
C/C++ Standard  

Multithreaded C11 & C++11:  
the Dawn of new Standards 
(and a preview of upcoming 
Transactional Memory TS) 

 
Michael Wong 
michaelw@ca.ibm.com 
IBM Toronto Lab 

International Standard Trouble Maker, Chief Cat Herder 
IBM and Canadian C++ Standard Committee HoD 

OpenMP CEO 
Chair of WG21 SG5 Transactional Memory 

Director, Vice President of ISOCPP.org 
Vice Chair Standards Council of Canada Programming Languages 



Acknowledgement and Disclaimer 

• Numerous people internal and external, in industry and 
academia, have made contributions, influenced ideas, written 
part of this presentations, and offered feedbacks to form part 
of this talk. 

• I even lifted this acknowledgement and disclaimer from some 
of them. 

• But I claim all credit for errors, and stupid mistakes. These are 
mine, all mine! 

• Any opinions expressed in this presentation are my opinions 
and do not necessarily reflect the opinions of IBM. 



IBM Rational Disclaimer 
• © Copyright IBM Corporation 2013.  All rights reserved. The information contained in 

these materials is provided for informational purposes only, and is provided AS IS without 
warranty of any kind, express or implied.  IBM shall not be responsible for any damages 
arising out of the use of, or otherwise related to, these materials.  Nothing contained in 
these materials is intended to, nor shall have the effect of, creating any warranties or 
representations from IBM or its suppliers or licensors, or altering the terms and conditions 
of the applicable license agreement  governing the use of IBM software. References in 
these materials to IBM products, programs, or services do not imply that they will be 
available in all countries in which IBM operates.  Product release dates and/or capabilities 
referenced in these materials may change at any time at IBM’s sole discretion based on 
market opportunities or other factors, and are not intended to be a commitment to future 
product or feature availability in any way.  IBM, the IBM logo, Rational, the Rational logo, 
Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the 
International Business Machines Corporation, in the United States, other countries or 
both. Other company, product, or service names may be trademarks or service marks of 
others. 
 

IBM 3 



The IBM Rational C/C++ Café 

IBM 4 

ibm.com/rational/cafe/community/ccpp 

http://www-949.ibm.com/software/rational/cafe/community/ccpp�


Agenda 

• C11, C++11, C++14, SG5 TM goals and 
timelines 

• C++ Standard Transactional Memory status 
• Multithreading support in C11 and C++11 
• The problems of Concurrency before C/C++ 11 
• Language support 
• Memory Model 
• Fragen? 

IBM 5 



Where were you in 1998? 
• Google was incorporated and hires its first employee 

• Paypal founded, Amazon buys IMDB 

• XML published 

• Intel Pentium II: 0.45 GFLOPS 

• No SIMD: SSE came in Pentium III 

• No GPUs: GPU came out  a year later 

• The fastest computer was Sandia’s ASCI Red at 1.8 Tflops (9152 cores) 

• C++98 became the new JTC1/SC22/WG21 C++ Standard 
• A year later, C99 became the WG14 C Standard 

 

6 



C and C++ Standard Progress 

IBM 7 

1998 C++ 
Std 

1999 C 
Std 2003 C++ 

TC1 

2005 C++ 
TR1 

2004 C 
TC2 

2010: FCD 
published 

2011  
C++11 
FDIS 

2001 C 
TC1 

It’s been 11 years since 
C++98/C99 to C++11/C11! 

All information subject to change without notice 

2007 C 
TC3 

2011: C11  
DIS 

2014 
C++14 

DIS 

But only 3 
years 
since 

C++11 



 

IBM 8 



C++14 DIS, 8 TS’s under 
develpoment (by Herb Sutter) 

IBM 9 

 



C++14 is approved (photos by 
Chandler Carruth) 

 

IBM 10 



Current Project Details 
• Programming Language C++ IS: Richard Smith. This is the main C++ Standard project. 
• File System TS: Beman Dawes. Work based on Boost.Filesystem v3, including file and 

directory iteration. 
• Library Fundamentals TS: Jeffrey Yasskin. A set of standard library extensions for vocabulary 

types like optional<> and other fundamental utilities. 
• Networking TS: Kyle Kloepper. A small set of network-related libraries including support for 

network byte order transformation and URIs. 
• Concepts TS: Andrew Sutton. Extensions for template type checking. 
• Arrays TS: Lawrence Crowl. Language and library extensions related to arrays, including 

runtime-sized arrays (aka arrays of runtime bound) and dynarray<>. 
• Parallelism TS: Jared Hoberock. Initially includes a Parallel STL library with support for 

parallel algorithms to exploit multiple cores, and vectorizable algorithms to exploit CPU and 
other vector units. 

• Concurrency TS: Artur Laksberg. Initially includes library support for executors and non-
blocking extensions to std::future. Additionally may include language extensions like await, 
and additional libraries such as concurrent hash containers and latches. 

• Transactional Memory TS: Michael Wong. A promising way to deal with mutable shared 
memory, that is expected to be more usable and scalable than current techniques based on 
atomics and mutexes. 

 
IBM 11 



Project Time line                                                

IBM 12 



Agenda 

• C11, C++11, C++14, SG5 TM goals and 
timelines 

• C++ Standard Transactional Memory status 
• Multithreading support in C11 and C++11 
• The problems of Concurrency before C/C++ 11 
• Language support 
• Memory Model 
• Fragen? 

IBM 13 



14 

Why do we need a TM language? 

• TM requires language support 
• Hardware here and now 
• Multiple projects extend C++ with TM 

constructs 
• Adoption requires common TM language 

extensions 
 



What is hard about adding TM to 
C++ 

• Conflict with C++ 11 memory model and 
atomics 

• Support member initializer syntax 
• Support C++ expressions 
• Work with legacy code 
• Structured block nesting 
• Multiple entry and exit from transactions 
• Polymorphism 
• Exceptions 

 



 
 Towards a Transaction-safe C++ Standard Library: std::list 

(N3862) 

Project History 
• 2008: every other week discussions by Intel, 

Sun/Oracle, IBM started in July, joined by HP, Redhat, 
academics 

• 2009: Version 1.0 released in August 
• 2011: Version 1.1 fixes problems in 1.0, exceptions 
• 2012: Brought proposal to C++Std SG1; became SG5, 

demonstrated use-cases, performance data 
• 2013: Presented to Evolution WG as a proposed C++ 

Technical Specification 
• 2014: Approved by Evolution WG; voted in Full group 

to start New Proposal as a Technical Specification  
 



Active members 

• Hans Boehm, hans.boehm@hp.com 
• Justin Gottschlich, justin.gottschlich@intel.com 
• Victor Luchangco, victor.luchangco@oracle.com 
• Jens Maurer, jens.maurer@gmx.net 
• Paul McKenney, paulmck@linux.vnet.ibm.com 
• Maged Michael, maged.michael@gmail.com 
• Mark Moir, mark.moir@oracle.com 
• Torvald Riegel, triegel@redhat.com 
• Michael Scott, scott@cs.rochester.edu 
• Tatiana Shpeisman, tatiana.shpeisman@intel.com 
• Michael Spear, spear@cse.lehigh.edu 
• Michael Wong, michaelw@ca.ibm.com 

 

Towards a Transaction-safe C++ 
Standard Library: std::list (N3862) 

mailto:justin.gottschlich@intel.com�
mailto:spear@cse.lehigh.edu�
mailto:michaelw@ca.ibm.com�


