f(ttime, ntctime, abortconflict, abortcapacity, abortother, k)

where ttime and ntctime are the same of STM, abortconflict is the abort rate due to conflict, abortcapacity is the abort rate
due to L1 cache size and abortother is the abort rate due to reason different by the previous two.

Benchmark conflict capacity other
vacation 1% 41% 58%
kmeans 0% 2% 98%
genome 1% 35% 64%
intruder 1% 40% 59%
labyrinth 0% 79% 21%

ssca2 0% 2% 98%
yada 34% 37% 29%

Table 1: Abort reasons

Concurrency level kmeans intruder genome
1 2% 3% 3%
2 2% 4% 3, 5%
3 3% 1, 3% 3, 5%
4 2% 1, 8% 1, 3%
5 4% 0, 1% 3, 5%
6 3, 5% 0, 1% 3%
7 1, 6% 0, 1% 3, 5%
8 4, 5% 4, 5% 1, 7%

Table 2: Sampling overhead varying concurrency level

We evaluated this approach considering an implementation of the performance model using neural networks, and two
alternative implementations of the correction function, i.e. using linear regression and, again, neural networks. Table 3 shows
the accuracy obtained for all the benchmarks of the STAMP suite, and Table 2 the tracing overhead as the number of thread
varies. We can see that instrumentation overhead is very limited, confirming the adequacy of our choice of input features
for the model, from the perspective of efficiency. Concerning accuracy, the results are less exciting, with errors (expressed
in terms of throughput penalty respect to the optimal obtainable throughput) of up to 18% for the approach using linear
regression, and 15% for the one using neural networks.

Benchmark 2-layered-linear 2-layered-NN 2-layered-optimal
intruder 8% 6, 3% 3, 2%
genome 10% 4, 4% 2, 7%
kmeans 18% 15% 5, 6%
vacation 18% 14% 3, 4%

ssca2 0, 80% 0, 74% 0, 55%
yada 0% 0% 0%

labyrinth 10% 9% 3, 2%

Table 3: Throughput penalty for already developed approaches

The key reason for this is that, contrary to the model developed for STM, in the proposed model for HTM all the input
features for the performance model depend on the level of parallelism. So specific correction functions must be used for each
parameter, increasing significantly the complexity of this approach, and ultimately degrading its accuracy. As a proof, in the
third column of table 3 we provide data about the performance that can be reached if a set of optimal correction functions
for input parameters were available. As we can see comparing the third column with the first two, the performance strictly
depends on the accuracy of the correction functions.

4 A classification based approach
In order to cope with the issues identified above, we worked on an alternative way of approaching the problem of learning
the performance model used to guide adaptation. To this end, we cast the performance prediction problem as a classification
problem, instead of a regression problem. Namely, given an application workload characterization, instead of predicting the
system performance for every possible concurrency level (and then pick the optimal one), we now try to determine exclusively
which is the optimal parallelism level, among the (finite set of) possible ones.

In this way we obtain a ”1-step” approach that does not require the use of correction functions, allowing to remove the
uncertainty introduced by them. We decided to use and compare two different algorithms to solve our classification problem:
Decision Trees and Neural Networks but, as we will see in section 5, both algorithms allow to obtain very similar accuracy.

The fulcrum of the new approach is the construction of the training set for the algorithms. Each sample is a couple < i,o >
where i = [ttime, ntctime, abortconflict, abortcapacity, abortother] and o = [kopt], with kopt that represent the optimal level
of parallelism, that is the concurrency level that ensure the better throughput given the workload profile represented by i.

The training set can be populated executing a few runs of the application with different inputs/configuration parameters.
For each input the application is executed with every available level of parallelism, i.e. from 1 to the maximum number of

5

Benchmark classification - DT classification-NN 2-layered-linear 2-layered-NN
intruder 7, 8% 2, 7% 8% 6, 3%
genome 5, 2% 7, 1% 10% 4, 4%
kmeans 5, 4% 5, 9% 18% 15%
vacation 3, 1% 3, 8% 18% 14%

ssca2 0, 70% 0, 72% 0, 80% 0, 74%
yada 0% 0% 0% 0%

labyrinth 3, 8% 3, 5% 10% 9%
average 3, 71% 3, 39% 9, 33% 7, 06%

Table 4: Throughput penalty

hardware thread supported by the target system. This way, for each workload/configuration tested during the training of the
system, it is possible to determine the best performing concurrency level.

