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1 Introduction

This  report  describes  the work I  carried out  and the results  that  have been achieved in the 
context of my Short Term Scientific Mission (STSM) at INESC-ID, where I had the opportunity 
of closely collaborating with Prof. Paolo Romano and the researchers in his group. The STSM 
has been focused on the analysis  and the development  of performance forecasting tools for 
Distributed Transactional Memories (DTM) systems, which is one of main topic I deal with in 
my research work. Indeed, one of the main issues in Transactional Memory (TM) systems (both 
centralized and distributed) is the performance degradation that can be experienced when a sub-
optimal system configuration is set.  I  remark that, unlike non-transactional systems, in TM-
based applications performance is affected, in addition to contention on hardware resources (as 
CPU,  system  bus),  also  by  contention  on  shared  data.  This  increases  the  complexity  of 
predicting the system's performance, because the various affecting factors are tightly intertwined 
and show complex inter-dependencies. The complexity is particularly exacerbated in the case of 
DTM, due to the presence of factors such as data distribution/replication and shared network 
links.  As  a  consequence,  developing  performance  analysis  tools  for  a  DTM system entails 
addressing  a  number  of  different  aspects.  In  the  literature,  several  approaches  have  been 
proposed  for  building  performance  computing  system  evaluation  tools.  These  includes 
approaches based on simulation, analytical modeling (AM) and machine learning (ML), which 
are  typically  used  as  alternative  techniques  aimed  to  pursue  the  same goal:  predicting  the 
performance  dynamics  of  computing  systems  when  operating  with  different  workload  and 
configuration  settings.  As  it  is  typical  in  the  context  of  transactional  system  performance 
analysis  studies,  simulation  aims  at  evaluating  the  system  performance  indicators  by 
reproducing  the  dynamics  of  execution  of  transactions.  AM,  on  the  other  hand,  aims  at 
quantitatively describing, via mathematical formulas, dependencies among system performance 
indicators and a number of parameters characterizing the system, as transaction arrival rate, 
transaction profiles and processing speed of operations. Finally, ML-based approaches “learn” 
statistical relations between performance indicators and other system parameters by observing 
only a subset of samples describing these relations. 
Researcher of INESC-ID have recently developed TAS, (Transaction Auto Scaler) [1] a system 
for  predicting  the  performance  of  DTM systems,  which  is  used  to  guide  (in  an  automatic 
fashion) the elastic scaling policies of the platform (in terms of number of nodes). TAS relies on 
a  hybrid  approach,  leveraging  both  AM  and  ML.  These  approaches  aim  to  capture 
complementary  aspects  affecting  the  system performance.  More  precisely,  TAS  exploits  an 
analytical model for capturing the effects  associated  data contention (i.e.  conflicts  between 
transactions accessing shared data, which entail transaction aborts and restarts). Additionally, 
since aborting and restarting transactions entails further local hardware resource utilization, this 
is also predicted in TAS by the analytical model. On the other hand, exploiting such a white-box 
modeling approach for capturing the effect associated to network could be particularly hard. In 



