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1 Introduction

This report presents the work done during my stay at FCT UNL. The objective was to

adapt ANaConDA, a framework for monitoring and analysing multi-threaded C/C++

programs, to be able to monitor and analyse C-based transactional memory programs.

This objective can be divided into two separate topics. The first topic deals with the

question how to monitor C-based transactional memory programs while minimally in-

fluencing their original behaviour and still get all the information needed for various

analyses. The second topic is related to how to find errors in C-based transactional

memory programs, mainly using a dynamic analysis which can be performed on-the-

fly during the actual monitoring.

2 Purpose of the STSM

Due to the rapid expansion of multi-core and multi-processor computers in the last

decade the amount of programs utilizing many threads working in parallel is rising sig-

nificantly. The main reason of switching to multi-threaded programs is to achieve max-

imum speed-up by utilizing all of the available resources, e.g., utilize all available cores

of a multi-core computer. However, developing multi-threaded programs is far more

demanding than the development of the usual single-threaded programs. The program-

mer must ensure a proper synchronization of all of the threads running in parallel. It is



very easy to make an error when writing a multi-threaded program. On the other hand,

detecting these errors can be quite difficult as they may manifest only in a very rare

situations, e.g., only when a specific timing of all of the operations performed by the

threads running in parallel is achieved. Nowadays, there are attempts to develop new

techniques for thread synchronization which would make the development of multi-

threaded programs easier and thus lower the amount of errors introduced during their

development.

Currently, the most common approach to synchronize threads of a multi-threaded

program is to use some sort of locking. There are several ways how to do the locking.

However, all of them are either too complex to use or provide a very poor performance,

often similar to the performance of a single-threaded program. One of the promising

approaches, which is both easy to use and at the same time provides a very good per-

formance, is transactional memory [6, 5]. In transactional memory, the synchronisation

is done by defining transactions which might be executed in parallel as long as they do

not interfere with each other. Even though it is really easy to use transactional mem-

ory, there are still various opportunities to make errors. There are also some issues that

might influence the performance of transactional memory, which many of the program-

mers might not be aware of. Therefore, tools for detecting errors and performance issues

in transactional memory programs are much needed.

In this report, we propose ways how to monitor C-based transactional memory pro-

grams and how to minimize the impact of the monitoring on the behaviour of the mon-

itored program. We perform experiments to evaluate how the proposed ways behave on

different programs and discuss possible improvements that can be a subject of future

research. Further, we study some fo the approaches for detecting errors in transactional

memory programs and propose a modification to one of the algorithms which allows

one to detect high-level data races in large real-world programs. We also discuss some

of the limitations of the algorithm which we found when analysing more complex real-

world programs.

3 Description of the work carried out during the STSM

In this section, the work done during the STSM is described. After a brief introduction

of transactional memory, which is the main topic of the STSM, the two main objec-

tives of the STSM, the monitoring and analysis of transactional memory programs, are

described in more detail.

3.1 Transactional Memory

This section provides a brief overview of transactional memory. This includes a descrip-

tion of how transactional memory work, what are the differences between transactional

memory and the usual approaches to synchronise threads, and what are the challenges

that need to be dealt with when using transactional memory.

As was mentioned in the introduction, the usual approach to synchronize threads of

a multi-threaded program is to use some sort of locking. There are various ways how to

do the locking, however, the two most prevalent ones are the use of a global lock and the



so-called fine-grained locking. A global lock is a single lock which is used to synchro-

nize all of the threads of a multi-threaded program. This approach is quite simple to use

and thus less prone to errors. However, using a global lock usually degrades greatly the

overall performance of a multi-threaded program as only one thread might be perform-

ing the computation at a time like in case of a single-threaded program. Fine-grained

locking uses different locks to synchronise specific parts of a multi-threaded program,

often granting superior performance compared to using a global lock at the cost of

greatly increasing the complexity of a multi-threaded program. The programmer must

be sure that the specific parts of the multi-threaded program might be executed con-

currently, which is a very difficult task considering the complexity of a multi-threaded

computation. Wrong assumptions about the computations which might be performed in

parallel might lead to various errors, e.g., data races, atomicity violations, etc., which

are very hard to detect.

