Scientific Report for STSM project

Diego Didona
didona@gsd.inesc-id.pt

December 4, 2014

COST Action
STSM title
Reference

STSM dates
Location

Participant
Home institution
Host institution
Host supervisor

IC1001

Black-box self-tuning of TM applications
ECOST-STSM-1C1001-031114-051580

From 03-11-2014 to 10-11-2014

Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

Diego Didona

Instituto Superior Técnico, Lisbon, Portugal

Ecole Polytechnique Fédérale de Lausanne
Prof. Rachid Guerraoui




1 Context

The advent of multi-core architectures has brought parallel computing to
the fore-front of software development, fostering intense research on pro-
gramming paradigms aimed at simplifying the development of concurrent
applications. Transactional Memory (TM) is arguably the most prominent
proposal in this sense. The growth of popularity and relevance of the TM
paradigm have recently led to the standardization of constructs for TM in
popular program- ming languages (such as C and C++), as well as to the in-
tegration of TM supports in mainstream processors by Intel [11] and IBM [8§].

Performance of TM, however, is a more controversial matter. In fact,
the literature on TM has shown, on the one hand, that TM can compete
with complex locking strategies [5], and, even outperform them in irregular
applications [3] for which it is hard to conceive effective fine-grained locking
protocols. On the other hand, the vastness of the design space of TM has led
to the exploration of a large number of algorithmic alternatives, as well as
to implementations based purely on software (STM), hardware (HTM), and
combinations thereof. Indeed, the efficiency of any existing TM implementa-
tion is strongly dependent on the characteristics of the workloads generated
by TM applications, and can vary due to sensitivity to program inputs [5],or
phases of program execution [3, 6]. The efficiency of TM implementations is
also influenced by the correct tuning of a number of internal parameters of
TM algorithms (e.g., number of active threads or of retries using HTM), as
well as by architectural aspects of the underlying hardware (e.g., single-chip
vs multi-chip systems). Overall, the search for a one-size-fits-all-solution,
capable of ensuring optimal performance across all possible TM workloads,
has, so far, been unsuccessful. Also, as heterogeneity of hardware platforms
increases, the possibility of identifying any single TM algorithm as “best”
grows increasingly unlikely [10].

In the light of the aforementioned considerations, many research efforts
have been devoted in the last years to devise solutions for the self tuning of
TM applications. The following section focuses on briefly surveying existing
solutions in the field.

1.1 Self-tuning in TM

Proposed techniques in the area of self-tuning TM applications rely on differ-
ent methodologies and target different parameters of the TM design space.



One of the most investigated problem is determining the optimal number
of active threads. Proposed solutions rely on Analytical Modeling [1], off-line
Machine Learning [9], or on exploration-based strategies [3].

Wang et al. [10] propose to exploit Artificial Neural Networks to deter-
mine the best TM implementation depending on the workload. Their solution
relies on a preliminary analysis of the target application’s code to extract a
set of static features (e.g., number of transactional blocks) and on the on-line
profiling of the application to measure a set of dynamic features (e.g., per-
centage of read-only transactions). Such dynamic workload characterization
phase relies on the availability of an ad-hoc TM implementation, which is
exploited only during the on-line profiling phase.

Felber et al. [7] focus on the effect of lock granularity on performance,
where lock granularity refers to the amount of data that is guarded by a
single lock, and apply a hill climbing algorithm to implement the self-tuning
of such parameter.

Tuner [6] exploits a Reinforcement Learning algorithm in order to adap-
tively determine the optimal retry-on-abort policy to adopt for Intel HTM-
based applications.

1.2 STSM motivation and goal

The conducted survey on literature about TM optimization has highlighted
that, while very heterogeneous in the employed techniques, all the proposed
approaches share the main limitation of targeting the self-tuning of only
one parameter of a TM; this leads those approaches to deliver, ultimately,
sub-optimal performance. A natural research challenge that stems from this
observation is devising an autonomic scheme that is able to optimize a TM
as a whole, self-tuning many of its internal parameters.

Another important conclusion that has been drawn after conducting the
study of the literature on TM self-tuning is that existing solutions can be
divided in two categories: model-free and model-based.

Model-free solutions try to optimize a TM by means of exploration, i.e.,
by trying different configurations and selecting, in the end, the one that max-
imizes performance. The advantage of this scheme is that is very lightweight,
as it only needs to measure the performance corresponding to a given config-
uration, and the rule to apply to determine the next configuration to explore
or whether it is the case to stop exploration is incrementally defined in an
on-line fashion, i.e., without any a priori knowledge on the target applica-



tion. On the downside, model-free techniques are cumbersome to apply in
optimization problems spanning multiple dimensions, as the transitory phase
needed to carry out exploration would grow with the total number of possible
configurations.