As we will show in section 5, the new approach achieves consistently better accuracy that the approaches in [12] and
[13]. A relevant advantage of the new approach, beyond its higher accuracy, consists of its simplicity. On the other hand, a
drawback with respect to our previous approach — to which we refer to in the following as, 2-layered approach— is that,
differently from [12] and [13], it doesn’t allow to estimate the absolute performance achievable when using a different degree
of parallelism, which could be useful, for instance, to support what-if analysis. So the 2-layered approach is preferable
in environments where it is necessary to make predictions in a wide set of scenarios (e.g. resource allocations in cloud
environments).

5 Experimental Results
To evaluate the effectiveness of the approaches in [13], [12] and the new classification based approach we developed an
adaptive prototype adding a statistic collector and a concurrency regulation module to the STAMP[16] benchmark suite. We
executed our test on top of system equipped with an Intel Haswell Xeon E3-1275 3,5 GHz processor (8 virtual core: 4 physical
with hyper-trading) with 32 GB RAM. Using intel TSX extension can append that a transaction, for different reasons (e.g.
the size of the transaction dataset exceed the available L1 cache), can not be executed in hardware. In this case a software
execution of the transaction is required. For our first experiments, as suggested by Intel, we use global lock acquisition that
ensure the atomicity for software transactions on the fall-back path.

During the benchmark execution the statistic collector monitors the application and collects data about the workload
profile. These data are then used runtime by the concurrency regulation module to schedule the application thread on top of
the HTM. The table 4 shows the mean penalty, respect to the optimal throughput, due to the choice of the wrong concurrency
level choices. The first and the second columns, with labels classification-DT and classification-NN show results for the
classification approach implemented respectively with decision three algorithm and neural network. The third column shows
results for the Neural Network based 2-steps approach in which the correction function is obtained with linear regression.
The fourth column shows results for the Neural Network based 2-steps approach in which the correction function is obtained
using the ratio between the mean values of the sampled parameters at each level of parallelism.

As we can see by comparing the first two columns, excluding the row related to the Intruder benchmark, using neural
network or decision tree to implement classification approaches yields approximately the same performance. Looking at the
third and fourth column, which report (just like in Table 3) the accuracy achievable by using the 2-layered approach, it emerges
clearly that the proposed classification approach can achieve significantly higher accuracy than the previously employed
solutions: the average throughput penalty (across all benchmarks) is in fact equal to 3, 71% and 3, 39%, for the classification-
based approach using, respectively, decision tree (DT) and neural network (NN), whereas the average throughput penalty for
the 2-layered approaches is of about 9, 33% when using a linear correction function and of approximately 7, 06% when using
Neural Networks.

The graphs in figure 2 shows the application speedup with respect to an uninstrumented sequential version, while varying
the degree of parallelism, for two benchmarks of the STAMP suite, respectively Intruder and Vacation. When running the
non-adaptive version of the benchmark, we fix the degree of parallelism statically; on the other hand, when considering the
adaptive version, we set the initial and maximum parallelism level according to the value reported on the x-axis of the figure,
but then let the self-tuning mechanism adjust the parallelism level according to the indications of the performance model.

For the Intruder benchmark, increasing the level of parallelism, the performance of the non-adaptive version of the ap-
plication increases until it reaches a concurrency level equal to 4. Over this optimal level of parallelism, the performance
decreases due to an excessive number of transaction aborts. The adaptive version of the application, instead, is able to deter-
mine at runtime which is the optimal concurrency level. As the dotted line in the graph shows, if we execute the application
with a number of maximum available thread greater than 4, the adaptive version ensures the same speed-up that the appli-

6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

s
p
e
e
d
u
p

Maximum concurrent threads

intruder

Adaptive
Not-adaptive

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

s
p
e
e
d
u
p

Maximum concurrent threads

vacation

Adaptive
Not-adaptive

Figure 2: speedup

cation can reach when it is executed with the optimal concurrency level. Similar results can be obtained with the Vacation
benchmark as showed by the second graph.