fact,  especially  for  virtualized  environments  (as  generally  happens  in  the  case  of  cloud 
infrastructures),  very  limited  information  could  be  known  about  the  actual  network 
infrastructure (e.g., network topology, shared links). Additionally, network delays also depend 
on the network throughput, which strongly depends on the transaction execution rate. Finally, 
the latter, in turn, affects the network throughput. All these factors make it very hard to use a 
white-box approach for network modeling. Thus, in TAS, a black-box approach, based on ML-
techniques, has been used to predict the performance of the network primitives (in particular, the 
two-phase commit protocol [8]) used to synchronize the replicas of a DTM platform. 
In my previous research work, I have contributed to the development of DAGS (DAta Grid 
Simulator) [2], a discrete event simulator for DTM systems incorporating models of various 
concurrency control and distributed data consistency algorithms. DAGS allows to predict a set 
of system performance indicators, as throughput, transaction response time and abort rate, while 
varying a number of system configuration parameters. As an example, configuration parameters 
include the number of clients, the number of nodes of the platform, the transaction profiles, the 
data object replication degree and the system model (open or closed). 
DAGS exploits a white-box approach, where simulation clients and servers are implemented by 
means of objects, which incorporate algorithms that simulate the behavior of real clients and 
servers.  These algorithms include, e.g., the transaction profile generator algorithm for the case 
of the clients, the local concurrency control algorithm and the distributed transaction commit 
algorithm for the case of the servers. All these algorithms can be easily tuned, through specific 
configuration parameters, or changed by the user. For what concerns the network model, DAGS 
offers  the  opportunity  of  using  one  or  more  simulation  objects.  E.g.,  a  single  object  that 
generates network delays according to a given distribution (e.g. the exponential distribution) can 
be used. Alternatively, more simulation objects  can be used for implementing more detailed 
simulation models, exploiting, e.g., different objects to simulate network switches, routers and 
links. Anyway, due to motivations remarked above in this report, using white-box models could 
not always be a feasible approach. Thus, the basic idea, which has been the main goal of my 
STSM, has been to enable DAGS to also provide an alternative modeling approach for the case 
of the network, i.e. a ML-based one, as in TAS. As a result of the work I carried out in my 
STSM, a new version of DAGS has been developed, where a machine learner can be queried for 
estimating the network delays associated with server to server communications. Specifically, 
when a server  to  server  communication  has  to  be simulated,  DAGS passes  to  the  machine 
learner a set of parameters defining the current system state (as the network throughput and the 
number of servers in the system), receiving as output the expected network delay. Then, DAGS 
uses this information to set the delivery time of the simulation event for the destination server in 
order to simulate the message sent through the network. 
The tool I exploited for building the ML-based model of the network is Cubist [9], which has 
also  been  used  in  TAS.  Cubist  is  a   decision-tree  regressor,  providing  the  possibility  of 
generating rule-based predictive models starting from sets of data. Specifically, Cubist can build 
decision  trees  choosing  the  branching  attribute  such  that  the  resulting  split  maximizes  the 
normalized information gain. For each leaf in the tree, Cubist  places a multivariate linear model
In the rest of this report, details on the issues that have been addressed for developing the new 
version  of  DAGS are  presented.  Additionally,  results  of  a  preliminary  validation  study  are 
provided and discussed. The report  ends with a discussion about future directions about the 
development of DAGS. 



2 System models and assumptions in TAS and DAGS

The machine learning-based network model developed by INESC-ID researchers is tailored for 
the TAS system model.  System models and assumptions used in TAS and DAGS show some 
differences.  These  differences  make  them  more  or  less  suitable  for  different  performance 
analysis scenarios. Additionally, they had an impact on the integration of DAGS with the ML-
based model exploited in TAS. A comparison between system models and main assumptions in 
TAS and DAGS is provided in the follow. 

In both TAS and DAGS the system is assumed to be composed by a number of homogeneous 
servers, each one with a fixed number of available threads processing transactions (however, 
both allow to easily extend the model for the case of heterogeneous platforms). The workload of 
the  application  is  assumed  to  be  characterized  by  different  transaction  profiles,  which  are 
mapped with different transaction classes. Anyway, in TAS, data access pattern of transactions is 
captured  through  the  so-called  Application  Contention  Factor  (ACF).  The  ACF is  a  scalar 
metric, shown to be an invariant with respect to the system size/degree of parallelism of the 
system, which can be used to quantify, in a lightweight way, the degree of  data contention 
generated  by applications  with  arbitrary  transactions'  data  access  patterns.  The ACF can be 
calculated  by  running  the  application  and  measuring  the  transaction  execution  rate,  the 
transaction  conflict  probability  and  the  average  lock  holding  time  (see  [4]  section  4.1.1). 
Conversely, DAGS does not use such an approach for characterizing the data contention of the 
application. DAGS allows to define the specific data access pattern of transactions by directly 
describing the specific sequence of accessed data objects for each transaction classes. (possibly, 
these  sequences  can  be  also  expressed  exploiting  probability  distributions).  By  using  fine-
grained simulation of the applications' data access patterns, DAGS allows to closely capture the 
dynamics even of the most complex/challenging workloads. This comes of course at the cost of 
having to develop simulation models of applications' data access pattern. On the other hand, 
TAS provides  the  advantage  of  not  requiring  a  specific  characterization  of  the  data  object 
access, as it is captured through the ACF. However, the definition of ACF is based on analytical 
assumptions (e.g. the poissonianity of the arrival rate of lock requests), whose validity may be 
challenged in complex workloads or at very high conflict rates. Essentially, this is one of the 
main  difference  that  makes  TAS  and  DAGS  suitable  for  different  performance  analysis 
perspectives. Further, a current limitation of the system model of TAS is the assumption of full 
replication  (i.e.  a  replica  of  each  data  object  is  stored  on each server).  Conversely,  DAGS 
captures also the case of partial replication (i.e. a replica of each data object is stored on a sub-
set of servers, according to an arbitrary placement). 