 
 Towards a Transaction-safe C++ Standard Library: std::list 

(N3862) 

Commercial Hardware TMs 
• Azul Systems’ HTM  (phased out?) 
• AMD ASF (unknown status) 
• Sun’s Rock (cancelled) 
• IBM’s Blue Gene/Q (2011) 
• Intel’s TSX (code named Haswell) (2012) 
• IBM’s zEC12 (2012) 
• IBM Power8 (2014) 

 
• HTM will only improve existing STM performance 



 
 Towards a Transaction-safe C++ Standard Library: std::list 

(N3862) 

Commercial/OS Compilers 
• Sun Studio (for Rock) 
• Intel STM 
• IBM AlphaWorks STM (for BG) 
• GNU 4.7 
• IBM xlC z/OS v1R13 compiler 

 



20 

Design goals 
Build on the C++11 specification 

– Follow established patterns and rules 
– “Catch fire” semantics for racy programs 

Enable easy adoption 
– Minimize number of new keywords 
– Do not break existing non-transactional code 

Have constructs to enable static error detection and runtime  
selection 
– Ease of debugging is important but so is flexibility 

When in doubt, leave choice to the programmer 
– Abort or irrevocable actions? 
– Commit-on-exception or rollback-on-exception? 

 



Locks are Impractical for 
Generic Programming=callback 

Thread 1: 
m1.lock(); 
m2.lock(); 

… 

Thread 2: 
m2.lock(); 
m1.lock(); 

… 

+ = deadlock 

What about 
Thread 1 + 

A thread running f(): 
template <class T> 
void f(T &x, T y) { 
  unique_lock<mutex> _(m2); 
  x = y; 
}    

Easy.  Order Locks. 
Now let’s get slightly more real: 

What locks does x = y acquire? 

? 



What locks does x = y acquire? 
• Depends on the type T of x and y. 

– The author of f() shouldn’t need to know. 
• That would violate modularity. 

– But lets say it’s shared_ptr<TT>. 
• Depends on locks acquired by TT’s destructor. 
• Which probably depends on its member destructors. 
• Which I definitely shouldn’t need to know. 
• But which might include a shared_ptr<TTT>. 

– Which acquires locks depending on TTT’s destructor. 
– Whose internals I definitely have no business knowing. 
– … 

• And this was for an unrealistically simple f()! 
• We have no realistic rules for avoiding deadlock! 

– In practice: Test & fix? 
 

template <class T> 
void f(T &x, T y) { 
   unique_lock<mutex> _(m2); 
   x = y; 
} 



Transactions Naturally Fit 
Generic Programming Model 

• Composable, no ordering constraints 
f() implementation: 
template <class T> 
void f(T &x, T y) { 
   transaction { 
   x = y; 
   } 
} 

Class implementation: 
class ImpT 
{ 
   ImpT& operator=(ImpT T& rhs) 
   { 
      transaction { 
         // handle assignment 
      } 
   } 
}; 

Impossible to deadlock 



The Problem 

• Popular belief: enforced locking ordering can 
avoid deadlock. 
 

• We show this is essentially impossible with 
C++ template programming. 
 

• Template programming is pervasive in C++. 
Thus, template programming needs TM. 



Don’t We Know This Already? 

• Perhaps, but impact has been widely 
underestimated.  
– Templates are everywhere in C++. 

• Move TM debate away from performance; 
focus on convincingly correct code. 

• Relevant because of C++11 and SG5. 
• Generic Programming Needs Transactional 

Memory by Gottschlich & Boehm, Transact 
2013 



Conclusion 

• Given C++11, generic programming needs TM 
more than ever. 
 

• To avoid deadlocks in all generic code, even 
those with irrevocable operations, we need 
(something like) relaxed transactions. 



TM Patterns and Use Cases 

• Top four uses cases: 
1. Irregular structures with low conflict frequency 
2. Low conflict structures with high read-sharing and complex operations 
3. Read-mostly structures with frequent read-only operations 
4. Composable modular structures and functions 



 
 Towards a Transaction-safe C++ Standard Library: std::list 

(N3862) 

Current Status of SG5 TM 
• EWG Approved to start a NP for a TS 16/6/1/0/0 
• LEWG Approved 8/3/2/0/0 
• Formal motion for New Proposal TS approved INCITS: 

25/0/0 and ISO: 7/0/0 
– Based on N3919 as indicated content 
– 3 sets of Balloting for 12 months to become and official TS 

• Continue telecon every other week to create a first TS 
Working Draft for Rapperswil, Switzerland 

• Aimed for Final DTS for 2015 
• Continue working on enhancements for further TS 

 



 
 Towards a Transaction-safe C++ Standard Library: std::list 

(N3862) 

Support for TM in C++ std library 
• enable users to use transactional constructs in the 

first TS delivery of SG5  
• Started with std::list 
• Make it transaction-safe 

– Enables use with atomic blocks 

• Open source collaboration welcome on github 
– https://github.com/mfs409/tm_stl  



30 

2014: SG5 TM Language in a nutshell (N3919) 

1 Function/function pointer keyword 
transaction_safe 
-must be a keyword because it conveys necessary semantics on type 
1 Function/function pointer attribute 
[[transaction_unsafe]] 
-provides static checking and performance hints, so it can be an attribute 

1 construct for transactions 
1. Compound Statements 
2 Keywords for different types of TX 
atomic_noexcept  | atomic_commit | atomic_cancel  

{<compound-statement> } 
synchronized  {<compound-statement> } 
 



 
 Towards a Transaction-safe C++ Standard Library: std::list 

(N3862) 

What is transaction-safe? 
• From N3919, what is a transaction-safe operation? 

– Operations in which system can guarantee atomicity 

• excluding: 
– Access to volatile data 

– Assembly instructions 

– Calls to functions that violate atomicity 

• Examples of functions that violate atomicity 
– Synchronization: operations on locks/ mutexes and C++11 atomics 
– Certain I/O functions 

–More info in: 
– http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2014/n3919.pdf 



atomic Examples 
class Account { 
  int bal; 
 public: 
  Account(int initbal) { bal = initbal; 

}; 
  void deposit(doublex) { 
    atomic_noexcept { 
      this.bal += x; 
    } 
  }; 
  double balance() { return bal; } 
} 

void transfer(Account 
a1, a2; int x;) { 

  atomic_noexcept { 
    a1.deposit(-x); 
    a2.deposit(x); 
  } 
}; 
 

Towards a Transaction-safe C++ 
Standard Library: std::list (N3862) 



synhronized examples 

int i = 0; 
void f() { 
  transaction_relaxed { 
    if (unlikely_condition) 
      std::cerr << "oops" << std::endl; 
    ++i; 
  } 
} 

IBM 33 



Agenda 

• C11, C++11, C++14, SG5 TM goals and 
timelines 

• C++ Standard Transactional Memory status 
• Multithreading support in C11 and C++11 
• The problems of Concurrency before C/C++ 11 
• Language support 
• Memory Model 
• Fragen? 