Transactional memory [6, 5] takes the best of both of the approaches mentioned

above providing an easy to use way to synchronise threads (similar to the use of a global

lock) while still keeping the performance of a multi-threaded computation as high as

possible (like when using the complex fine-grained locking). When using transactional

memory, the thread synchronisation is done by defining transactions, which is of simi-

lar complexity as using a global lock. Instead of acquiring and releasing a global lock

before and after some code, respectively, the programmer just puts the code into a trans-

action. The performance is then achieved by executing the transactions optimistically,

i.e., assuming that in most cases the transactions might be executed in parallel without

interfering with each other. When two transactions finish their execution without any

interference with each other, we achieve the best performance possible as everything

ran in parallel. If we use the fine-grained locking and know that the two pieces of code

never interfere with each other and thus can be safely executed in parallel, we would

protect each of the pieces of code using a different lock and achieve the same perfor-

mance. However, note that this requires much more effort from the programmer than

just simply putting the code into a transaction. Also if the two pieces of code might

interfere only in some rare cases, we would have to use the same lock to protect them

and degrade the performance, while the transactional memory would allow the pieces

of code to be safely executed in parallel if no interference occurs. From this point of

view, the transactional memory can be seen as a more reactive approach, which assumes

the best and fix the problems when they arise, compared to the more proactive locking

approach, which have to assume the worst case scenarios and prevent even the rare

situation, where the threads are interfering with each other, from happening.

Nevertheless, although transactional memory might be easy to use and prevent the

programmers from making many potential errors, it does not mean that there could not

be errors in transactional memory programs. Some errors arise when combining trans-

actional memory with other approaches for synchronising threads, e.g., locks, or when

part of the code is not synchronised at all. Errors like weak-isolation data races [10]

belongs to this category. Other errors are specific to transactional memory itself, e.g.,

write-skew errors, which arise when the transactions are not properly isolated from each

other [2]. Therefore, tools and algorithms for detecting these kinds of errors are much

needed.



Errors are not the only problem to deal with when using transactional memory.

As transactional memory is designed to provide high performance of a multi-threaded

computation, achieving good performance is often as important as ensuring that there

are no errors in the program. However, transactional memory cannot guarantee that the

performance of a multi-threaded computation will be good enough. It depends on many

things from the underlying hardware to the specific nature of the multi-threaded compu-

tation in the program. Therefore, tools and algorithms for analysing the performance of

transactional memory programs and concrete implementations of transactional memory

itself are also needed.

3.2 Monitoring Transactional Memory Programs

This section discusses several ways of how to monitor an execution of a transactional

memory program. For each of these approaches, we mention its advantages and disad-

vantages. Then, we describe in more detail one of the approaches we think is the most

suitable for our purposes and provide some results of using this approach in practice.

At last, we discuss possible future work in this area.

3.2.1 Approaches for Monitoring Transactional Memory Programs

In order to perform any kind of analysis, one first needs the information about the exe-

cution of a program. There are various ways to extract information from the execution

of a program which mainly differs on how much they influence the monitored program,

how much automatic they are, and how much information they are able to provide.

When taking into account the influence on the monitored program, we distinguish

between lightweight and heavyweight approaches. Lightweight monitoring does not in-

fluence the original behaviour of a program much and the slowdown of the execution

when the monitoring is performed is usually minimal. This makes the lightweight mon-

itoring very convenient when analysing the performance of a program where even a

slight slowdown of the execution might lead to inaccurate analysis results as we get a

different behaviour that usual. The problem with lightweight monitoring is that we only

get a very limited amount of information as some information is just too time consuming

to obtain for a lightweight monitoring. On the opposite, we have the heavyweight moni-

toring, which impose a significant slowdown on the execution of a program. Because of

the slowdown, the behaviour of the program when the monitoring is performed is usu-

ally very different which might be a problem for some kinds of analyses. The biggest

advantage of this approach is that we can get nearly any information we need which

might be the main difference between being able to perform some analysis or not.