As for hardware resource workload characterization, both TAS and DAGS require a workload 
profiling phase, where measurements of the service time required to execute a number of types 
of operations have to be performed. Particularly, TAS requires evaluating the average elapsed 
time  between  the  transaction  begin operation  and  the  start  of  the  prepare  phase,  the  lock-
contention  probability,  the  lock  request  arrival  rate  and  the  average  lock  holding  time. 
Additionally, the network throughput and the average CPU utilization of servers are required in 
TAS by the ML-based model. With respect to TAS, DAGS bases on a lower level workload 
characterization.  It  requires  to  evaluate  the  service  times  of  different  types  of  operations 
executed locally and remotely by transactions, including begin, read, write, prepare and commit 
operations. Additionally, the average service times of non-transactional code blocks executed 
between two consecutive transactions and between two consecutive operations of transactions 
are required.

For what concerns the network, the modeling approach of DAGS has already been described in 



the  introduction  of  this  report.  As  for  TAS,  the  adopted  ML-based  model  of  the  network 
provides as output the average round trip time (rtt) experienced by a server during the prepare 
phase, i.e. the elapsed time between sending the prepare message to other servers until receiving 
the last prepare reply massage by servers. The rtt is calculated as function of:

− the number of servers in the system,

− the number of thread per server executing transactions

− the distributed commit request rate, 

− the average CPU utilization of servers, and

− the size of network messages for server to server communication.

Note that the CPU utilization of servers is also included in the network model because in the 
system model used in TAS the communication times between servers also include the CPU 
response time to prepare and send messages. The values of the above parameters are provided to 
the ML-based model by the analytical model. The latter, after having achieved the estimated 
value of the rtt by the ML-based model, recalculates the system performance indicators on the 
basis of this result. In this phase, also the values of the network throughput and the average CPU 
utilization of servers are recalculated by the analytical model. The recalculated values can be 
different  with  respect  to  those  previously  passed  as  input  to  the  ML-based  model.  This  is 
accounted by exploiting a method based on an iterative process. A graphical representation of 
this process is depicted in Figure 1, where  pn represents the value of a generic performance 
indicator at step n. At the first iteration step, input values that the model should receive by the 
network  model  are  set  to  arbitrary  values.  The  iteration  process  terminates  when  a  given 
precision is  reached by the estimation of the performance indicators,  i.e.  when the absolute 
differences between their values at step n and the step n-1 are less then a given , which dependsɛ  
on the specific performance indicator. 

Figure 1:  flow diagram of the iteration process. Numbers represent the sequence of actions  
executed for each iteration steps.
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3 Integration of DAGS with the ML-based network model

In the literature, an iterative method, as that used for coupling TAS with the ML-based network 
model, has been used for the numerical resolution of various non-linear analytical models for 
transactional systems, as in [3,4,5,6]. In all these studies, it is shown that the iterative process 
converges when the workload is such that the utilization factor, for each resource in the system, 
also including data objects, is less then 1. Otherwise, the process never converges. It is known 
that demonstrating such a property is typically hard for non-trivial models. Indeed, in all the 
above mentioned studies, the convergence of the iteration processes has been only empirically 
shown. This has been done by comparing results achieved by executing a number of tests with 
different configurations of the real system and results achieved by the analytical models.   