IBM 34 



Is this legal C++03 syntax? 

 template<class T> using Vec = vector<T,My_alloc<T>>;  

 Vec<double> v = { 2.3, 1.2, 6.7, 4.5 };  
 //sort(v);  
 for(auto p = v.begin(); p!=v.end(); ++p)  

  cout << *p << endl;  

IBM 35 



Hello Concurrent World 
#include <iostream> 
#include <thread> //#1 
void hello() //#2 
{ 
 std::cout<<"Hello Concurrent World"<<std::endl; 
} 
int main() 
{ 
 std::thread t(hello); //#3 
 t.join(); //#4 
} 

IBM 36 



Can you do this with TLS before 
C11/C++11? 

extern std::string f(); //returns “Hello” 
from another TU 

std::string foo(std::string const& s2) {  
 __thread std::string s=f();   
 s+=s2;  
 return s; 
 }  

 

 
IBM 37 



Is this valid C++ today? Are these 
equivalent? 

int x = 0; 
atomic<int> y = 0; 
Thread 1: 

x = 17; 
y.store(1, 
memory_order_release); 
// or: y.store(1); 
 

Thread 2:  
while 
(y.load(memory_order_acquire
) != 1) 
// or: while (y.load() 
!= 1) 
 
assert(x == 17);  

 

int x = 0; 
atomic<int> y = 0; 
Thread 1: 

x = 17; 
y = 1; 

Thread 2:  
while (y != 1) 
 continue; 
assert(x == 17); 

IBM 38 



C++11, C11 
• C++0x: Codename for the planned new standard for the C++ 

programming language 
– Will replace existing ISO/IEC 14882 standard published in 1998 (C++98) 

and updated in 2003 (C++03) 
– Many new features to core language 
– Many library features: most of C++ Technical Report 1 (TR1) 
– FDIS in March 2011 
– X=A,B,C,D,E,F?  
– C++11 ratified Dec 2012 

• C1x: Codename for the planned new 
standard for the C programming language 
– Will replace existing ISO/IEC 9899 standard published in 1999 
– DIS in March 2011 
– C11 ratified Dec 2012 

 

39 

X=B! 



Status of Language Standards as of 
1H 2013 

• C11 ratified Dec 2011,  
– starting work on next C 

• C++11 ratified Dec 2011,  
– starting work on C++2014/2017/2022 

•Much more advanced concurrency 

• Creation of isocpp.org Foundation to promote Std C++ 
and centralize latest knowledge 
•Michael Wong is Founding Director & VP 
•IBM is Founding Member 

 

 

 

Slide 40 of 8 



Organization & Sponsors 
• Three goals: 

– Handle money: Pay for site development and maintenance by accept funds from sponsors (but 
not general public). 

– Hold copyright/license: We need Pearson to be able to publish an edited version of the wiki 
FAQ as a C++ FAQs 3e book/e-book. 

– Have a clear board: We need to make it clear “who this is,” who is involved and directing the 
effort. 

 
• “Standard C++ Foundation” 501c(6) 

– Founding sponsors: Some subset of { AAPL, Boost/BoostPro, Bloomberg, C&B, FB, GOOG, IBM, 
INTL, MSFT, TAMU, … } 

• Gold: $10K/year 
• Silver:$5K/year 
• Bronze:$1K?year 

– Board of directors:  
• Chandler Carruth (Google) [Treasurer] 
• Beman Dawes (Boost) 
• Stefanus Du Toit (Intel) [Secretary] 
• Bjarne Stroustrup (Texas A&M University) 
• Herb Sutter (Microsoft) [Chairman, President] 
• Michael Wong (IBM) [Vice President] 

 



Sum of all things C11 & C++11 

42 

 
Rvalue Reference  

 
static_assert  

 
Template aliases  

 
Extern template  

 
Variadic Templates  

 
Strongly Typed Enums  

 
Forward Declaration of Enums  

 
Extended friend Declarations  

 
Generalized Constant 
Expressions  

 
variadic macros, empty 
macro argument, 
concatenation of mixed char 
and wchar literals  

 
Alignment  

 
long long  

 
extended integer types  

 
Delegating Constructors  

 
char16_t,char32_t  

 
Right Angle Brackets  

 
Auto type inference 

 
New function declaration syntax  

 
__func__  

 
PODs unstrung  

 
Propagating exceptions  

 
Decltype  

 
Extending sizeof  

 
Defaulted and Deleted 
Functions  

 
Lambda  

 
nullptr  

 
Inheriting Constructors  

 
Explicit Conversion Operators  

 
Raw.unicode String Literals  

 
Universal Character Names in 
Literals  

 
Namespace Association  

 
Unrestricted Unions  

 
Atomic operations  

 
memory model  

 
Multi-threading Library  

 
Unicode Strings UTF8 Literals  

 
type_trait names  

 
Local Classes more Usefu   

 
Initializer lists  

 
Thread-Local Storage  

 
Data-Dependency Orderin  

 
Dynamic initialization and 
concurrency  

 
Garbage Collection  

 
SFINAE problem for 
expressions  

 
Member Initializers  

 
range-based for-loop  

 
General Attributes  

 
User-defined Literals  

 
Explicit Virtual Overrides  

 
unique_ptr,forward_list,  

 
random numbers  
 

 
hash tables  
 

 
generalized functors  
 

 
tuples  
 

 
hash tables,  
 

 
regular expressions  
 

 
enhanced binder  
 

 
enhanced member pointer 
adapter  
 



C++11 Library 

• Start with original C++98 library 
– Improved performance with rvalue reference 
– Used variadic templates to improve compile time 
– Potential binary incompatibility with C++98 library strings 
– Reference counting not allowed 

• Added 13/14 TR1 libraries 
– Reference wrapper, smart ptrs, return type determination, enhanced 

member pointer adapter, enhanced binder, generalized functors, type 
traits, random numbers, tuples, fixed size array, hash tables, regular 
expressions, C99 cmpat 

• Added threading, unique_ptr,forward_list, many 
new algorithms 
 43 



Sum of all things C11 
• Alignment specification 

– _Alignas specifier 
– Alignof operator 
– Aligned_alloc funcioin 
– <stdalign.h> header 

• _Noreturn function specifier 
• Type-generic expressions 

– _Generic keyword 

• Multithreading support 
– _Thread_local storage class specifier 

• Improved unicode (UTF16/32/8) 
• Remove gets 
• Macros for querying  subormal floating point number 

and number of digits the type is able to store 
• Anonymous structs/unions 
• Static assertions 
• Exclusive create-and-open mode for fopen 
• Quick_exit 
• Macros for construction of complex values 

 
 

 

• Optional features new from C99 
– Analyzability (Annex L) 
– Bounds Checking (Annex K) 
– Multithreading <threads.h> 
– Atomic primitives and types 

Mstdatomic.h> and _Atomic type qualifier 

• Optional features optional in C99 
– IEC 60559 floating point arithmetic (Annex 

F) 
– IEC 60559 compatible complex arithmetic 

(Annex G) 

• Optional features mandatory in C99  
– Complex types (mandatory for hosted ) 
– Variable length arrays 

 

Slide 44  



Removed or Deprecated features 

C++ 
• Auto as a storage class 
• Export semantics 
• Register semantics 
• Exception specification 
• Auto_ptr 
• Bind1st/bind2nd 
• bool++ 
• See  Clause D 

C 
• Gets 

 

45 



C++11 land: 
http://fearlesscoder.blogspot.ca/2012/01/c11-lands.html 

46 



What changed in C++11: http://cpprocks.com/c11-a-visual-summary-
of-changes/ 

47 



48 



What changed in C++11 

49 



What changed in C++11 STL:http://cpprocks.com/cpp11-stl-additions 

50 



Concurrency in C11/C++11 
• C99/C++98/03: does not have concurrency 
• C++11 is in Final Draft International Standard on 2011 
• C11 is in Draft International Standard in 2011 
• C++11 have multithreading support 