Another difference between the various monitoring approaches is at which level of

abstraction they obtain the information needed to perform some analysis. In order to

obtain the information about the execution of a program, the program must be instru-

mented in some way. The instrumented code then performs the monitoring and extracts

the information needed when the program is running. One possibility is to instrument

the source code of the program. This way, we can get a very accurate information, how-

ever, the instrumentation is usually far from automatic and the programmer must instru-

ment the source code himself manually. Another problem is when we need to monitor



not only the program itself, but also the libraries it is using. Changing the source code

of the libraries is often impossible due to various reasons (no source code, the library

is used by other programs, etc.). Also there is a risk that the compiler might optimize

the source code in various ways, removing some parts of the code not needed or adding

some code like temporary variables if it speeds-up the execution. These changes might

influence some kinds of analyses.

On the other hand, we may instrument the binary of the program directly. This ap-

proach has a big advantage of not requiring the source of the program to be monitored

and also any of its libraries we might want to monitor too. As we are working directly

with the code which is executed by the processor, we do not have any troubles with the

possible optimizations as we see them directly. The biggest problem here is the slow-

down and a more problematic access to some higher level information (like names of

variables accessed etc.). The slowdown is in particular visible when using the dynamic

binary instrumentation, which is very generic and can handle even self-modifying and

self-generation code, but requires a low level virtual machine to execute instructions

of the monitored program which imposes a significant slowdown. Also accessing in-

formation like the name of variables accessed is much harder as we have to get this

information from the debugging information in the program (which might not even be

there).

3.2.2 Heavyweight Monitoring Minimally Influencing the Program

As our primary focus is the detection of errors in transactional memory programs, we

need a monitoring approach which is able to give us very detailed information about the

execution of a program while requiring minimal input from the programmer, i.e., be as

automatic as possible.

A lightweight monitoring seems to be the best option here as we would not slow

down the program being monitored much and keep its original behaviour. This would

allow us to use the monitoring framework not only for error detection, but also for var-

ious performance analyses. There is already a tool which does this kind of lightweight

monitoring [9]. However, it suffers from several critical flaws. First is that it does not

allow us to get all the information needed to perform the kinds of analyses we need. For

example, when detecting weak-isolation data races, we need to get information not only

about accesses to the transactional memory, but also to the normal memory. The tool

is not able to provide us the information about the second type of accesses, only about

the accesses to the transactional memory. The problem is that obtaining this informa-

tion would make the monitoring considerably more heavyweight and we would lose all

the advantages. Another disadvantage is that the instrumentation of the program being

monitored is done at the source code level and the code must be instrumented manually

by the programmer.

As we need to monitor even things like accesses to a (non-transactional) memory

and monitoring all accesses to a memory in a program would make any monitoring

quite heavyweight, we have chosen a different approach. Instead of using a lightweight

monitoring and losing many crucial information for our analyses, we use a heavyweight

monitoring, which changes the original behaviour of the monitored program, and try to

revert the behaviour of the program back to the original one during the monitoring, i.e.,



we try to minimize the disturbance to the program we have caused by the heavyweight

monitoring. In order to do that, we use the noise injection techniques. The noise injec-

tion techniques are usually used to disturb the scheduling of threads in order to force the

program to exhibit some rare behaviour which might lead to an error. However, there

are also works [7] which use the noise injection techniques to fix the errors instead of

detecting them. In our case, the idea is to use the noise injection techniques to somehow

negate the disturbance caused by the heavyweight monitoring, which can be seen as a

form of noise itself. So, in other words, we are trying to reduce the disturbance caused

by one type of noise by injecting a different type of noise, which should minimize the

effects of the first one. The advantage of this approach is that we will get all the infor-

mation needed for the analyses while observing a behaviour very similar to the original

one. The monitoring will slow down the execution of the monitored program, but as

long as it will exhibit a similar behaviour to the one without the monitoring, we will be

able to do even performance analyses without worrying much that the results might be

too inaccurate.

