
Scientific Report for STSM project
Fabio Perfetti

{perfabio87@gmail.com}

March 2013

Reference Number COST-STSM-IC1001-12576
Grant Number COST-STSM-ECOST-STSM-IC1001-060113-

026298
COST Action IC1001
Action Description ElasticBenchDTM: a benchmarking framework

for elastic distributed transactional memory sys-
tems

STSM Period 2013-01-06 to 2013-03-15
Participant Fabio Perfetti

University of Rome, "La Sapienza"
Host Prof. Paolo Romano

Distributed System Groups, INESC-ID

1

1 Background

The advent of Cloud computing has drastically impacted the resource provi-
sioning scheme at the basis of current computing platforms: in typical Cloud
Infrastructure as a Service (IaaS) platforms, in fact, resources are dispensed
elastically, with a seemingly unbounded amount computational power and
storage available on demand, in a pay-only-for-what-you-use pricing model.
This elastic scaling capability comes with the promise of enormous money
saving and efficiency. On the other hand, it requires efforts to program-
mers, faced with the task of developing distributed applications tailored for
dynamic, elastic, fault-prone environments.

Distributed Transactional Memory (DTM) appears to be an attractive
paradigm to address this issue: in a DTM platform programmers can exploit
the abstraction of transaction, delegating to a distributed middleware the
burden of dealing with concurrency, fault-tolerance, transfers of state among
nodes after the elastic rescaling of the system. DTM systems have garnered
an increasing interest of late, also thanks to the emergence of cloud comput-
ing, and several research groups world-wide have started exploring the design
of novel distributed consistency algorithms capable of ensuring transactional
consistency semantics in a scalable and efficient way [1, 2, 3, 4, 5, 6, 7, 8].
On the other hand, a problem that has so far received less attention in the
research community is related to the issue of how to support the dynamic
resizing of a DTM platform in order to meet pre-determined QoS agree-
ments while minimizing operational costs. This means, in a typical Cloud
computing environment, determining the most cost-effective configuration
of the platform, in terms of number of computational nodes and their type
(e.g. large vs small instances in Amazon’s EC2), which can satisfy the SLAs
established between the application developers/users and the underlying
IaaS/PaaS providers.

This is far from being a trivial problem, as the design of an automatic
elastic scaling mechanism requires tackling a number of complex issues:

• Predicting the performance of a DTM-based application when de-
ployed over a different set of nodes and/or nodes having different com-
putational capabilities.

• Minimizing the overheads associated with the reconfiguration of the
system, which, in the case of DTM platforms, can demand expen-
sive state transfer phases aimed at ensuring the system’s coherency in
presence of nodes joining/leaving the platform.

• Identifying adequate trade-offs between reactivity and robustness of
the controller in charge of determining the scale of the platform, in
order to strike a balance between the efficiency of the system (which
depends on the ability of the controller to timely respond to fluctu-

2

ations of the workload), and its stability (keeping into account that
excessively reactive policies may lead the platform to thrash in case
reconfigurations are triggered excessively frequently).

Recently, several solutions have been proposed that address a subset
of the above mentioned problems. For instance, the work by Didona et
al. [9] and Di Sanzo et al. [10, 11] have leveraged on analytical modelling
and/or machine-learning methodologies to develop accurate predictors of the
scalability of DTM applications. Several works have proposed to rely either
on Virtual Machine (VM) migration supports [12] and/or on specialized
solutions keeping into account the transactional nature of the platform [13,
14] to minimize state transfer costs in transactional systems. Finally, the
issue of balancing responsiveness and stability when controlling the elastic
scaling of replicated systems has been addressed in several works: Ali-Eldin
et al. [15], for instance, apply classic control techniques to guide the elastic
scaling of a web-farm, whereas Amza et al. [16] address this problem for the
case of replicated database systems.

However, to the best of our knowledge, we are not aware of any rigorous
approach that addresses the aforementioned problems in a holistic way for
the increasingly relevant scenario of DTM platforms.