– Memory model, atomics API 
– Language support: TLS, static init, termination, lambda function 
– Library support: thread start, join, terminate, mutex, condition variable 
– Advanced abstractions: basic futures, thread pools 

• C11 will have similar memory model, atomics API. TLS, static init/termination 
– Some minor differences like __Atomic qualifier 

 

IBM 51 



Introduction to concurrency 
• Why do we need to standardize concurrency 

– Multi-core processors 
– Solutions for very large problems 
– Internet programming 

• Standardize existing practice 
– C++ threads=OS threads 
– shared memory 
– Loosely based on POSIX, Boost thread 
– Does not replace other specifications 

• MPI, OpenMP, UPC, autoparallelization 
– Can help existing advanced abstractions 

• TBB, PPL, Cilk, 

IBM 52 



Concurrency core/library 
• Core: what does it mean to share memory and how it affects variables 

– TLS 
– Static duration variable initialization/destruction 
– Memory model 
– Atomic  types and operations 

• Lock-free programing 
– Fences 
– Dependence based Ordering 

• Library 
– How to create/synchronize/terminate threads,  
– Thread , mutex , locks 

• RAII for locking, type safe 
– propagate exceptions 
– A few advanced abstraction 

• Async() , promises and futures 

IBM 53 



What we got 
• Low level support to enable higher abstractions 

– Thread pools, TM 
• Ease of programming 

– Writing correct concurrent code is hard 
– Lots of concurrency in modern HW, more than you imagine 

• Portability with the same natural syntax 
– Not achievable before 

• Uncompromising Performance 
• Stable  memory model 
• System level interoperability 

• C++ shares threads with other languages 
 

 IBM 54 



What we did not get 

• All the nifty, higher parallel abstractions 
– TM, thread pools, futures, parallel STL 

• Complete Compatibility between C and C++ 
• Total insolation from programmer mistakes 

IBM 55 



56 Template Documentation 3/22/2014 

The grand scheme of Concurrency 
Asynchronus Agents Concurrent collections Mutable shared state 

summary tasks that run independently 
and communicate via 
messages 

operations on groups of things, 
exploit parallelism in data and 
algorithm structures  

avoid races and synchronizing 
objects in shared memory 
 

examples GUI,background printing, 
disk/net access 

trees, quicksorts, compilation locked data(99%), lock-free 
libraries (wizards), atomics 
(experts) 

key metrics responsiveness throughput, many core 
scalability 

race free, lock free 

requirement isolation, messages low overhead composability 

today's abstractions thread,messages 
 

thread pools, openmp locks, lock hierarchies 

future abstractions futures, active objects chores, parallel STL, 
PLINQ 

transactional memory, 
declarative support for 
locks 



Memory Model and Consistency 
model, a quick tutorial 

• Sequential Consistency (SC) 

Sequential consistency was originally defined in 
1979 by Leslie Lamport as follows: 

• “… the result of any execution is the same as if the reads and writes 
occurred in some order, and the operations of each individual processor 
appear in this sequence in the order specified by its program” 

• But chip/compiler designers can be annoyingly helpful: 
• It can be more expensive to do exactly what you wrote. 
• Often they’d rather do something else, that could run faster. 

IBM 57 



Sequential Consistency: a tutorial 

• The semantics of the single threaded program 
is defined by the program order of the 
statements. This is the strict sequential order. 
For example: 

x = 1; 
r1 = z; 
y = 1; 
r2 = w; 

IBM 58 



Sequential Consistency for program 
understanding 

• Suppose we have two threads. 
Thread 1 is the sequence of 
statement above. Thread 2 is: 

Thread 1:  Thread2: 
x = 1;  w=1; 
r1 = z;  r3=y; 
y = 1;  z=1; 
r2 = w;  r4=x; 
 
(All variables are initialized to zero.) 

 

• 2 of 4! Possible interleavings: 
x = 1;  x=1; 
w = 1;  w=1; 
r1 = z;  r3=y; 
r3 = y;  z=1; 
y = 1;  r4=x; 
z = 1;  r1=z; 
r2 = w;  y=1; 
r4 = x;  r2=w; 
 

IBM 59 



Now add fences to control reordering 

Thread 1:   Thread2: 
x = 1;    w=1; 
r1 = z;    r3=y; 
fence();    fence(); 
y = 1;    z=1; 
r2 = w;    r4=x; 
Is r3==1 and r4==1 possible? 
Is r1==1 and r2==1 possible? 

IBM 60 



Agenda 

• C11, C++11, C++14, SG5 TM goals and 
timelines 

• C++ Standard Transactional Memory status 
• Multithreading support in C11 and C++11 
• The problems of Concurrency before C/C++ 11 
• Language support 
• Memory Model 
• Fragen? 

IBM 61 



Memory Model and instruction 
reordering 

• Definitions: 
• Instruction reordering: When a program executes instructions, especially 

memory reads and writes, in an order that is different than the order 
specified in the program’s source code. 

• Memory model: Describes how memory reads and writes may appear to 
be executed relative to their program order. 

• Affects the valid optimizations that can be performed by compilers, 
physical processors, and caches. 
 

IBM 62 



Memory Model and Consistency 
model 

• Sequential Consistency (SC) 

Sequential consistency was originally defined in 
1979 by Leslie Lamport as follows: 

• “… the result of any execution is the same as if the reads and writes 
occurred in some order, and the operations of each individual processor 
appear in this sequence in the order specified by its program” 

• But chip/compiler designers can be annoyingly helpful: 
• It can be more expensive to do exactly what you wrote. 
• Often they’d rather do something else, that could run faster. 

IBM 63 



Problems for concurrency in 2005 
• How much and what kind of reordering is allowed? 

– For programmer understanding? 
– For better performance 

• What motivates each paragraph of clause 1.10, and Chap 29 of the C++0x 
Standard 

1. The entire software/hardware stack 
2. Languages and compilers 
3. Volatile 
4. Compiler-generated data races 
5. C++ destructors 
6. Thread libraries 
7. C++ Standard Library 
8. Thread-safe C libraries 
9. Broken C++ idioms 

 
 

IBM 64 



Problem1: Hardware at the bottom of 
the stack 

• Everything from threads implementations to user code depends on memory 
consistency/ordering: 

• Canonical Example (assume all init with 0, all shared variables): 
Thread 1    Thread 2 
x=1;    y=1; 
r1=y; //reads 0   r2=x; //reads 0 
Can both r1 and r2 be 0? 
• Intuitively (or under sequential consistency) no; some thread executes 

first. 
• In practice, yes; compilers, thread library and hardware can reorder. 
• Most hardware will allow this outcome because they have write buffers! 

IBM 65 



Hardware at the bottom of the stack 

• The hardware doesn’t implement what we tell it is fundamentally a 
problem 
– If we understand HW rules and can use them to implement a usable 

programming model 
• Widely held belief 

– Weaker memory models (e.g. allowing this) is fine, since 
• We only pay for ordering (special fence instructions) when needed 

– Should be cheaper 

• Fence instructions get us sequential consistency exactly when we need it 

IBM 66 



Transformations: in the name of speed 

• Reordering, invention, removal 
• Entire stack: 

– Source code 
– Compiler 
– Hardware 
– Cache 
– Execution 

 
 

 IBM 67 



Dekker’s and Peterson’s Algorithms 

• Consider (flags are shared and atomic, initially zero): 
Thread 1: 

 flag1 = 1; // a: declare intent to enter 
 if( flag2 != 0 ) { ... } // b: detect and resolve contention 
 // enter critical section 
 Thread 2: 
 flag2 = 1; // c: declare intent to enter 
 if( flag1 != 0 ) { ... } // d: detect and resolve contention 
 // enter critical section 
• Could both threads enter the critical region? 
• Maybe:If a can pass b, and c can pass d, we could get b->d->a->c. 
• Solution 1 (good): Use a suitable atomic type (e.g., Java/.NET “volatile”, C++0x std::atomic<>) for the 

flag variables. 
• Solution 2 (good?): Use system locks instead of rolling your own. 
• Solution 3 (harder but fast): Write a memory barrier after a and c. 