Instead of making a completely new tool to implement the approach states above,

we extended the ANaConDA framework [4], a framework for monitoring the execution

of multi-threaded C and C++ programs on the binary level, to support monitoring of

transactional memory. As transactional memory implementations for C and C++ are

usually in a form of a library, the extension in not restricted to a specific library, but

it may be instantiated for any library used. This is important as it allows us to analyse

a broad variety of transactional memory programs and not only a subset of programs

using a specific library. Using the ANaConDA framework is also very convenient for

us as it has a built-in support for noise injection. Moreover, the noise injection in ANa-

ConDA might be configured in a very detailed way allowing us to test a broad variety

of noise injection settings.

3.2.3 Experimental Results

To evaluate if the noise injection techniques can be used to fix the behaviour of a pro-

gram when its behaviour is altered because of a heavyweight monitoring, we performed

a large number of tests. We have used the programs from the STAMP benchmark 1 and

compared the number of aborts in the original run with the number of aborts in the runs

where the program was monitored using the ANaConDA framework. The number of

aborts characterize the behaviour of transactional memory programs very well. It tells

us how much the threads of a program interfere with each other which directly affects

the actual performance of the transactional memory, i.e., it might be used to determine

if we really get a significantly better performance when using the transactional memory

compared to, e.g., using a global lock.

The results of our experiments are shown in Table 1, each column representing one

of the tested programs, namely the genome, intruder, kmeans, vacation and yada pro-

grams, and each row one of the configurations of the noise injection in the following

format: First, a configuration of noise generation is given, consisting of the type of

noise, its frequency, and its strength. The values of the frequency say how probable it is

1 http://stamp.stanford.edu



that some noise will be generated every time the given transactional memory operation

is reached on the scale from 0 to 1000, i.e., 500 means 50 %, 100 means 10 % etc. The

values of the strength say how many times a yield should be called at the given location

of the given thread or how many milliseconds the thread should, actively or passively,

wait in case of the busy-wait and sleep noise, respectively. Then, it is specified where

the noise might be inserted, if before any transactional memory operation or only before

an operation of a specific type (start, abort, commit, read or write). Also, beside the spe-

cial configuration representing the original run of the program, four other configuration

where no noise is injected are present. The first two configurations represent runs which

where executed only using the Intel’s PIN framework [11], which performs a dynamic

binary instrumentation and on top of which the ANaConDA framework is built. In the

first configuration we instrumented each instruction with a simple code incrementing a

counter and counted the number of instructions executed. In the second configuration,

we did not instrument anything, just let the program to run in the low-level virtual ma-

chine PIN is using. The second two configurations represent runs where we monitored

specific transactional memory operations without injecting any noise.

The results show that when performing a heavyweight monitoring of transactional

memory programs, we get a very different behaviour as the number of aborts drops

rapidly. When we use noise injection, we increase the number of aborts and get closer

to the original behaviour, however, how close we get depends on the program and also

on the noise configuration which we use. For some of the programs, e.g., genome or

intruder, we can get very close to the original behaviour, when we use the right config-

uration. For other programs, e.g., kmeans, vacation or yada, we are quite far from the

original behaviour whether we use any of the configurations we tried.

From the results, one can also see that if we instrument each instruction with the

same code, we actually get a huge slowdown, far bigger than when performing the

standard monitoring, but often get quite close to the original behaviour. This is a very

interesting and valuable observation as it tells us that even with a massive slowdown,

we can achieve a behaviour similar to the original one. The main difference is that when

instrumenting each instruction we slow every part of the program equally. On the other

hand, when performing the usual monitoring, we instrument only a specific, interesting,

parts of the program and thus slow down specific parts of the program significantly

while keeping the rest of the program to execute normally 2. Another interesting thing

is that when we get really close to the original behaviour while instrumenting each of

the instructions, we do not achieve a very good results when using the noise injection,

and vice versa. Compare the results of, e.g., vacation or yada, with the results of, e.g.,

genome and intruder. When counting the instructions (instrumenting all instructions

equally) of vacation or yada, we get very close to the original behaviour (number of

aborts). However, when using any of the configurations we have tried, the results were

better compared to the standard monitoring without the noise injection, but still quite

far from the original behaviour. On the other hand, when counting the instructions of

2 When using dynamic binary instrumentation which executes each instruction in a virtual ma-

chine, we are in fact slowing down every instruction we execute. However, this slowdown is

exactly the same for each instruction in the program, so we may consider this as a normal

execution.