2 Purpose of the STSM

The purpose of this STSM has been to develop a benchmarking framework
specifically designed to assess, in a unified testing environment, the effec-
tiveness/efficiency of elastic scaling techniques for DTM platforms, and, in
particular, their ability to tackle the problems discussed in the previous
section. The resulting benchmarking framework, which we called Elas-
ticDTMBench, offers the following key features:

• it provides a set of heterogeneous benchmarks for DTM platforms,
inspired by popular benchmarks proposed both in the database and in
the (non-distributed) transactional memory communities;

• it facilitates the portability of the benchmarking applications across
different DTM platforms by abstracting over the implementation of the
underlying DTM platform via a simple, generic interface of a transac-
tional key/value store.

• it offers a number of time-varying load generation strategies, specifi-
cally designed to stress the elasticity of the DTM platform under test.
These include both trace-based load injection mechanisms as well as
loads specifiable via analytical functions (e.g. steps, ramps and peri-
odic funcitons).

3

!"#$%&
'()*+*,%-

.-%%&/00$

/%-10-+#2"%
/-%3*")0-

433 5%+06%

4")*6%&(00$

!)#)*7)*"7

8&8&8

9$:7)%-

4"):#)0-

;0#3&/-%3*")0-

!;4

<03%&2

!)#)7&90$$%")0-

<03%&=

>$#7)*"*)?&902)-0$$%-

@%2"A+#-B7

C0-B$0#3&D%2%-#)0-

902"-%)%&EFG&H+($%+%2)#)*02

C/GI7&/-0J%7

!)#)*7)*"7&@:7

D%2%-*"&EFG&*2)%-1#"%

.-0+&4"):#)0-

Figure 1: Overview of ElasticDTMBench’s architecture.

• it allows to plug-and-play, in a seamless fashion, alternative load and
performance prediction techniques. Also in this case, this is achieved
via the definition of abstract interfaces aimed at encapsulating the
heterogeneity of the actual implementation of these two important
modules.

• it ensures portability across different IaaS platforms by means of an
abstraction layer that mediates the interactions between the underly-
ing IaaS provider and the controller in charge of automating the elastic
scaling process.

ElasticDTMBench integrates and extends a number of open-source
projects, and is also distributed as an open-source project that will be made
shortly publicly available on the web. By adopting an open-source licens-
ing scheme and a flexible, and easily extensible design, our hope is that
ElasticDTMBench can become a reference framework for the researchers
active in this challenging emerging area.

3 ElasticDTMBench Overview

This section is devoted to overviewing the architecture of ElasticDTM-
Bench, which is illustrated by the diagram in Figure 1. In the following we
describe the main modules composing ElasticDTMBench, discussing the
key design choices that were taken while developing them and the rationale
that motivated such decisions.

Benchmarking Applications: ElasticDTMBench includes the follow-
ing 4 benchmarking applications:

• Warehouse: This benchmark is inspired to, and indeed represents an
arguable close porting of, the TPC-C [17] benchmark. As in TPC-
C, this benchmark emulates the activities of a wholesale supplier and
includes three different transaction types: two conflict-prone update

4

transactions (inspired to the payment and newOrder transaction pro-
files of the TPC-C benchmark) having different access pattern char-
acteristics, and a long-running read-only transaction (inspired to the
orderStatus transaction profile of TPC-C).

• Vacation: This benchmark represents a porting of the homonymous
benchmark of the STAMP [18] banchmark suite. The transactions
generated by this benchmark mimic the activities of a travel agency,
including the browsing and manipulation of a set of trees that keep
track of customers and their reservations for various travel items. In
addition to the original three types of (update) transactions (reserva-
tions, cancellations, and updates), this benchmark has been extended
to include an additional read-only transaction profile simulating the
search of travel items by end-users before the actual booking.

• WebSession: This benchmark emulates the transactional update of
information associated with the session state maintained by an appli-
cation/web server. These transactions are characterized by very small
footprints (i.e., number of objects read/written per transaction) and
a reduced contention probability.

• IntSet: This benchmark is inspired to the popular micro-benchmark
suite adopted in the evaluation of several (non-distributed) TM sys-
tems [19] and consists of several implementations of a set interface
(e.g., linked list and skip list). The benchmark is easily tunable to
configure different degrees of contention and transactions accessing a
small vs large number of objects.

