
STSM: Theory of Transactional Memory

ECOST-STSM-IC1001-010912-017912

Research Report

October 26, 2012

Disjoint-access parallelism and wait-freedom are two desirable properties for implementations of concur-
rent objects. Disjoint-access parallelism guarantees that processes operating on different parts of an imple-
mented object do not interfere with each other by accessing common base objects. Thus, disjoint-access
parallel algorithms allow for increased parallelism. Wait-freedom guarantees progress for each nonfaulty
process, even when other processes run at arbitrary speeds or crash.

Transactional memory (TM) provides a general mechanism for obtaining a concurrent implementation of
any object from its sequential code. TM supports the execution of transactions. A transaction tries to apply
the sequential code of an operation supported by some object in a concurrent setting and it may either
succeed, in which case we say it commits, or fail, in which case we say it aborts. If a transaction aborts, none
of its changes ever become visible.

In [1], we have shown that there is no TM algorithm that ensures both disjoint-access parallelism and wait-
freedom. More specifically, we have shown this impossibility result for TM algorithms that continuously restart
a transaction whenever it aborts, until it commits. Moreover, in [1], in order to overcome this impossibility
result we have presented a TM algorithm that ensures disjoint-access parallelism and wait-freedom when
applied to objects that have a bound on the number of data items accessed by each operation they support.

1 Description of the work carried out during the STSM

The goal of this scientific mission is to discover whether our previous impossibility result holds for weaker
definitions of disjoint-access parallelism, and if this is so, to find different ways to overcome it. These two
goals where partially covered during the first visit of Alessia Milani to FORTH, in June 2012, where we had
some preliminary ideas on both directions.

More specifically, we tried to extend the impossibility result by considering a weaker definition of disjoint-
access parallelism, called partial disjoint-access parallelism. Intuitively, partial disjoint-access parallelism
allows two processes executing a TM algorithm to interfere with each other on some specific set of base
objects (e.g., on a single timestamp object), even when they operate on different parts of the implemented
object. Formal definition of this property is provided in the next section. Then, we tried to prove that there
is no TM algorithm that ensures both partial disjoint-access parallelism and wait-freedom. Although we have
not completed this proof yet, we have a much better understanding of this proof’s subtleties.

Recall that the algorithm, DAP-UC, we presented in [1], ensures disjoint-access parallelism and wait-
freedom, when applied to objects that have a bound on the number of data items accessed by each operation
they support. During the first visit, we designed a new algorithm, called PDAP-UC, that ensures partially
disjoint-access parallel and wait-freedom, when applied to any object with bounded number of entry points.
Intuitively, an entry point is a data item that is accessed first by an operation of the object.

During the second visit, we first introduced a new disjoint-access parallel property called transitive
disjoint-access parallelism, or tdap. Intuitively, this property allows two transactions to contend on some

1



base object even if they operate on different parts of the implemented object, when their execution intervals
overlap with other transactions which are allowed to contend under (our original definition of) disjoint-access
parallelism. Since, this property is stronger than disjoint-access parallelism, our previous result [1] is applied;
hence, it follows that no TM algorithm is tdap and wait-free for unbounded objects. Therefore, we defined the
partially tdap property, which is similar with partial disjoint-access parallelism except that disjoint-access
parallelism is replaced with tdap. Formal definitions of these properties are provided in the next section.

Then, we designed a new algorithm, called PtDAP-UC, that is partially tdap and wait-free, for unbounded
objects with unbounded entry points.

2 Description of the main results obtained

In this Section a preliminary version of the results obtained is presented.

2.1 Formal definitions of new properties

For simplicity, we use the term operation to refer to the execution of a transaction until it commits, given
that the transaction is restarted whenever it aborts. Two operations overlap if one of them in invoked during
the execution interval of the other. If a process has invoked an operation that has not yet returned, we say
that the operation is active. A process can have at most one active operation in any configuration.

Disjoint-Access Parallel. We start by providing the definition of disjoint-access parallelism, as presented
in [1].

Fix any execution α = C0, φ0, C1, φ1, . . . , produced by a linearizable TM algorithm U . Then there is at
least one linearization of the completed operations in α and some subset of the uncompleted operations in
α such that the responses of all these operations are consistent. Fix any such linearization l. Let op be any
one of these operations, let Iop be its execution interval, let Ci denote the first configuration of Iop, and
let Cj be the first configuration at which op has been linearized in l. Since each process has at most one
uncompleted operation in α and each operation is linearized in l, within its execution interval, the set of
operations linearized before Ci is finite. For i ≤ k < j, let Sk denote the state of the object which results
from applying each operation linearized in α prior to configuration Ck, in order, starting from the initial
state of the object. Define DS(op, α), the data set of op in α, to be the set of all data items accessed by op
when executed by itself starting from Sk, for i ≤ k < j.

The conflict graph of an execution interval I of α is an undirected graph, where vertices represent
operations whose execution intervals overlap with I and an edge connects two operations op and op′ if and
only if DS(op, α) ∩DS(op′, α) 6= ∅.