Table 1. Number of aborts in transactional memory programs for various noise configurations.

Configuration genome intruder kmeans-high kmeans-low vacation-high vacation-low yada

original run 29255.9 28801.5 6227575.4 4373338.3 370051.7 32959.5 4951769.4

PIN (counting instructions) 6297.7 1249.8 1371294.5 3123090.1 282820.1 26851.2 4954548.0

PIN (no instrumentation) 1514.2 79.3 9.2 21.7 14909.0 1342.0 256262.8

monitoring starts, commits, aborts 1947.0 83.8 40.2 118.8 20017.3 2207.8 310817.9

monitoring all operations 8142.5 798.9 38246.2 81588.7 87406.5 14354.0 731750.7

busy-wait 100 1 before commits 2976.8 1104.9 388882.6 801797.7 37492.5 8393.9 371061.1

busy-wait 100 1 before all operations - 11392.2 - - - - -

busy-wait 250 1 before commits 2173.9 2797.5 899273.6 1497110.9 33490.3 8930.5 443921.8

busy-wait 500 1 before commits 1822.1 7072.6 1531912.6 - 31700.2 9047.8 813450.5

sleep 10 1 before reads 27030.7 2281.8 758608.2 1017451.2 - - -

sleep 10 1 before read and writes 26434.1 2638.8 1126005.8 - - - -

sleep 10 1 before writes 3997.1 678.0 747058.2 1059902.0 41211.6 8660.4 -

sleep 100 1 before commits 3050.0 1220.1 415349.8 801339.6 38678.6 8861.8 325461.0

sleep 100 1 before all operations - 10873.5 - - - - -

sleep 100 2 before commits 2154.3 1111.2 396614.5 859134.8 35446.1 9274.5 287055.3

sleep 250 1 before commits 2099.2 2879.6 858333.0 1663104.8 34741.2 9129.5 432395.1

sleep 250 2 before commits 1829.6 2889.0 874936.3 - 32514.7 9321.3 376473.4

sleep 50 1 before commits 4053.5 806.9 228278.7 443974.1 40982.8 8651.3 394146.1

sleep 50 2 before commits 2793.0 708.3 218307.1 497465.9 38865.7 9002.5 331012.1

sleep 500 1 before commits 1802.2 7257.9 1495551.6 - 32828.8 8858.3 831001.8

sleep 500 2 before commits 1689.5 7305.2 - - - - 812413.5

yield 100 10 before aborts 4506.7 323.4 7539.9 29898.7 43185.0 6716.8 348787.1

yield 100 10 before commits 3799.8 379.2 20357.3 38434.5 42934.8 6755.9 341957.7

yield 100 10 before reads 15140.0 2784.1 249778.7 226270.3 50244.1 10260.4 612571.5

yield 100 10 before reads and writes 15283.7 3160.7 489785.4 497181.9 50575.5 10228.8 -

yield 100 10 before starts 3713.2 330.6 14853.5 27769.0 42943.9 6738.2 346416.0

yield 100 10 before writes 3393.4 664.6 235478.5 257401.1 43504.6 7277.0 433923.7

yield 100 10 before all operations 30085.5 6717.6 960007.9 977732.4 99212.8 20279.6 -

yield 100 100 before all operations 25330.8 11647.1 1646973.2 1779226.2 - - -

yield 100 50 before all operations 45350.4 21593.5 2950867.4 3200529.2 99132.3 20436.6 -

yield 1000 10 before all operations 25575.7 12140.3 1624598.1 1848199.1 - - -

yield 500 10 before all operations 45390.2 22635.0 3006748.5 3207251.9 99500.9 20483.6 -



genome or intruder, we are very far from the original behaviour, yet when we use the

noise injection, we are able to achieve a similar behaviour as the original one.