 

IBM 68 



What really happens when you are not 
looking 

IBM 69 



Memory Ordering and fences in 2006 

• Some architectures have underspecified 
memory ordering 
– Confusion 
– Interesting consequences, X86 

• Gcc __sync_synchronize() full memory barrier 
erroneously generates no-op 

• P4 lfence, sfence instructions appeared to be no-ops in 
most user code, but the loads and stores are already 
ordered 

IBM 70 



Performance 
• Performance of fences and syncs was often neglected 

– More then 100 cycle, best case on P4 
– Encourages 

• Clever sync avoidance techniques=bugs 
– Can easiy be much more expensive then sequential consistency 

everywhere(PA-RISC) 
• Some Memory models in which it appeared that fences could not enforce 

sequential consistency 
– This means Java memory model is not really implementable 

IBM 71 



Independent Reads with Independent 
Writes 

• x,y init to 0, add fences between every 
instruction 

Thread 1 Thread2 Thread3 Thread4 
x=1;  y=1;  r1=x;(1) r3=y;(1) 
     fence;  fence; 
     r2=y;(0) r4=x;(0) 
     x set first! y set first! 
Can this be both true? 

IBM 72 



Architecture in late 2007 
• Intel and AMD published Memory models 
• IBM has published PowerPC Atomic operations 

– http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2009.02.27a.html 

• Can get sequential consistency examples like the preceding one on X86 
– But stores to x and y in T1 and T2 need to be implemented with xchg 

• Many JVMs will need to be fixed because they didn’t know  this rule when 
they were written 

• Most other vendors are paying attention 

IBM 73 



Problem 2: Languages and Compilers 

• Programming rules are unclear, some 
languages more then others 
– Java is in best shape since fix in 2005 
– .Net and OpenMP need to be clearer 
– C99 and C++98 has no rules! Other then volatile, 

sequence points 
– C++11 will hopefully be the best 

IBM 74 



C++11 programming rules: 
• No simultaneous access from two threads to ordinary shared variables if one 

access is a write, ie data races are outlawed 
– Posix C has this rule too, explored in Sarita Adve’s Ph.D thesis 
– This rule dates back to at least Ada83 

• No Data races solves many problems: 
– can’t tell whether compiler reorders ordinary memory operations 

• If you could tell, observing thread would race with updating thread 
• Can’t tell whether hardware reorders memory operations ( as long as locks are 

handled) 
– C/C++ compilers may rely on the absence of asynchronous changes. This may 

have weird side effects 

IBM 75 



Consequence of “no async changes” compiler assumption: 

unsigned x; 
If (x<3) { 
  // async x change 
  switch (x) { 
 case 0: … 
    case 1: … 
    case 2: … 
  } 
} 
 

• Assume switch statement 
compiled as branch table 

• May assume x is in range 
• Async change to x causes wild 

branch 
– Not just wrong value 

IBM 76 



C and C++ thread realities before 
standardization 

• Common attitude that data races aren’t so bad 
– Frequently used idioms rely on benign data races: 

• Approximate counters sometimes without locking an update, and read 
asynchronously 

• Double-checked locking: lazy init that reads flag outside of critical section 
– Or nonportanle atomic (interlocked, __sync) operations 

• Eg. Reference counting 
– Not well-defined, and read accesses generally appear as data races to 

compiler 
• This can result in crashed, reads of half-updated values, uninitialized data 
• But locks are expensive enough that this is often impractical to avoid 

IBM 77 



Problem 3: A Volatile Market 

• 2005 java: 
volatile x_init: 
x=1; 
//possible fence here 
x_init=true; 
This gurantees that x becomes visible to other 

threads before x_init. 
 

 
 

IBM 78 



Volatile 
• OpenMP 2.5 and 3.0 Revision 11 Clause 1.4, Pg 15 Line 26-31 
 The volatile keyword in the C and C++ languages specifies a consistency 

mechanism that is related to the OpenMP memory consistency 
mechanism in the following way: a reference that reads the value of an 
object with a volatile-qualified type behaves as if there were a flush 
operation on that object at the previous sequence point, while a reference 
that modifies the value of an object with a volatile-qualified type behaves 
as if there were a flush operation on that object at the next sequence 
point. 

 

IBM 79 



POSIX Pthread C binding 

• David Butenof: 
“volatile … provide[s] no help whatsoever in 

making code ‘thread safe’” 

IBM 80 



C++ 11 WP solution 
• Concurrent access to special atomic objects is allowed 

– atomic <int> 
• Really just a communication issue 
• Eliminates all benign data races in C++ 
• C++ volatile continues to have nothing to do with threads 
• Java volatile= C++ atomic 
• C++ volatile != Jave volatile 

 

IBM 81 



Problem 4: Compiler generated data 
races 

• Compiler may generate code that adds data 
races! 
– When small struct fields are updated 
– Optimizations leading to spurious writes of old 

values 
– C++03 allows this! 

IBM 82 



Adjacent bitfield memory 
• Given a global s of type struct { int a:9; int b:7; }: 

Thread 1: 
 {lock<mutex> hold( aMutex );s.a = 1;} 
 Thread 2: 
 {lock<mutex> hold( bMutex );s.b = 1;} 
• Is there a race? Yes in C++0x, in pthreads 

– It may be impossible to generate code that will update the bits of a 
without updating the bits of b, and vice versa. 

– C++0x will say that this is a race. Adjacent bitfields are one “object.” 
 

IBM 83 



Adjacent scalar types 
• What about two global variables char c; and char d;? 
 Thread 1: 
 {lock<mutex> hold( cMutex );c = 1;} 
 Thread 2: 
 {lock<mutex> hold( dMutex );d = 1;} 
• Is there a race? No ideally and in C++0x, but maybe today in pthreads 
• Say the system lays out c then d contiguously, and transforms “d = 1” to: 
 char tmp[4]; // 32-bit scratchpad 
 memcpy( &tmp[0], &c, 4 );// read 32 bits starting at c 
 tmp[2] = 1;// set only the bits of d 
 memcpy( &c, &tmp[0], 4 );// write 32 bits back 
• Oops: Thread 2 now silently also writes to c without holding cMutex. 

 

IBM 84 



Other things that go Bump in the night 
• There are many transformations. Here are two common ones. 
• Speculation: 

– Say the system (compiler, CPU, cache, …) speculates that a condition may be true (e.g., 
branch prediction), or has reason to believe that a condition is often true (e.g., it was true 
the last 100 times we executed this code). 

– To save time, we can optimistically start further execution based on that guess. If it’s right, 
we saved time. If it’s wrong, we have to undo any speculative work. 

• Register allocation: 
– Say the program updates a variable x in a tight loop. To save time: Load x into a register, 

update the register, and then write the final value to x. 
• Key issue: The system must not invent a write to a variable that wouldn’t be written to (in an 

SC execution). 
• If the programmer can’t see all the variables that get written to, they can’t possibly know 

what locks to take. 
 