6 Conclusion and future work
In this report we presented the results of a study aimed at evaluating the applicability of already developed concurrency
regulation techniques, originally conceived for STM systems, when applied to HTM. We showed that these techniques can
suffer of relevant drawbacks, which are significantly exacerbated in HTM context.

Next, we presented a new approach for concurrency regulation based on classification techniques that are simpler and
allow to obtain better performance with respect to the previously developed ones. We presented preliminary experimental
results executing the STAMP benchmark suite on top of an autonomic concurrency regulation prototype that uses global
lock when a transaction can not be executed in hardware. Moreover we have implemented another prototype that use NOrec
STM[17] on the fall-back path. The next step will be to evaluate the new techniques using the second prototype.

References
[1] Pierangelo Di Sanzo, Bruno Ciciani, Roberto Palmieri, Francesco Quaglia, and Paolo Romano. On the analytical

modeling of concurrency control algorithms for software transactional memories: The case of commit-time-locking.
volume 69, pages 187 – 205, 2012.

[2] Zhengyu He and Bo Hong. Modeling the run-time behavior of transactional memory. In Modeling, Analysis Simulation
of Computer and Telecommunication Systems, 2010 IEEE International Symposium on, pages 307 –315, aug. 2010.

[3] Aleksandar Dragojević and Rachid Guerraoui. Predicting the Scalability of an STM: A Pragmatic Approach, 2010.

[4] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris Kirkham, and Ian Watson. Advanced concur-
rency control for transactional memory using transaction commit rate. In Proceedings of the 14th international Euro-Par
Conference on Parallel Processing, pages 719–728, Berlin, Heidelberg, 2008. Springer-Verlag.

[5] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling for transactional memory systems. In Pro-
ceedings of the 20th annual Symposium on Parallelism in Algorithms and Architectures, pages 169–178, New York, NY,
USA, 2008. ACM.

[6] Aleksandar Dragojević, Rachid Guerraoui, Anmol V. Singh, and Vasu Singh. Preventing versus curing: avoiding con-
flicts in transactional memories. In Proceedings of the 28th ACM symposium on Principles of distributed computing,
pages 7–16, New York, NY, USA, 2009. ACM.

[7] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. Stretching transactional memory. volume 44, pages
155–165, New York, NY, USA, June 2009. ACM.

[8] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software transactional memory for
dynamic-sized data structures. In Proceedings of the twenty-second annual symposium on Principles of distributed
computing, PODC ’03, pages 92–101, New York, NY, USA, 2003. ACM.

7

[9] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based transactional memory with scalable time bases. In
Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and architectures, SPAA ’07, pages
221–228, New York, NY, USA, 2007. ACM.

[10] Qingping Wang, Sameer Kulkarni, John V. Cavazos, and Michael Spear. Towards applying machine learning to adaptive
transactional memory. In Proceedings of the 6th ACM SIGPLAN Workshop on Transactional Computing, 2011.

[11] Marcio Castro, Luis Fabricio Wanderley Goes, Christiane Pousa Ribeiro, Murray Cole, Marcelo Cintra, and Jean-
Francois Mehaut. A machine learning-based approach for thread mapping on transactional memory applications. In
Proceedings of the 2011 18th International Conference on High Performance Computing, HIPC ’11, pages 1–10, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[12] Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, and Francesco Quaglia. Machine learning-based self-adjusting
concurrency in software transactional memory systems. In Proceedings of the 2012 IEEE 20th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pages 278–285, Washington, DC,
USA, 2012. IEEE Computer Society.

[13] Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, and Francesco Quaglia. Regulating concurrency in software
transactional memory: An effective model-based approach. In Proceedings of the 7th International Conference on
Self-Adaptive and Self-Organizing Systems. IEEE Computer Society, 2013.

[14] Diego Didona, Pascal Felber, Derin Harmanci, Paolo Romano, and Jrg Schenker. Identifying the optimal level of
parallelism in transactional memory applications. In NETYS, Lecture Notes in Computer Science, pages 233–247.
Springer, 2013.

[15] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[16] Chi C. Minh, Jaewoong Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford Transactional Applications for
Multi-Processing. In Proceedings of the IEEE International Symposium on Workload Characterization, pages 35–46,
Seattle, WA, USA, 2008.

[17] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: Streamlining stm by abolishing ownership records.
In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’10, pages 67–78, New York, NY, USA, 2010. ACM.

8