3.2.4 Current and Future Work

Although we were able to fix the behaviour (achieve a similar behaviour to the original

one) for some of the programs, there are still other programs where we were not that

successful. Based on what we learned from the experiments, we came with several ideas

how to improve the proposed monitoring approach which we would like to try in the

near future.

Some of the noise configurations give us clearly better results that others. In our

experiments, we have used a large amount of different noise configurations. We have

chosen these configurations based on our previous experience with using the noise in-

jection techniques to detect errors in multi-threaded programs and based on the results

from the previous batches of tests we got. Still, all of the configurations were chosen

manually and represent only a very small portion of all of the possible configurations.

That means that even when we were not able to find a configuration which would fix

the behaviour for some of the programs, it does not mean that there is no configuration

able to do that. As many the configurations working well for error detection proved not

to be much useful here, there might be configurations which proved to be ineffective

for error detection which might we very suitable for the problem we are solving here.

The problem is that it is not possible to check all of the possible configurations man-

ually. However, we can take advantage of search-based testing and genetic algorithms

and use them to automatically find a more suitable noise configurations for solving our

problem. We have a tool called SearchBestie [8], a tool for search-based testing with a

support for genetic algorithms, which we can use with the ANaConDA framework to

search the space of possible noise configurations for the ones which gives us the best

results, e.g., which will give us a similar number of aborts than in the original run.

Another thing we want to try is to develop new types of noise which might be more

suitable for fixing the behaviour or to use the noise injection techniques in a different

way. The types of noise we have used in our experiments all delay the execution of a

thread in some way. These types of noise are usually very effective when used for error

detection as many errors manifest when a specific timing of actions performed by the

threads occurs. The transactions behave a little differently so we want to try new types of

noise more suitable for them. One example is the abort noise, which forces a transaction

to abort and directly influence the number of aborts. In the experiments, we were also

injecting the noise in the parts of the program we were monitoring, which is the usual

way of using the noise injection techniques. When using the noise to fix the behaviour

of a program, this might not be the best way to do it. We have already discussed that

slowing down (delaying) only some parts of the program greatly alters its behaviour.

Injecting noise into these parts might just make the situation even worse. It would be

interesting to try to inject the noise on the contrary to the parts not slowed down by the

monitoring and see if we will achieve a similar results as when instrumenting all the

instructions equally.



3.3 Detecting Errors in Transactional Memory Programs

This section describes some of the errors which can be found in transactional memory

programs. After a brief description of these errors and some related work around them,

we focus on one of these errors, the high-level data races. For this kind of errors, we

propose a dynamic analysis algorithm able to detect the high-level data races. Finally,

we discuss some problems of this algorithm which cause false alarms.

3.3.1 Errors in Transactional Memory Programs

As was mentioned in Section 3.1, there are two categories of errors one may find in

transactional memory programs. To the first category belongs the errors which arise

when combining transactional memory with other approaches for synchronising threads,

e.g., locks, or when part of the code is not synchronised at all, i.e., not protected by nei-

ther a transaction, nor any other type of synchronisation. The second category consists

of errors specific to the transactional memory itself. These errors are often related to the

specifics of the implementation of transactional memory.

Probably the most well-known type of errors in transactional memory programs is

the weak-isolation data race [10] error. This error is very similar to the (low-level) data

race error frequently appearing in programs using, e.g., locks, for synchronisation. A

data race occurs when two threads access the same memory location without any syn-

chronisation and at least one of these accesses is a write access. A data race usually

occurs when some of the accesses are in a critical section guarded by a lock, but the

remaining accesses are not guarded at all. When using transactional memory, the pro-

grammer might cause a similar situation where he fails to put all of the accesses into

transactions leaving some of them unguarded. This problem might also occur when

combining transactional memory with other means of synchronisation, e.g., locks. If

part of the accesses are in transactions and the other part in critical sections guarded by

locks, a data race might still occur as the transactions are executed independently from

the code in the critical sections. This situation is similar to guarding part of the accesses

to the same memory location with one lock and the remaining accesses with a different

lock.