Generic DTM Interface: In order to achieve portability across heteroge-
nous DTM platforms, ElasticDTMBench relies on a simple, yet effective
technique (analogous to the approach adopted, for instance, in Carvalho et
al. [20]), which is based on the idea of hiding the implementation details of
the underlying platform by means of an abstract, generic interface. This ap-
proach allows decoupling the benchmarks’ implementations from the actual
DTM platform they are being deployed on. In fact, the interaction between
the benchmarks and the underlying DTM platform is mediated by means of
an abstract interface that exposes standard methods for demarcating trans-
actions and manipulating data. The interface assumes a simple key/value
model for the representation of data, which, thanks to its simplicity, is ex-
pected to be easily matched by most of the existing DTM platforms. An
important building block that ElasticDTMBench integrates and extends
to this purpose is the open-source project RadarGun [21], developed by Red
Hat. RadarGun was originally designed to benchmark heterogeneous key
value stores and has been extended, in the scope of this STSM, to support

5

elastic rescaling of the platform during benchmarking, generation of time-
varying workloads and on-line monitoring of the benchmarks’ performance.

Workload Generation: given the focus of ElasticDTMBench toward
the evaluation of the elasticity properties of DTM platforms, significant ef-
fort has been invested in the design and implementation of flexible workload
generators capable of generating a wide range of dynamic load curves. More
in detail, each node of ElasticDTMBench ships with a local workload
generator that uses a pool of threads to inject load (i.e., transactions) in the
benchmark. The local load-injectors are configurable to operate according
to a number of alternative strategies. Specifically, the load injectors can em-
ulate open/closed user populations [22] submitting requests at either fixed
or time-varying arrival rates/think-times; further, the time-varying arrival
rates/think-times can be defined using both analytical functions and traces
from real systems (such as the traces gather for World Cup 98 [23], or re-
cently made available by Google [24]). Given the distributed nature of the
workload generation (i.e., each node in the system can locally inject transac-
tions), ElasticDTMBench relies on a master/slave approach to globally
regulate the injection of load in the platform. Specifically, ElasticDTM-
Bench uses a dedicated process, called master-load-injector, which orches-
trates the evolution of the workload generation according to a user-tunable
load-recipe. The load-recipe is specified as a set of sequential stages, where
each stage has a pre-determined duration and fully defines the workload
type to be generated by each node of the platform during that time period.
The master-load-injector provides the load-recipe to the set of nodes that
are initially configured to run the benchmark, and is responsible for mon-
itoring the global completion of a stage before triggering the advancement
to the new one. In addition, it synchronizes the workload generation on any
new node that dynamically joins the system, making sure that it is correctly
aligned with the currently running stage.

Platform monitoring: ElasticDTMBench relies on the open-source
project Workload and Performance Monitor (WPM), developed by the team
of Prof. Francesco Quaglia of Rome University in the context of the EU
project Cloud-TM [25]. WPM is designed to maximize scalability and effi-
ciency of the monitoring infrastructure for a DTM platform. To this end,
it relies on the Lattice bus, which allows for transparently using lightweight
data dissemination overlays such as Pub-Sub architectures. Further, WPM
is designed to minimize the bandwidth consumption in geographically dis-
tributed DTM infrastructures by means of, so-called, log-services, namely
processes in charge of aggregating the data streams generated by the DTM
nodes belonging to the same LAN/data-center, and to disseminate them via
WAN-links using space-efficient encoding techniques. WPM interacts with
the DTM platform using an extensible architecture based on the industry-

6

standard JMX [27] framework to extract statistical information from the
local instance of the DTM node.

Elasticity controller: Finally, the Elasticity Controller (EC) is the mod-
ule in charge of automatizing the elastic scaling of the platform. Since one
of the key goals of ElasticDTMBench is to evaluate alternative EC algo-
rithm, particular care has been taken in adopting a modular design for this
component, which has, in fact, been broken down into a set of individual
sub-components coupled via well-defined interfaces. Specifically, the EC is
composed of the following sub-components:

• Load Predictor: this modules is fed with the stream of statistics gath-
ered on-line from the platform and is meant to forecasting future work-
load volume and characteristics in order to allow the implementation
of proactive provisioning policies. The current prototype fully specifies
the interface of this component, but ships with a dummy implemen-
tation. The plan is to incorporate in ElasticDTMBench a simple
predictor based on Kalman Filters [26], but this is still a work-in-
progress.