IBM 85 



Eliding locks 
• Consider (where x is a shared variable, cond does not change): 
 if( cond )lock x 
 ... 
 if( cond )use x 
 ... 
 if( cond )unlock x 
• Q: Is this pattern safe? 
• A: In theory, yes. In reality, maybe not… 

 

IBM 86 



Write speculation 
• Consider (where x is a shared variable): 
 if( cond )x = 42; 
• Say the system (compiler, CPU, cache, …) speculates (predicts, guesses, measures) that cond 

(may be, will be, often is) true. Can this be transformed to: 
 r1 = x;  // read what’s there 
 x = 42;  // perform an optimistic write 
 if( !cond) // check if we guessed wrong 
    x = r1; // oops: back-out write is not SC 
• In theory, No… but on some implementations, Maybe. 

– Same key issue: Inventing a write to a location that would never be written to in an SC 
execution. 

– If this happens, it can break patterns that conditionally take a lock. 
 

IBM 87 



Lessons learned 
• All bets are off in a race: 

– Prefer to use locks to avoid races and nearly all memory model 
weirdness, despite the flaws of locks. (In the future: TM?) 

– Avoid lock-free code. It’s for wizards only, even using SC atomics. 
– Avoid fences even more. They’re even harder, even full fences. 

• Conditional locks: 
– Problem: Your code conditionally takes a lock, but your system 

changes a conditional write to be unconditional. 
– Option 1: In code like we’ve seen, replace one function having a 

doOptionalWorkflag with two functions (possibly overloaded): 
• One function always takes the lock and does the x-related work. 
• One function never takes the lock or touches x. 

– Option 2: Pessimistically take a lock for any variables you mention anywhere 
in a region of code. 

– Even if updates are conditional, and by SC reasoning you could 
believe you won’t reach that code on some paths and so won’t need 
the lock. 

IBM 88 



C++11 WP solution: 
• Subject to “no data races” rule: 

– Each update affects a “memory location” 
• Scalar value, or contiguous sequence of bitfields 

– Define exactly which assignments can be “seen” by each reference to a 
memory location 

– For ordinary (non-atomic) references, there must be exactly one, for 
atomics there can be several 

– A reference to x.d after completion of both threads must see a value 
of 1 

– The preceding implementation of bit-field assignments is incorrect 
– Assignments s.a and s.b bitfields may still interfere 

IBM 89 



Non-terminating loops 

• Some kinds of code hoisting are problematic. 
• Stores may not be advanced across potentially 

nonterminating loops. 
• Example: 
 for (T*p = q; p != 0; p = p -> next) ++count; 
 x = 42; 
• Uncommon? But analysis is commonly wrong. 

 
IBM 90 



Subtle implication of the C++11 rule 

• No speculative writes 
int count; //global , may be shared between threads 
for (p=q; p!=0; p=p->next) 
   if (p->data>0) ++ count; 
• Cannot transform into 
int count; //global , may be shared 
reg=count; 
for (p=q; p!=0; p=p->next) 
   if (p->data>0) ++ reg; 
count=reg; //may spuriously assign to count 
 
 

IBM 91 



Consequence 

• Outlaws some useful optimizations, 
• Gives programmer a simple and consistent 

story 
• Prevents really mysterious compiler-

introduced program bugs 
• Outlawed optimizations can often be replaced 

by others 

IBM 92 



Problem 5: C++ destructors 

• We just needed assignments to break things 

IBM 93 

Main thread Static destructors 

Library shared variable 

exit() Process 
dies 

Daemon thread 

Even standard library is unsafe to use after exit() 

except that threads may return after main() calls 
exit() 

 



C++11 WP solution 
• Only partial solution: 
• 1. Shutdown all threads before process exit 

– Hard if they are waiting for I/O 
• 2. OR execute only special cleanups before exit (but not destructors) A way to kill a 

process without making libraries unusable, 
 . i.e. without running static destructors. 
• The former is hard: 

– Need to shut down threads blocked on I/O 
– Tried and failed to get something that played with Posix cancellation. 

• Quick_exit() gives us the latter. 
– Something between exit() and _exit() 

 
 

IBM 94 



Problem 6: Thread libraries 
• Have to limit reordering of memory 

operations with respect to 
synchronization operations: 

lock(); 
tmp=x; 
x=tmp+1; 
unlock(); 
 

• Done in 2 ways 
– Compiler treats synchronization 

functions as opaque 
• As though they might change x 

– Synchronization routines contain 
expensive fence 

tmp=x; 
lock(); 
x=tmp+1; 
unlock(); 

 

IBM 95 



What reordering should we allow? 

• Reordering of memory operations with 
respect to critical sections: 

IBM 96 

Optimized pthreads Naive pthreads Expected(&java) 

Lock() 

Unlock() 

Lock() 

Unlock() 

Lock() 

Unlock() 



Trylock, why pthread doesn’t allow expected reordering 

• Some awful code would break (Don’t write code like this!): 
Thread 1   Thread 2 
X=42;   while (trylock() == SUCCESS) 
lock();     unlock(); 
    assert (x==42); 
• Reordering thread 1 statements is wrong 

– Can’t move into a lock 
• Only recognized recently 

IBM 97 



IBM 98 

Some open source pthread lock implementations 2006 

Itanium x86 spin Itanium x86 mutex PPC mutex, spin 

Lock() 

Unlock() 

Lock() 

Unlock() 

Lock() 

Unlock() 

FreeBSD spin 

Lock() 

Unlock() 



C++11 WP solution: 
• Movement into critical section is allowed in both directions 
• Trylock() may fail even if lock is available 

– Problematic examples are now clearly incorrect, achieved our goal 
– But library vendors are informally discouraged from taking advantage 

of this 
• Worsens performance 

• Allows the standard to guarantee that memory operation reordering is 
invisible for data-race-free programs 
– That don’t use some low level library facilities 
– Such data-race-free programs behave as though thread steps are 

simply interleaved 

IBM 99 



Problem 7: C++ Standard Libraries 
• General Wisdom about locks in container libraries 

– Lock in the client 
– Only client knows about sharing the right granularity 
– Unexpected library-based locking causes: 

• Performance problems and deadlocks 
• But 

– Original Java collections like vectors are synchronized 
• Including individual element access 

– As is Posix putc 
• But not C++ STL containers 

 

IBM 100 



C++11 solution 
• Follow de facto STL convention 

– Containers do not visibly acquire locks by default 
– Containers behave like scalars: 

• Two operations on a container conflict if one of them logically updates 
the container. 

• Allocation doesn't count as update. 
• User-invisible updates require internal locking. 
• Other locking is the clients reponsibility. 

– This seems to be the de facto standard. 
• except for I/O? 

– Basic_string and reference counting? 
• ABI change? 

 

IBM 101 



102 Template Documentation 3/22/2014 

Problem 8: thread –safe C library 
• Four levels of MT safe attributes for library interfaces.  
• 1) Unsafe  

– Contains global and static data that are not protected. User should make sure 
only one thread at time to execute the call.  

 Unsafe Function    Reentrant counterpart 
 
 

 ctime     ctime_r 
localtime     localtime_r 
asctime     asctime_r 
gmtime     gmtime_r 
ctermid     ctermid_r 
getlogin     getlogin_r 
rand      rand_r 
readdir     readdir_r 
strtok     strtok_r 
tmpnam     tmpnam_r  
 
 



103 Template Documentation 3/22/2014 

Use MT-Safe Routines  

• 2) Safe  
– Global and static data are protected. Might not 

provide any concurrency between calls made by 
different threads. 