The conflict graph induced by two operations op1 and op2, denoted CG(op1, op2) is the conflict graph of
the minimal execution interval containing op1 and op2.

Definition 1 (Disjoint-Access Parallelism). A TM algorithm is disjoint-access parallel if, for every execution
containing a process executing an operation op1 and a process executing an operation op2 that contend on
some base object, there is a path between op1 and op2 in CG(op1, op2)

Transitively DAP. The new definition is a light variant of Definition 1. The main difference is on the
way the conflict graph induced by two operations is defined. The new conflict graph includes slightly more
operations than the conflict graph used to define our original disjoint-access parallelism definition, therefore
allowing more contention on base objects.

The conflict graph CG′(op1, op2) induced by two operations op1 and op2 is an undirected graph. Each
vertex of CG′(op1, op2) corresponds to an operation of the set O defined as follows.

Let
I =

⋃
op:Iop∩Iop1 6=∅∨Iop∩Iop2 6=∅

Iop

2



Then,
O = {op : Iop ∩ I 6= ∅}

That is, I is the minimal execution interval that contains the execution intervals of op1 and op2 as well as
the execution interval of every operation whose execution interval intersects the execution interval of op1 or
the execution interval of op2. O is then the set of operations whose execution interval intersects I. Finally,
as in the definition of disjoint-access parallelism, two vertexes corresponding to two operations op and op′

share an edge if and only if DS(op) ∩DS(op′) 6= ∅.

Definition 2 (tdap). A TM algorithm is tdap if, for every execution containing a process executing an
operation op1 and a process executing an operation op2 that contend on some base object, there is a path
between op1 and op2 in CG′(op1, op2)

Partial Disjoint Access Parallelism and Partial tdap. An implementation is partially dap if it is
dap except for some base objects in a small set B. That is, for every base object b /∈ B, two operation
contending on b must be connected in the conflict graph induced by these two operations. On the contrary,
two operations contending on some base object b ∈ B are not required to satisfy any constraint.

Definition 3 (Partial disjoint-access parallelism). Let B be a set of base object. A TM algorithm is partially
disjoint-access parallel with respect to B if it satisfies disjoint-access parallelism for any base object b /∈ B.

Definition 4 (Partial tdap). Let B be a set of base object. A TM algorithm is partially tdap with respect to
B if it satisfies tdap for any base object b /∈ B.

In the following, the set B of base objects on which any operation may contend, is restricted to contain
only a single timestamp object. For simplicity, we will say that an implementation is partially disjoint-
access parallel or partially tdap instead of partially disjoint-access parallel or partially tdap with respect to
a timestamp object.

2.2 PtDAP-UC

The new algorithm is based on the concept of a chain of entry points, which is defined as follows. Assuming
that each operation starts using a single entry point, two data items participate to the same chain of entry
points, if the one has been created during an operation that has started using as an entry point the other.
Notice that the last element of each such chain is some static data item. Also, a single data item may
participate to several such chains.

PDAP-UC fails to guarantee wait-freedom for unbounded entry points, because roughly speaking it
“blocks” only entry points, while the new algorithm is able to “block” chains of entry points. Intuitively,
when an operation op blocks an entry point e (or a chain of entry points), it means that some operation using
e (or any data item participating in this chain) as an entry point and is invoked after this blocking occurred
will help op complete, before its response. Specifically, a data item in PtDAP-UC contains as metadata a
field pentry that describes the entry point through which it has been created, and some announce array
where an operation can be announced and other operations can discover it and help it. Each operation op
announces itself on each data item x it accesses.

Then, whenever op creates a data item x starting from some entry point y, it initializes x so that
x.pentry := y. It is important that by doing this, all the elements participating x’s chain of entry points
can be accessed by continuously following the corresponding pentry pointers, starting from x.pentry, until
a pentry pointer with value null is reached (which is the value of the pentry pointer of the last data item in
this chain). So, in the new algorithm during the creation of x, op accesses all the data items participating
to the same chain with x and on each varrec z it access, it helps those announced operations in z.A with
timestamp value smaller that the timestamp value of z.

The new algorithm ensures wait-freedom, since i) the set of created data items when some operation op
starts its execution is bounded, and ii) after some point in time op will “block” all the chains of entry points
created after its initiation. Moreover, we can prove that the new algorithm guarantees partially tdap.

3



3 Conclusion

The team continues the collaboration by currently working to finalize the formal proof of correctness for the
new algorithms (PDAP-UC and PtDAP-UC). Moreover, we make efforts toward proving a new impossibility
result (stating that no partially disjoint-access parallel TM algorithm is wait-free). We expect that the third
and last visit during this scientific mission will significantly contribute to the completion of this work and
its publication to some high quality conference.

References

[1] F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and C. Travers. Universal constructions that ensure
disjoint-access parallelism and wait-freedom. In Proceedings of the 2012 ACM symposium on Principles
of distributed computing, PODC ’12, pages 115–124, Madeira, Portugal, 2012.

4