• Performance Predictor: this module abstract over an oracle capable,
given the current workload characteristics of the system, to predict
the performance that the DTM will exhibit when deployed on a spe-
cific platform scale (i.e., number of nodes, number of threads active per
node and capacity of the node). The current version of ElasticDTM-
Bench integrates the performance predictor presented in Didona et
al. [9] and, at the time of writing, work is in progress to integrate a sec-
ond implementation of this module, which is based on the simulation
model developed by Di Sanzo et al. [10].

• SLA specification: In order to define the QoS and cost constraints
that should be enforced by the EC, ElasticDTMBench relies on
the SLA definition and negotiation framweork developed in the con-
text of the SLA@SOI European project [28]. This framework defines
extensible templates encoded in XML, for which we have defined a
specific instance allowing to express constraints on the following Key
Performance Indicators for each type of transactional class generated
by the benchmarking application: i) response time, ii) abort rate,
and iii) throughput. Given the open and non-binding nature, of the
SLA@SOI template, however, it is straightforward to extend them and
incorporate additional types of KPIs or contraints.

• Scale Optimizer: Finally, the Scale Optimizer is the module in charge
of determining the platform configuration to be used in order to match
the specified SLAs and given the current/predicted workload. The cur-
rent implementation integrates a simple, reactive policy, which selects

7

the scale of the platform that minimizes the operational cost (i.e.,
number of nodes) given the current load and a maximum tolerable
abort rate.

• Actuator: As already mentioned in the previous section, ElasticDTM-
Bench is designed to achieve portability across heterogeneous IaaS
platforms. To this end, the actuator of the elastic scaling policies
determined by the scale optimizer has been based on the open-source
project δ-cloud [29], an abstraction layer which exposes a uniform API
to automate provisioning of resources from IaaS providers (such as
Amazon EC2, OpenNebula and RackSpace).

4 Future collaboration with host institution

As already discussed in the previous section, despite a preliminary proto-
type of ElasticDTMBench has already been developed during the STSM,
there are still several aspects that need to be completed before the project
can be publicly released. For this purpose, in the next months, both research
teams have decided to continue the mutual collaboration.

The work done during this STSM will be integrated in my thesis project,
whose completion is expected by May 2013. We also plan to prepare a
joint paper aimed at advertising ElasticDTMBench to the community of
researchers active in the area of (elastic) DTM systems.

5 Confirmation by the host institution of the suc-

cessful execution of the STSM

The Host Paolo Romano from INESC-ID confirms that Fabio Perfetti
achieved all the targets that we defined for this collaboration with distinc-
tion. ElasticDTMBench is a promising tool that, based on our experi-
ence with the development and evaluation of DTM platforms, may greatly
facilitate the evaluation of future solutions in this area.

8

References

[1] T. Kobus, M. Kokocinski and P. T. Wojciechowski. Hybrid Replication:
State-Machine-based and Deferred-Update Replication Schemes Com-
bined. In Proc. of International Conference on Distributed Computing
Systems (ICDCS). July 2013.

[2] J. Kim, B. Ravindran. Scheduling Transactions in Replicated Dis-
tributed Transactional Memory. In Proc. of International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). 2013.

[3] M. Herlihy, Y. Sun. Distributed transactional memory for metric-space
networks. In Proc. of International Symposium on Distributed Comput-
ing (DISC). 2005.

[4] H. Attiya, V. Gramoli and A. Milani. A Provably Starvation-Free Dis-
tributed Directory Protocol. In Proc. of International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS). 2010.

[5] A. Dash and B. Demsky. Automatically Generating Symbolic Prefetches
for Distributed Transactional Memories. In Proc. of International Mid-
dleware Conference (Middleware). 2010.

[6] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. Kirkham and I.
Watson. DiSTM: A Software Transactional Memory Framework for
Clusters. In Proc. of International Conference on Parallel Processing
(ICPP). 2008.

[7] P. Di Sanzo, D. Rughetti, B. Ciciani and F.Quaglia. Auto-tuning of
Cloud-based In-memory Transactional Data Grids via Machine Learn-
ing. In Proc. of International Symposium on Network Cloud Computing
and Applications (NCCA). 2012.