However, fixing all the (low-level) data race errors in a program might not be

enough, as the program might still contain the so-called high-level data race [10, 3]

errors. A high-level data race occurs when several memory locations (variables), which

must always be updated atomically (to ensure consistency), are updated separately. For

example, take a 2D point containing the x and y values. When updating the point, both

x and y must be changed at once, without any interference from other threads. Even

when all accesses to x and y are situated in transactions, and no (low-level) data race

is possible, if they are in two separate transactions, we might still get an inconsistent

state if two threads try to update the point at the same time. This kind of error is not

specific to transactional memory as it may also occur when using other types of syn-

chronisation like locks. However, as one of the ways of improving the performance of

a transactional memory program is to split its long transactions into a several smaller

ones, which might cause high-level data races, they are more frequent in transactional

memory programs.



Another type of errors one might encounter in transactional memory programs is the

stale value [3] error. This error is more specific to the transactional memory programs

and occurs when a value of a variable stored in a transactional memory leaves the scope

of a transaction, e.g., is stored to a temporary variable outside the transactional memory,

and is later used in another transaction instead of the current value of the variable stored

in a transactional memory.

The last type of errors we will mention is the write-skew [2] error. This error is very

specific to the transactional memory as it occurs when the transactions are not properly

isolated from each other. Whether this error might arise in a transactional memory pro-

gram greatly depends on the actual implementation of transactional memory. This also

shows that it is not only important to test transactional memory programs, but also the

concrete implementations of transactional memory.

3.3.2 Detecting High-level Data Races

There are several works dealing with the detection of high-level data races. When the

high-level data races were introduced in [1] for the first time, the authors proposed an

algorithm based on collecting and analysing the so-called views. A view is a set of

accesses performed in an atomic region, which might be a critical section guarded by a

lock, but it may also be a transaction for our purposes. These views are checked against

the views of other threads if they do not violate the so-called view compatibility. When

a violation is found, a high-level data race is reported. The authors tested the algorithm

on a small set of Java programs, first monitoring their execution and logging the views

encountered and then analysing the logs post mortem to check if there is a high-level

data race. The problem with this approach is that when the program is data intensive,

the logs become huge (more then 0.5 GB) and are then hard to analyse in a reasonable

time. Also, as was later shown, the algorithm may miss some high-level data races and

report false alarms.

A similar approach based on the views can also be found in [3], where the algorithm

from [1] is refined to distinguish between read and write accesses and extended with

the information given by the so-called causal dependencies, which tells the algorithm

if a value read from one variable influence the value written into the other. Because of

this modifications, the algorithm is more precise and detect some high-level data races

which was the original algorithm unable to find. On the other hand, the refined version

of the algorithm reports more false alarms than the original one. Also one drawback of

the refined version of the algorithm is that it is a static analysis algorithm and is not

very suitable for larger real-world programs, where it will not scale well.

Our approach is also based on the algorithm from [1] and refined to distinguish be-

tween the read and write accesses as proposed in [3]. To to able to analyse real-world

programs, we implemented the algorithm as a dynamic analysis algorithm and restricted

it to look only at the last N views of each thread, which we call a window. This allows

us to deal with the problem of having a huge amount of views which will take ages to

analyse. The first experiments have also shown that even when remembering only the

several last views for each thread we do not miss any high-level data races. However,

we were able to check this fact only for simple examples where we know the high-level



data races contained in them. Now we are trying to determine how the size of the win-

dow influences the high-level data races found in a more complex examples. Another

difference, compared to the approaches mentioned previously, is that we analyse C and

C++ programs, where the tools for the detection of high-level data races are still lack-

ing. Still, the algorithm reports many false alarms in real-world programs, because of

various reasons discussed in the next section.

3.3.3 Sources of Detection Inaccuracies

There are several problems which influence the precision of the detection algorithm.

The first source of inaccuracies are the join operations. The algorithm checks if there is

a violation of a view consistency if a pair of views of one thread is interleaved with a

view of another thread. However, the algorithm performs an approximation and checks

even the interleavings not witnessed in the actual execution. In most of the cases, the

approximated interleavings are all possible, however, the join operation clearly tells us

that a view from a joined thread cannot interleave any pairs of views which occurred

after the join in other threads.