The first idea for integrating DAGS and the ML-based network model has been that of trying to 
exploit such a kind of approach. Thus, they have been coupled as depicted in Figure 1, where the 
DAGS simulation  model  has  taken  the  place  of  the  analytical  model.  However,  as  will  be 
motivated in the follow, after a number of tests, it  has been decided to evaluate a different 
interaction process. Hence, coupling the simulation model and the ML-based model entailed to 
deal with two main issues:

1) re-designing the interaction pattern between the DAGS simulation model and the ML-
based model used in TAS, and

2) extracting the input data to be provided as input to the machine learning-based model 
from the simulator model.

The first point has been motivated by the fact that using an iterative process, exactly as it has 
been done in TAS, would require long execution time. In fact, such an iterative process, for each 
iteration step, entails: 1) executing a simulation run, 2) providing the output of the simulation to 
the ML-based model, 3) executing e new simulation run using the ML-based model output, and 
4) comparing the output of the simulation run with the output of the previous iteration step. 
When executing a simulation run, an execution time is required to achieve statistical results for 
a  given  confidence  interval.  As  it  typically  happens  when  dealing  with  simulations  and 
analytical models, the difference between the simulation execution time of DAGS and the time 
required to solve the analytical model of TAS is non minimal. In some tests, the time to execute 
a simulation run in order to evaluate the system throughput with a 95% confidence interval and 
an amplitude less then 5% has been two order of magnitude greater then the time spent to solve 
the  analytical  model.  To  deal  with  this  issue  it  has  been  tested  another  interaction  pattern 
between DAGS and the ML-based model. This is described in the follow.

Re-designing the interaction pattern. The new interaction pattern that has been tested exploits 
only one simulation run executed by DAGS. During the simulation run, a number of queries to 
the  ML-based model  are  performed.  Input  data  to  be provided to  the  ML-based model  are 
calculated on-line during the simulation run, and a query is performed when the values of at 
least one input parameter of the ML-based model changes with respect the previously calculated 
value. Particularly, the input parameters whose values can change during a simulation run are 
the  distributed  commit  request  rate,  the  average  CPU utilization  of  servers  and the  size  of 
network messages for server to server communication. Note that non-minimal variations of the 
size of network messages mainly depend on the variation of the size of the prepare messages 
exchanged during the two-phase commit. The size of these messages depends on the size of the 
transaction write-set, that are directly accounted in DAGS for each execution of a transaction. 
Thus,  at  commit-time  they  are  known in  DAGS.  Conversely,  the  values  of  the  distributed 
commit request rate and the average CPU utilization of servers were not calculated in DAGS 



because they were unnecessary in the DAG simulation model. During a simulation run, these 
parameters, being time-dependent, have to be evaluated over a time windows. This has been 
addressed as described in the follow. 

Extracting the input data for the ML-based model.  Being the model used in DAGS a time-
based simulation one, the values of the distributed commit request rate and the average CPU 
utilization of servers can be subject to fluctuations along the execution of the simulation run. As 
their values are used as input for the ML-based model, this could lead to fluctuations of the 
predicted values of the  rtt. As it has been observed in a set of experiments, these fluctuations 
can  strongly  affect  the  evaluation  of  the  system  performance  indicators,  particularly  the 
amplitude of the confidence intervals at  the end of the simulations.  In order  to  smooth the 
amplitude of fluctuations, it has been introduced in DAGS the exponential smoothing applied to 
the time series for the evaluation of the values of the distributed commit request rate and the 
average CPU utilization of servers. In this way, smoothing factors can be use in order to reduce 
the  amplitudes,  and,  consequently,  the  simulation  time  to  get  a  given  confidence  interval 
amplitude. Using this new interaction pattern, the time to execute a single simulation run has 
increased with respect to a single simulation run of the iterative solution. Overall, the measured 
reduction of total time need to terminate a test has been, on average, more than 80%. 

