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1 Purpose of the STSM

Con�ict free replicated data types (CRDT) have been proposed as a technique
for allowing a set of replicas to be modi�ed concurrently without coordination,
and still guaranteeing the convergence of replicas. These data types have been
used to provide data-replication in large scale systems. New designs of these data
types provide transactions with a consistency level weaker than snapshot isola-
tion. In the last few years, a large number of research projects have been pushing
the limits of transaction memory (TM) in a number of directions. One interest-
ing direction is the application of transactional memory systems in distributed
settings, where a set of objects is shared by nodes (typically) in a cluster. In
this setting, the latency of communication becomes a major hurdle for e�cient
transactional memory systems. We envision the possibility of relying on CRDTs,
as a form of transactional boosting mechanism for distributed TM systems. In
this mission, we intend to make the �rst steps in the study of the viability of
such approach, and if time allow, start the initial design of such a system (or
study the integration of these techniques in an existing solution).

2 Description of the work carried out during the STSM

This short term scienti�c mission was inserted in the ConcoRDanT research
project at INRIA-Regal group. The aim of the project is investigation of Con�ict-
free Data Types (CRDT)[3], which guarantee (eventual) consistency[6], with no
complex concurrency control and no rollback, and scale to large-scale distributed
systems, such as P2P and Cloud systems.

We wanted to build a system that provides transaction in a large scale geo-
replicated system with low latency to the end user.

Our system is called SwiftCloud and it has wide scope of functionalities such
as di�erent isolation levels, a cache layer and a noti�cations system to avoid
contacting the data centre to update the cache.

The system uses a rich data-model based on CRDTs, which provides con�ict
free replication to client. Updates can be processed asynchronously removing
any bottlenecks on commutation with eventual convergence and correctness.

The work carried in this scienti�c mission was to develop an application that
would allow us to study the advantages and drawbacks of the SwiftCloud system,
to study the bene�ts and drawbacks of di�erent isolation levels and to evaluate
the performance of the built system. We implemented TPC-W benchmark for
that purpose and proceeded with the evaluation of the system. During the period
of the mission we could not make a deeper research on the trade-o�s of di�erent
isolation levels, due to the lack of time. We will continue that study after the
STSM. However, this work is crucial to continue our research, as it provided us
with a tool that will allow to study how isolation levels interfere in the operations
semantic and performance. The evaluation carried in this mission was used in a
article submitted to EuroSys'13.
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2.1 Organization

This section of the report is organized as follows. In section 2.2 we will in-
troduce CRDTs and present the SwiftCloud system. Section 2.3 presents the
TPC-W benchmarks and its implementation using CRDTs. Section 2.4 presents
the evaluation results and we conclude in section 3, discussing the outcome of
the mission.

2.2 System Overview

The Con�ict-Free Replicated Data Types (CRDTs) are a family of data types
that can be updated without synchronization and still provide state convergence.
Their asynchronous nature make them very suitable to provide replication in
eventual consistency environments, allowing to provide scalability and fault-
tolerance in large scale distributed systems.

The CAP theorem [1] states that is not possible to archive, simultaneously
consistency, availability and partition-tolerance, in a distributed system. How-
ever, it is possible to pick two of those properties without huge prejudice to the
latency. The eventual consistency model sacri�ces consistency to provide both
availability and partitioning-tolerance. However, eventual consistency poses an
important drawback: executing operations without coordination between repli-
cas, can originate con�icts that must be resolved. CRDTs tackle that problem in
a systematic, theoretical proven approach, based on simple mathematical rules,
by providing automatic reconciliation. Furthermore, they satisfy Strong Even-
tual Consistency Model [4] and can be used as building blocks of other data
types that are suitable for programmer's applications.

Currently there is available a CRDT library [?] that provides counters, regis-
ters, sets, maps, graphs and sequences [7] that can be used to build applications.
Next we will describe a Set and Counter CRDT to get the insight on CRDTs.

Counter A counter is an integer with two operations: increment and decrement.
The value re�ects the di�erence between the number of increments and decre-
ments on it (this can be easily extended to support add/subtract operations).

The CRDT Counter is inspired by vector clocks, we call it increment only
counter. We store the number of increments for each replica indexed by position
in a vector. The query operation retrieves the sum of every vector position. When
we have two replicas of the same counter that were concurrently updated and
we want their state to converge, we selects the maximum value for each index
in the vector for both replicas and creates a new Counter with that vector. To
allow decrement operations we can combine two increment only counters, one
for counting the increments and other to count the decrements. In this case, the
value is the di�erence of the two counters.