• Example: malloc in libc(3c) 

• 3) MT-Safe  
– Safe and can provide a reasonable amount of 

concurrency. 



104 Template Documentation 3/22/2014 

Use MT-Safe Routines  

• 4) Async-signal-safe  
– Can be safely called from a signal handler.  
– Example:  

• Not async-signal-safe: malloc(), pthread_getspecific()  
• Async-signal-safe: open(), read()  



Problem 9: broken C++ idioms 

• Singleton pattern 
• Lazy initialization 
• Reference counts 

IBM 105 



106 Template Documentation 3/22/2014 

Why not drop down to threads? 

• Shared data are a problem and we try to use 
locks 

• Double Checking singleton pattern 
Singleton& Singleton::Instance() {  
 if (!pInstance_) // 1  
 { pInstance_ = new Singleton; // 2 }  
 return *pInstance_; // 3 }  



107 Template Documentation 3/22/2014 

Locking solution with threads 
• While the thread assigns to 

pInstance_, all other stop in 
guard’s constructor 

• Each call to Instance incurs 
locking and unlocking the 
synchronization object 

   Singleton& Singleton::Instance() {  
   // mutex_ is a mutex object // 

Lock manages the mutex Lock 
guard(mutex_);  

   if (!pInstance_) {  
   pInstance_ = new Singleton; }  

        return *pInstance_;  
    }  



108 Template Documentation 3/22/2014 

Double-checked locking pattern 
Singleton& Singleton::Instance() { 
  if (!pInstance_) // 1 
  { // 2  
  Guard myGuard(lock_); // 3  
  if (!pInstance_) // 4  
  { pInstance_ = new Singleton; }  
 }  
 return *pInstance_;  
}  



109 Template Documentation 3/22/2014 

Example: Lazy Initialization  
• The Sequential Version  



110 Template Documentation 3/22/2014 

Example: Lazy Initialization Multithreaded Version 



111 Template Documentation 3/22/2014 

Double-checked Locking 
The compiler may reorder 
these two writes.  

Even if the compiler does 
not reorder them, a thread 
on another processor may 
perceive the two writes in a 
different order.  

Therefore, a thread on 
another processor may read 
wrong value of single_A-
>data1.  



112 Template Documentation 3/22/2014 

Fixing DCL 

A possible fix.  

Still broken on 
some 
architectures, 
e.g. PowerPC.  



113 Template Documentation 3/22/2014 

Memory Consistency Model  

• Pthreads  
– No formal specification  
– Shared accesses must be synchronized by calling 

pthread synchronization functions.  
• C++/C 

– C++03/C99:Assumes single thread program 
execution.  

• “volatile” restricts compiler optimization, but it does not 
address the memory consistency issue.  

– C++11/C11: Memory model for multithreaded C++ 
will be in C++11.  



114 Template Documentation 3/22/2014 

Memory Consistency Model  

• OpenMP  
– Detailed clarification. No formal specification.  

• Each thread has a temporary view of shared memory. 
• A flush operation restricts the ordering of memory 

operations and synchronizes a thread's temporary view 
with shared memory. All threads must observe any two 
flush operations with overlapping variable lists in 
sequential order.  



115 Template Documentation 3/22/2014 

Memory Consistency Model  

• Java: revised and clarified by JSR-133  
– Volatile variables  
– Final variables  
– Immutable objects (objects whose fields are only 

set in their constructor)  
– Thread-and memory-related JVM functionality 

and APIs such as class initialization, asynchronous 
exceptions, finalizers, thread interrupts, and the 
sleep, wait, and join methods of class Thread  



116 Template Documentation 3/22/2014 

C++11 solution 

• Avoid writing codes that have deliberate data 
races. 
It is tricky and difficult to understand and 
debug. 

• Use atomics on init variable 
 



Agenda 

• C11, C++11, C++14, SG5 TM goals and 
timelines 

• C++ Standard Transactional Memory status 
• Multithreading support in C11 and C++11 
• The problems of Concurrency before C/C++ 11 
• Language support 
• Memory Model 
• Fragen? 

IBM 117 



Can you do this today with TLS? 

extern std::string f(); //returns “Hello” 
from another TU 

std::string foo(std::string const& s2) {  
 __thread std::string s=f();   
 s+=s2;  
 return s; 
 }  

 

 
IBM 118 



Non-atomic Variables 

• Thread Local Storage (TLS) 
• Static duration variables 

– Dynamic initialization 
– Destruction  

IBM 119 



Thread local storage variable 
• Adopt existing practice 

__thread int a; 
• Introduce new storage duration 

– Thread duration  
thread_local int var =3 ; //C++ 
_Thread_local int var=5; //C 

• Unique to each thread 
• Accessible from every thread 
• Address is not constant 

IBM 120 



Extend TLS 
• Existing practice only supports static initialization and trivial destructors 
std::string foo(std::string const& s2) {  
 thread_local std::string s="hello";  
 s+=s2;  
 return s; }  
• Want to extend it to dynamic initializers and destructors 

thread_local vector<int> var=f(); 
• Dynamic initialization allows lazy init 
• OS support may be needed 

IBM 121 



Initialization of static-duration 
variables 

• Dynamic initialization is tricky 
– No syntax to order most initializations 

• Without synchronization, potential data races 
• With synchronization, potential deadlock 
• Examine 2 kinds: 

– Function local statics 
– globals 

IBM 122 



Function-local static storage 
• Initialization implicitly synchronized 

– While not holding any locks 
• New algorithm contributed by Mike Burrows from Google 
void bar() {  
 static my_class z(42+foo()); // initialization is thread-safe  
 z.do_stuff();  
}  

IBM 123 



Do not use a mutex during 
Initialization? 

• Constructor declared as constexpr and satisfies the requirements for constant initialization 
• Such objects are guaranteed to be init before any code is run as part of static init phase 
class my_class {  
 int i;  
 public:  
  constexpr my_class():i(0){}  
  my_class(int i_):i(i_){}  
  void do_stuff(); }; 
my_class x; // static initialization with constexpr constructor  
int foo();  
my_class y(42+foo()); // dynamic initialization  
void f()  
{ y.do_stuff(); // is y initialized? }  

IBM 124 



Global variable 

• Initialization implicitly synchronized 
• Concurrent initialization enabled 
• Initialization may not use a dynamically initialized 

object defined outside the translation unit 
 extern vector<int> e; 
 vector <int> u; //OK, default init 
 vector <int> v(u); //OK within this TU 
 vector <int> w(e); //undefined, outside of this TU 

IBM 125 



If you have to dynamically initialize… 

• When std::call_once is used with an instance of std::once_flag, function is 
called exactly once 

my_class* p=0;  
std::once_flag p_flag;  
void create_instance() {  
 p=new my_class(42+foo()); }  
void baz() {  
 std::call_once(p_flag,create_instance); p->do_stuff(); }  

IBM 126 



destruction 

• First terminate all threads 
• Execute destructors in a concurrent reverse of 

initialization 
• Interleave namespace-scope vars with 

function-scope static vars 
• Same restriction on use of vars outside current 

TU 

IBM 127 



Agenda 

• C11, C++11, C++14, SG5 TM goals and 
timelines 

• C++ Standard Transactional Memory status 
• Multithreading support in C11 and C++11 
• The problems of Concurrency before C/C++ 11 
• Language support 
• Memory Model 
• Fragen? 