Another problem is the ordering of some operations. Some of the false alarms we

encountered were related to the ordering of queue operations. If we have a set of op-

erations performed in an atomic region (critical section, transaction, etc.) and these

operations are insert an item to a queue, get an item from a queue and update the item,

we get a view each time the operation is executed. Then the algorithm might check in-

terleavings where getting an item from a queue and updating it is interleaved with the

insertion of this item into the queue. This sequence of operations is clearly not possible,

however, the approximation causes the algorithm to check this situation and possibly

report a false alarm.

Next problem is related to the use of nested atomic regions. The simple examples

used in [1, 3] never contained any nested atomic regions so the algorithm itself is not

designed to deal with them to begin with. In our case, we flatten the nested atomic

regions, i.e., we merge all of the nested atomic regions into a single large atomic region.

However, this approach leads to a number of false alarms as the algorithm assumes that

all the accesses in an atomic region should be performed atomically everywhere in the

program and the merging causes the algorithm to think that some accesses must be

performed atomically even when they are in fact not in the same atomic region.

We are currently working on ways to solve these problems as the previous works

did not provide any solutions to them, mostly because these problems never occurred

in the simple programs which were used for the experiments.

4 Conclusion of the work carried out during the STSM

To summarize the work done during my stay at FCT UNL, I mainly focused on prob-

lems of monitoring and analysing transactional memory programs.

Regarding the first objective, the monitoring of the execution of transactional mem-

ory programs, I extended the ANaConDA framework to be able to monitor transactional



memory. The extension is quite generic and allows monitoring of programs using vari-

ous transactional memory implementations, which greatly increases the amount of pro-

grams that may be monitored. Then we studied the possibilities of using noise injection

techniques to fix the behaviour of a program when we are monitoring it using a heavy-

weight approach, which often alters the behaviour. We performed a large number of

experiments on a remote cluster to evaluate our ideas. In order to do that, I have written

a set of scripts to automate and simplify everything from installation of the ANaConDA

framework to test automation and the evaluation of the tests performed. While we were

able to get close to the original behaviour for some of the programs, for others we are

still quite far from it. However, based on the results of the experiments we performed,

we learned a lot about the behaviour of transactional memory programs and came with

several new ideas of how to improve our approach which we plan to try in a very near

future.

Considering the second objective, the analysis of transactional memory programs,

we proposed a dynamic analysis algorithm based on the algorithm from [1, 3], which

can be used to detect high-level data races in large real-world transactional memory

programs. I implemented this algorithm as a plug-in for the ANaConDA framework and

we tested it on a set of C/C++ programs containing high-level data races. Compared to

the algorithms in [1, 3], the algorithm is fairly precise, however, for real-world programs

it still reports many false alarms because of a various inaccuracies we already mentioned

in Section 3.3.3. We are currently working on ways how to solve these inaccuracies and

make the algorithm more precise.

5 Foreseen publications resulting from the STSM

We have not published the results of the work done yet, as we want to implement some

of the ideas mentioned in Section 3.2.4 and solve some of the inaccuracies mentioned in

Section 3.3.3 first. After that, we plan to publish a paper at an international conference.

6 Future collaboration with the host institution

As was already mentioned in the previous section, there are several problems we want

to solve and ideas we want to try, so both participant sides (FIT and FCT) have decided

to continue the mutual collaboration. We are also planning another visit at FCT UNL

somewhere in the middle of this year and further extend the collaboration initiated by

this STSM.

7 Confirmation by the host institution of the successful execution

of the STSM

The Host Joao Lourenco from FCT UNL confirms that Jan Fiedor achieved all the

targets that were defined for this collaboration. He developed a tool able to monitor and

analyse C-based transactional memory programs, implemented and evaluated a new

approach of using noise injection techniques to reduce the influence of a heavyweight



monitoring on the behaviour of a monitored program, and proposed an algorithm for

detecting high-level data races that can be used to analyse large real-world programs.
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