Set Sets are abstract data types that are used in many applications. For exam-
ple, sets can be used to store a shopping cart, to store your friends in a social
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network or in many other situations. The minimal interface of a set is composed
by the following operations: add(e), remove(e), contains(e) and elements. add
and remove have the typical meaning, contains verify if an element e belongs to
the set and elements retrieve the elements of the set.

The idea of OR-Sets, or Observed-Remove Set, is to control the visibility
of an element according to the precedence of add or remove operations, when
concurrent operations are issued for the same element. To enable it, add and
remove operations associate identi�ers that have the total order relation (e.g.
Timestamps) to the elements. There are di�erent implementations of OR-Sets
[?]. For the sake of simpleness we will explain the state based Add-Wins OR-Set.

The Add-Wins OR-Set gives precedence to the add operation, i.e., concurrent
operations over the same element e will make the element belong to the set if at
least one of the concurrent operations is an add(e).

To implement the Add-Wins OR-Set we need a Set S of elements and a set
T of tombstones. The Set S stores (element, identi�er) pairs and T is a set of
identi�ers. When an element is added to the set, it is stored with a new identi�er.
If an element e is removed, the identi�ers associated to that element are moved
to the tombstones and the element removed from the set. When we synchronize
the state of two replicas, all elements of S in one replica that have their identi�er
in the Tombstones set of the other replica are removed.

The SwiftCloud System SwiftCloud is a system built on top of CRDTs that
provide a transactional-based consistency model that ensures atomicity, causal
consistency and isolation. Transactions are not serializable to avoid synchro-
nism. We assure isolation by always accessing a snapshot of the database and
transactions never abort. Our system does not need to abort transactions be-
cause CRDTs never originate write/write con�icts, however a transaction may
be lost due to a client failure or must be handled by di�erent node if one fails.the
�avorthe �avorthe �avor

Atomicity means that if a transaction T can observe some update made by
T ′, then it observes all updates of T ′. Thus, in the social network example, any
transaction that observes an arc (A,B) in the friendship graph also observes arc
(B,A) in the inverse graph. Causal consistency ensures that any update includes
updates observed earlier. Thus, for instance, if a transaction observes arc (A,B)
and adds arc (B,C), any transaction that observes (B,C) must also observe
(A,B) (unless, of course, another transaction removed it in the interval). Session
guarantees ensure that application observe monotonically growing state, e.g., if
a transaction observes node B and adds node C, the subsequent transactions of
the application observe both.

SwiftCloud is a two tier infra-structure, as shown in �gure 1. In the inner tier
of the system, a small set of data centres replicate the full database, which can
be geographically distributed. The outer tier is composed by a set of scouts that
act like caches for the end clients. Scouts can be placed anywhere. They can be
installed close to the client, providing data quickly as possible, or they can be
installed in CDNs, providing data with low latency to clients near it, or even at
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the data centre. Scouts commit transactions locally and can start another while
they send the completed ones asynchronously to the data centre.

The system uses a simple Key-Value store interface with put and get oper-
ations. Objects are versioned and uniquely identi�ed by a key, which organize
them in buckets. To execute a transactions, the client must start a new trans-
action specifying if it is read only, the isolation level and the caching policy.
Currently the system supports two isolation levels, repeatable reads and snap-
shot isolation. Depending on the isolation level, the scout may serve requests
locally (if they are cached) or request them from the data centre. When we cache
objects in the database, we must keep them fresh in order to avoid working on
stale data or fetch the more recent objects according to the versions required
by the transaction. To maintain values fresh, the data centre delivers updates
of objects that the scout subscribed. This mechanism allows the programmer to
control the quantity of updates he wants to subscribe.

2.3 TPC-W benchmark

TPC-W simulates an online book store. The original TPC-W includes a set of
operations that simulate the user's interactions through a web application with
a graphical interface. In this implementation, we only simulate the data access
executed from the application. The implemented operations are described in
table 1. Most of these operations require access to the primary key of objects
which can be done with good performance on a key-value store, as we can store
data indexed by key. However, some operations require more complex queries
that would bene�t from the use of secondary indexes and other mechanisms
normally present in DBMSs.

The TPC-W data-model is well suited for a relational database and it spec-
i�es the minimum tables the system should implement. We show the database
schema in �gure 2. The table Order registers the clients orders, order_line the
items from a particular order and cc_xacts represents the payment of an or-
der. The other tables store information for the customers, addresses, countries,
items and authors. Some additional tables may be used to store shopping cart
information or any required data.

The simpli�ed data-model of a Key-Value Store creates some challenges to
develop e�cient queries in the database. We address this issue in section 2.3.