4 Model validation

In  this  section,  some  preliminary  evaluation  results  achieved  with  the  version  of  DAGS 
integrated with the ML-based model are shown. Tests have been performed using Infinispan 
v4.0, a popular open-source NoSQL transactional data grid from JBoss/RedHat, and the TPC-C 
benchmark. In the used version of Infinispan, local concurrency control is based on the Two-
Phase Locking (2PL) protocol (only write-locks are used) with eager lock acquisition, while 
distributed  synchronization  relies  on  Two-Phase  Commit  (2PC)  protocol,  where  locks  are 
acquired by a transaction on all data object replica. 

Figure 2: Comparison between the integrated prototype and the real system
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Some  results  are  depicted  in  Figure  2  for  a  scenario  with  full  data  object  replication. 
Transactions have been grouped in two classes, i.e. read-write transactions (43% of the total 
transactions) and read-only transactions (57%). The throughput for the two classes and the total 
throughput are shown in the figure with respect to the parallelism level in the system. The latter 
is given by the total number of concurrent threads executing transactions. The number of serves 
in the system was equal to 4, while the number of clients per server has been varied between 2 
and 16. 
These preliminary results show that the general shape of the curves achieved by the integrated 
prototype  and  the  real  system are  similar,  particularly  concerning  the  saturation  point  (i.e. 
around a level o parallelism equal to 44). However, in some cases the relative prediction error of 
DAGS also reached the 20%. Possible motivations, which I'm currently addressing, include:

− the code instrumentation required to  measure the cost  of operations  (as described in 
Section 3) entails the development of a number of additional probes that may introduce a 
non-negligible overhead in the systems. Thus, a reduction of the actual throughput can 
be  expected.  This  overhead  is  not  captured  by  DAGS,  A detailed  evaluation  of  the 
reduction of the throughput caused by the code instrumentation will clarify this aspect.

− during  the  profiling  workload  phase,  the  CPU  service  time  of  different  operations 
showed differences till the 40% while varying the number threads in a server. While, in 
DAGS (as also in TAS) these are assumed to be independent by the number of threads. 
This may be due to various causes, particularly the presence of different shared cache 
levels (in all tests each server was equipped with eight hardware cores with level 2 and 
level 3 shared caches). These effect are, in general, hard to predict, unless exploiting 
cache performance models. 

5 Future collaboration with the host institution and possible publication of the achieved 
results. 

Currently, collaboration with INESC-ID researchers on topics addressed in my STSM is still in 
progress. Particularly, it  is focusing on possible causes of the prediction error that has been 
measured in tests, as it has been discussed in Section 4. In the future, an extension of DAGS will 
be  also  explored.  Specifically,  given  the  detailed  profiling  phase  required  by  DAGS  to 
characterize the transaction access patters, the possibility to use in DAGS also the abstraction 
provided by the ACF will be evaluated. As a result, it is expected a noticeable reduction of the 
cost of the required profiling phase for cases where the transaction access pattern is particularly 
complex to  analyze.  Finally,  an interesting research direction is  related to the possibility of 
automatically  synthetizing  simulation  models  of  the  data  access  patterns  of  transactional 
applications based on static code analysis and statistical analysis based on patterns observed at 
run-rime.

Possible target conferences/workshops for publishing final results that will be achieved include, 
e.g., conferences focusing on simulation tools (as SIMUTools, where a paper on the original 
version of DAGS has already be published [2]), on performance modeling and evaluation tools 
(as ValueTools), on distributed transactional memories (as Euro-TM Workshop on  Distributed 
Transactional Memory) .



6 Confirmation by the host institution of the successful execution of the STSM (by Prof. 
Paolo Romano)

Dr. Pierangelo Di Sanzo successfully pursued the objectives of the STSM, building what is, to 
the best of my knowledge, the first hybrid approach combining simulation models and machine-
learning techniques to predict the performance of DTM systems. 

The work performed during his STSM has paved the way to future research on a number of 
fronts.  First,  extending the preliminary evaluation study reported in this  document.  Second, 
refining the predictive models -  both simulation and ML-based - to enhance their  accuracy. 
Finally, automating the synthesis of simulation models for transactions' data access patterns.

Paolo Romano
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