Model-based solutions, conversely, require an extensive calibration phase
before being deployed with the application: such phase can coincide with
the derivation of an analytical model of the target system/application or a
training phase in the case of Machine Learning-based solutions. Moreover,
in order to be instantiated at runtime, the models need a detailed workload
characterization, which is achieved by means of code instrumentation that
inevitably results in additional overhead [10]. On the other hand, once instan-
tiated, a self-tuning scheme based on an accurate performance model may
optimize an application needing no or a very little amount of explorations.

Model-free and model-based approaches are, thus, seen as antithetic and,
to the best of our knowledge, no solutions reconciling the two has ever been
proposed in the field of self-tuning mechanism for TM applications.

The long-term goal of the collaboration between the Home and the Host
institution is to investigate black box self-tuning techniques that achieve the
two-fold goal of i) optimizing several parameters of the TM middleware, and
not just one like existing solution; ) combining the model-based and the
model-free approach, so as to achieve the best of the two worlds, i.e., the
predictive power of the first methodology and the lightweight and prompt
instantiation of the second one.

Given its short duration —only one week— this STSM has mainly served
as bootstrapping phase to foster cross-fertilization and knowledge transfer
between the Host’s and the Home’s research groups.

2 Description of the work carried out

Three are the activities carried out during this STSM.

1. In the context of my PhD, I have been investigating the problem
of self-tuning distributed TMs, applying techniques that rely either
on the synergistic use of analytical modeling and machine learning
(e.g., [4]), or on purely exploration-based approaches (e.g., [2]). On
the other hand, Prof. Guerraoui is a renowned researcher in the field
of centralized TM, with strong background in both theoretical and

4



implementation-related aspects of this programming model. The first
phase of the STSM has been dedicated to reason about the applicabil-
ity of techniques that I have already implemented to the problem of
self-tuning centralized TM.

. As briefly introduced, the long-term research plan envisioned by the
Host and the Home institution encompasses devising a self-tuning scheme
that is able to optimize different parameters of a TM, including the
number of active threads and the TM implementation itself. The Home
institution has available some machines equipped with a Haswell ar-
chitecture, i.e., with support for Intel Hardware TM; however, such
machines are only equipped with 8 cores, thus limiting the amount
of available parallelism. The Host institution, instead, has a 48 cores
machine at disposal, thus enabling the execution of (and consequently
allowing for the the self-tuning of) highly scalable applications. The
second task of the STSM consisted, thus, into setting up and adapting
the TM benchmarking framework developed at the Home institution [5]
to the Host institution’s machine.

. The third task of the STSM consisted into enhancing the statistics
monitoring and collection module of the TM implementations included
in the benchmarking framework. In particular, we have implemented
a superset of the workload features (referred to as dynamic features
in the original paper) exploited by the solution proposed by Wang et
al. [10]. This will give us the opportunity to investigate workload-
characterization based techniques and to compare on equal terms with
a state-of-the-art solution for TM optimization [10]. In carrying out this
task I greatly benefit from the guidance and support of the members of
Prof. Guerraoui’s research team. In fact, in carrying out my research,
I have always worked on Java implementations of distributed TMs,
thus not being very acquainted with the subtle details of C and C++
implementations of centralized TMs like NORec, TinySTM, SwissTM
and TL2. On the other side, Prof. Guerraoui’s lab members proved to
be expert in the art of hacking TM implementations.



3 Future collaboration

The Home and the Host institutions are still working in synergy to explore
the research lines outlined in the previous section, with the final goal of
publishing a paper describing the achieved results.



References

1]

2]

[7]

8]

P. Di Sanzo et al. Regulating concurrency in software transactional
memory: An effective model-based approach. In Proc. of SASO, 2013.

D. Didona et al. An extremum seeking algorithm for message batching
in total order protocols. In In Proc. of SASO, 2012.

D. Didona et al. Identifying the optimal level of parallelism in transac-
tional memory applications. Springer Computing Journal, 2013.

D. Didona et al. Transactional auto scaler: Elastic scaling of replicated
in-memory transactional data grids. ACM Trans. Auton. Adapt. Syst.,
9(2):11:1-11:32, July 2014.

N. Diegues et al. Virtues and limitations of commodity hardware trans-
actional memory. In Proc. of PACT, 2014.

N. Diegues and P. Romano. Self-tuning intel transactional synchroniza-
tion extensions. In Proc. of ICAC, 2014.

P. Felber et al. Dynamic performance tuning of word-based software
transactional memory. In Proc. of PPoPP, 2008.

C. Jacobi, T. Slegel, and D. Greiner. Transactional memory architecture
and implementation for ibm system z. In Proceedings of the Annual
nternational Symposium on Microarchitecture (MICRQO), pages 25-36.
IEEE Computer Society, 2012.

D. Rughetti et al. Machine learning-based self-adjusting concurrency in
software transactional memory systems. In Proc. of MASCOTS, 2012.

Q. Wang et al. A transactional memory with automatic performance
tuning. ACM TACO, 8(4), Jan. 2012.

R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evaluation
of intel®) transactional synchronization extensions for high-performance
computing. In International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1-19. ACM, 2013.