There are di�erent benchmark workloads that intend to simulate di�erent
usage patterns of the system. The workloads vary on the amount of read and
write operations. The browsing workload has 95% of read-only interactions, the
shopping workload has 80% and the ordering workload has only 50% of read-only
operations.

Benchmark Deployment The �exibility of the SwiftCloud architecture allow
us to test di�erent deployments of the benchmark. We can also tune the consis-
tency of the system, the size of the cache and the objects that are automatically
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Operation Parameters Description

PRODUCT DETAIL item_id retrieves information about an item with
item_id

HOME item_id, cus-
tumer_id

retrieves information about an item with
item_id and customer with customer_id

SHOPPING CART item_id,
cart_id,
CREATE

adds a new item, with item_id, to an ex-
isting shopping cart with cart_id, or a new
one if CREATE is set to true.

SHOPPING CART item_id, qty adds quantity qty of item_id items to the
shopping cart

BUY REQUEST cart_id computes the total cost of a shopping cart
and the billing information

BUY CONFIRM customer_id,
cart_id

Creates a new order and a new payment for
a shopping cart that was previously pro-
cessed in BUY REQUEST

ORDER INQUIRY order_id checks the status of an order

BEST SELLER Computes the Best Seller information for
each category of items

ADMIN ACTION item_id Adds the item with item_id to its subject
index, adds the �ve most sold items to the
related

CUSTOMER REGISTRATION customer_id Registers a new customer

Table 1: Description of TPC-W operations
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Fig. 2: TPC-W database schema
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updated. We did not have time to make a complete evaluation of these parame-
ters, however we plan to do that to understand the behaviour of the system and
how we can improve performance.

The objective of our tests were to show that the we can handle more clients
by adding more scouts to the system. Scouts commit transactions locally and
they hand of the transaction to the the data centre. Read operations can be com-
pletely processed locally if the cache contains the required values. Both features
combined reduce the load on data centre and, even when we �nd a bottleneck
on the throughput of the data centre, the system scales by adding a new node
to the data centre tier.

Implementation In this section we describe how we adapted the TPC-W
benchmark to SwiftCloud. We ported an open-source Cassandra implementation
[2] to our platform and implemented operations according to their speci�cation
[5].

To access the stored objects in SwiftCloud we must provide their identi�er.
This raises limitations when it is necessary to do operations where we do not
know the identi�ers of the elements that we want to access, e.g. range queries.
We store the identi�ers of the objects in ORSets to keep track of the stored
elements. Another issue with range queries is that we can only fetch a value at a
time. We could not avoid this and so we incur in great communication overhead
to execute these operations.

The Best Seller retrieves the most sold items for a given category. A simple
implementation counts the number of sold items for that category, and orders
the result to identify the items that were most sold. This would be very expensive
to execute in the Key-Value data-model. Our implementation, to avoid counting
the results for every element, stores the amount sold items whenever an item
is sold. When the Best Sellers operation is executed, the list of sold items is
processed and updates the index of the most sold items per category, if any of
the sold items is more sold then any other item for its category.

To implement the search operation we use a radix tree that stores in memory
the items indexed by their name, author or subject. This index is fundamental
to implement a search operation with e�ciency. We can store the indexes in
memory at the beginning of the application as none of the attributes that are
used to create the index are modi�ed during the whole experiment.

The shopping cart is stored with an ORSet to allow adding elements from
di�erent sources without loosing operations. Customers have a shopping cart per
session. We store the shopping cart associated to that session in the costumer
object to have direct access to it, again because it would be too costly to look
for the shopping card associated to the current costumers shopping session.

We used LWW-Registers to store address, country, author, customers and
cc_xacts entities. Except for the cc_xacts and customer entities, all the other
entities are read-only. The LWW-Register is a CRDT with low overhead and it
is very suitable to objects that is unlikely to have concurrent updates.
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It is important that the available stock of an item is always consistent in the
database, i.e., that we do not lose any update to the stock of an item. We used
a CRDT counter to guarantee that property. The current CRDT integer oper-
ation semantic allows that two concurrent updates lead the stock to a negative
value. We plan to address this issue in future work. Despite that, the benchmark
prevents that situation by always adding more elements when the stock is under
a certain margin.

2.4 Evaluation

The TPC-W benchmark is greatly used in the literature to evaluate systems and
provides a way to compare them. We used TPC-W benchmark to evaluate the
SwiftCloud system and we intend to use it extensively to �nd vulnerabilities that
need to be improved in order to achieve better performance. We also want to
use this benchmark to evaluate the system's behaviour with di�erent isolation
levels, locations for cache, and commit modes.