[8] M. Couceiro, P. Romano and L. Rodrigues. PolyCert: Polymorphic Self-
Optimizing Replication for In-Memory Transactional Grids. In Proc. of
International Middleware Conference (Middleware). 2011.

[9] D. Didona, P. Romano, S. Peluso and F. Quaglia. Transactional auto
scaler: Elastic scaling of in-memory transactional data grids. In Proc.
of Ninth International Conference on Autonomic Computing (ICAC).
2012.

[10] P. Di Sanzo, F. Antonacci, B. Ciciani, R. Palmieri, A. Pellegrini,
S. Peluso, F. Quaglia, D. Rughetti and R. Vitali. A Framework for
High Performance Simulation of Transactional Data Grid Platforms. In
Proc. of International Conference on Simulation Tools and Techniques
(SIMUTools). 2013.

9

[11] D. Rughetti, P. Di Sanzo, B. Ciciani and F. Quaglia. Machine Learning-
based Self-adjusting Concurrency in Software Transactional Memory
Systems. In Proc. of International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MAS-
COTS). 2012.

[12] E. Cecchet, R. Singh, U. Sharma, and P. J. Shenoy. Dolly:
virtualization-driven database provisioning for the cloud. In Proc. of
International Conference on Virtual Execution Environments (VEE).
2011.

[13] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: live
migration in shared nothing databases for elastic cloud platforms. In
Proc. of International Conference on Management of data (COMAD).
2011.

[14] S. Das, S. Nishimura, D. Agrawal, and A. E. Abbadi. Albatross:
Lightweight elasticity in shared storage databases for the cloud using
live data migration. In Proc. of Very Large Data Bases Conference
(VLDB). 2011.

[15] Ahmed Ali-Eldin, J. Tordsson, E. Elmroth. An Adaptive Hybrid Elas-
ticity Controller for Cloud Infrastructures. In Proc. of Network Opera-
tions and Management Symposium (NOMS). 2012.

[16] J. Chen, G. Soundararajan, C. Amza. Autonomic provisioning of back-
end databases in dynamic content web servers. In Proc. of International
Conference on Autonomic Computing (ICAC). 2006.

[17] TPC-C on-line transaction processing benchmark,
http://www.tpc.org/tpcc/default.asp

[18] C. C. Minh, JaeWoong Chung, C. Kozyrakis, K. Olukotun. STAMP:
Stanford Transactional Applications for Multi-Processing. In Proc.
of International Symposium on Workload Characterization (IISWC).
2008.

[19] M. Herlihy , V. Luchangco , M. Moir. A flexible framework for im-
plementing software transactional memory. In Proc. of Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). 2006.

[20] N. Carvalho, P. Romano and L. Rodrigues. A Generic Framework for
Replicated Software Transactional Memories (short paper). In Proc.
of International Symposium on Network Computing and Applications
(NCA). 2011.

10

[21] Radargun benchmark framework, https://github.com/radargun/radargun/wiki

[22] D. A. Menascé, V. A. F. Almeida: Capacity Planning for Web Services:
metrics, models and methods. Prentice Hall, PTR

[23] A. Martin, J. Tai. Workload Characterization of the 1998 World Cup
Web Site. In Tech. Rep. HPL-1999-35R1, HP Labs. 1999.

[24] Google Cluster Data, http://googleresearch.blogspot.com/2010/01/google-
cluster-data.html

[25] R. Palmieri, P. Di Sanzo, F. Quaglia, P. Romano, S. Peluso and D.
Didona. Integrated Monitoring of Infrastructures and Applications. In
Proc. of Cloud Environments Cloud Computing Project and Initiatives
(CCPI). 2011.

[26] G. Welch and G. Bishop. An introduction to the Kalman filter. In Tech.
Rep. 95-041 University of North Carolina at Chapel Hill, Department
of Computer Science. 1995.

[27] Sun Microsystems: The Java Tutorials – Java Management Exten-
sions (JMX). http://java.sun.com/docs/books/tutorial/jmx/index.html,
2008.

[28] SLA@SOI EU project. http://sla-at-soi.eu/

[29] δ-Cloud, open source project. http://deltacloud.apache.org/

11