To deploy our tests we used Amazon EC2 and PlanetLab. The combination
of the two infrastructures provide us an environment where we can place nodes
in di�erent locations allowing us to evaluate the e�ect of the latency between
the client, the scout and the data centre.

The system was still under development during this evaluation which pre-
vented us from making a comprehensive evaluation of the cost of using di�erent
isolation levels. Despite that we made a �rst approach to evaluate the impact
of the size of the cache and analysed the impact of having more scouts in the
performance.

The �rst experiment evaluates the in�uence of the cache size in the overall
throughput of the system. For this purpose we use one data centre machine
at the Amazon EC2 and compare the placement of the scout in two di�erent
locations. The �rst set-up consists in putting a scout with a big cache in a node
closer to the clients, which resembles to a CDN service that can provide data
faster to the nearby clients due to the lower latency to contact them, in our
system we also provide updates with lower latency because scouts can commit
transactions locally. In this set-up, the latency between the client and the scouts
is 30ms, between the scout and the DC is 35ms and between the scout and the
DC is 25ms. The second set-up consists in putting the scout next to the data
center, in Amazon EC2, but this time with a very small cache.

We executed two di�erent workloads of the benchmark, the shopping and
the ordering workloads, and run the experiments while 30 simultaneous clients
execute 100 operations each. The results of the experiment are shown in �gure 3.
The �gure shows that in the small scout deployment the performance has high
spikes in the throughput. This happens due to a limitation on our system. We
only provide support to fetch one value at a time and there is an operation on
the workload that requires fetching 10000 objects from the database. Since this
deployment does not have a big cache, the scout must get all those values from
the data centre one by one, incurring in a big latency overhead. The results for
the CDN deployment do not su�er that issue because the used database �ts in
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Fig. 3: TPC-W Throughput for SwiftCloud with di�erent cache sizes.

the memory of the scout and so it can serve the requests without contacting the
data centre.

In a second experiment we made an initial approach to measure the scalability
of the system. We wanted to see how the system reacts by having more clients and
scouts connected. To this end, we installed clients, scouts and the data centre in
the same region of the Amazon EC2. We had one large machine running as data
centre, and clients running in the same machine as the scouts that handle their
requests. The scouts run in medium machines and we measure the throughput
of the system when we add more scouts. Each scout has 300 clients connected
executing operation in a close loop and the cache is big enough to store the
whole database. We used a small database with 20000 objects.

The results from �gure 4 show that the system has a low throughput, which
show the need for improving the performance of the system, however the system
scales when adding more clients which allowed us to have up to 3000 clients
simultaneously. We can also observe that the performance of the system increases
when there are more read only operations in the workload, which is a consequence
of handling the operations locally at the scout without contacting the data center
to deliver them.

3 Conclusion of the mission

The work carried on this scienti�c mission provided us with a tool that will
help us improve our system and evaluate di�erent usage scenarios. We found
that CRDTs were very suitable to support transactional systems. They have a
small overhead and support concurrent updates in di�erent replicas. We do not
give details on this reports, but our CRDT designs support multi-versioning by
design with relatively low overhead. The properties of this data-types may make
them suitable to develop new transactional memory algorithms. For now, we are
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only providing geo-replicated transactional databases, but the same algorithms
can be applied to provide transactional memory in a distributed memory system.

We did not have time to do a comparison on the trade-o�s of di�erent isola-
tion levels, and our evaluation still needs to be improved to �nd the bounds of
the system.

In the follow-up of this work, we will add new features to the system to ad-
dress the performance issues that we found in the evaluation. Later on, we will
do a more comprehensive evaluation to measure the cost of snapshot isolation
and repeatable reads isolation levels. Finally we will think about stronger isola-
tion levels and their feasibility with our architectures, which can be required in
some transactional memory algorithms.

4 Foreseen publications resulting from the STSM

As stated before the results gathered in this mission were used in an article
submitted to EuroSys'13, which is currently under review. the research group
is composed by Marek Zawirski (UPMC-LIP6 & INRIA), Annette Bieniusa (U.
Kaiserslautern), Valter Balegas (UNL), Nuno Preguiça (UNL), Sérgio Duarte
(UNL) and Marc Shapiro (INRIA & LIP6).

5 Con�rmation by the host institution of the successful

execution of the STSM

The host, Marc Shapiro from INRIA & LIP6, con�rms that Valter Balegas has
achieved the targets set forth for this collaboration. He has developed a TPC-W
benchmark for SwiftCloud and performed a set of benchmark-driven measure-
ments. This work has helped identify some of the bottlenecks of our platform.
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Valter will now be invited to extend his internship on INRIA funding, in order to
continue uncovering bottlenecks and to help improve the platform accordingly.
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