IBM 128 



Is this valid C++ today? Are these 
equivalent? 

int x = 0; 
atomic<int> y = 0; 
Thread 1: 

x = 17; 
y.store(1, 
memory_order_release); 
// or: y.store(1); 
 

Thread 2:  
while 
(y.load(memory_order_acquire
) != 1) 
// or: while (y.load() 
!= 1) 
 
assert(x == 17);  

 

int x = 0; 
atomic<int> y = 0; 
Thread 1: 

x = 17; 
y = 1; 

Thread 2:  
while (y != 1) 
 continue; 
assert(x == 17); 

IBM 129 



130 

Memory Model 

• One of the most important aspect of C++0x /C1x is almost 
invisible to most programmers 
– memory model 

• How threads interact through memory 
• What assumptions the compiler is allowed to make when 

generating code 
• 2 aspects 

– How things are laid out in memory 
– What happens when two threads access the same memory location 

and one of them is a modfy 
» Data race 
» Modification order 



Memory Model 

• Locks and atomic operations communicate 
non-atomic writes between two threads 

• Volatile is not atomics 
• Memory races cause undefined behavior 
• Some optimizations are no longer legal 
• Compiler may assume some loops terminate 

IBM 131 



Message shared memory 

• Writes are explicitly communicated 
– Between pairs of threads 
– Through a lock or an atomic variable 

• The mechanism is acquire and release 
– One thread releases its memory writes 

• V=32; atomic_store_explicit(&a,3, 
memory_order_release ); 

– Another thread acquires those writes 
• i=atomic_load_explicit(&a, memory_order_acquire ); 

i+v; 

IBM 132 



What is a memory location 

• A non-bitfield primitive data object 
• A sequence of adjacent bitfields 

– Not separated by a structure boundary 
– Not interrupted by the null bitfield 
– Avoid expensive atomic read-modify-write 

operations on bitfields 
 

IBM 133 



Data race condition 

• A non-atomic write to a memory location in 
one thread 

• A non-atomic read from or write to that same 
location in another thread 

• With no happens-before relations between 
them 

• Is undefined behaviour 

IBM 134 



Effect on compiler optimization 

• Some rare optimizations are restricted 
– Fewer speculative writes 
– Fewer speculative reads 

• Some common optimizations can be 
augmented 
– They may assume that loops terminate 
– Nearly always true 

IBM 135 



Atomics: To Volatile or Not Volatile 

• Too much history in volatile to change its 
meaning 

• It is not used to indicate atomicity like Java 
• Volatile atomic means something from the 

environment may also change this in addition 
to another thread 

IBM 136 



Requirements on atomics 

• Static initialization 
• Reasonable implementation on current 

hardware 
• Relative novices can write working code 
• Experts can performance efficient code 

IBM 137 



Consistency problem 
• X and y are atomic and initially 0 

– Thread 1: x=1; 
– Thread 2: y=1; 
– Thread 3: if (x==1 && y==0) 
– Thread 4: if ( x==0 && y==1) 

• Are both conditions exclusive? 
– Is there a total store order? 

• The hardware/software system may not provide it 
• Programming is harder without it 

IBM 138 



Consistency models 
• Sequentially consistent 

– What is observed is consistent with a sequential ordering of all events 
in the system 

• But comes with a very heavy cost 
• Weaker models 

– More complex to code for some 
• But very efficient 

• What we decided 
– Default is sequential consistency 
– But allow weaker semantics explicitly 

IBM 139 



Atomic Design 
• Want shared variables 

– that can be concurrently updated without introducing data race, 
– that are atomically updated and read 

• half updated states are not visible, 
• that are implemented without lock overhead whenever the hardware 

allows, 
• that provide access to hardware atomic read-modify write (fetch-and-add, 

xchg, cmpxchg) instructions whenever possible. 
 

IBM 140 



Race Free semantics and Atomic Memory operations 

• If a program has a race, it has undefined behavior 
– This is sometimes known as “catch fire” semantics 
– No compiler transformation is allowed to introduce a race 

• no invented writes 
• Possibly fewer speculative stores and (potentially) loads 

• There are atomic memory operations that don’t cause races 
– Can be used to implement locks/mutexes 
– Also useful for lock-free algorithms 

• Atomic memory operations are expressed as library function calls 
– Reduces need for new language syntax 

 
 

IBM 141 



Atomic Operations and Type 

• Data race: if there is no enforced ordering 
between two accesses to a single memory 
location from separate threads, one or both of 
those accesses is not atomic, and one or both 
is a write, this is a data race, and causes 
undefined behavior.   

• These types avoid undefined behavior and 
provide an ordering of operations between 
threads  

IBM 142 



Standard Atomic Types 
• #include <cstdatomic> 
• atomic_flag 
• Integral types: 

– atomic_char, atomic_schar, atomic_uchar, atomic_short, atomic_ushort, atomic_int, 
atomic_uint, atomic_long, atomic_ulong, atomic_llong, atomic_ullong atomic_char16_t, 
atomic_char32_t, atomic_wchar_t  

• Typedefs like those in <cstdint> 
– atomic_int_least8_t, atomic_uint_least8_t, atomic_int_least16_t, atomic_uint_least16_t, 

atomic_int_least32_t, atomic_uint_least32_t, atomic_int_least64_t, atomic_uint_least64_t, 
atomic_int_fast8_t, atomic_uint_fast8_t, atomic_int_fast16_t, atomic_uint_fast16_t, 
atomic_int_fast32_t, atomic_uint_fast32_t, atomic_int_fast64_t, atomic_uint_fast64_t, 
atomic_intptr_t, atomic_uintptr_t, atomic_size_t, atomic_ssize_t, atomic_ptrdiff_t, 
atomic_intmax_t, atomic_uintmax_t  

• is_lock_free(); 
• Non-copyable, non-assignable 

IBM 143 



Minimal atomics 
• Need 1 primitive data types that is a must, most modern hardware has instructions to implement the atomic operations 

– for small types 
– and bit-wise comparison, assignment (which we require) 
– atomic_flag type 

static std::atomic_flag v1= ATOMIC_FLAG_INIT 
If (atomic_flag_test_and_set(&v1)) 
 atomic_flag_clear(&v1); 

• For other types, hardware, atomic operations may be emulated with locks. 
– Sometimes this isn.t good enough: 

• across processes, in signal/interrupt handlers. 
– is_lock_free() returns false if locks are used, and operations may block. 

• Operations on variable have attributes, which can be explicit 
– Acquire=get other memory writes 
– Release=give my memory writes 
– Acq_and_rel=Acquire and release at the same time 
– Relaxed=no acquire or released, non-deterministic, not synchronizing with the rest of memory, but still sequential view of that 

variable 
– Seq-cst=Fully ordered,extra ordering semantics beyond acquire and releases, this is sequentially consistent 
– Consumed=dependecy-based ordering 

 

IBM 144 



Std::atomic<bool> 
• Most basic std::atomic_bool, can be built from a non-atomic bool  
• Can be constructed, initiialized, assigned from a plain bool 
• assignment operator from a non-atomic bool does not return a reference to the object assigned to, but it 

returns a bool with the value assigned (like all other atomic types).  
– prevents code that depended on the result of the assignment to have to explicitly load the value, potentially 

getting a modified result from another thread.  
• replace the stored value with a new one and retrieve the original value  
• a plain non-modifying query of the value with an implicit conversion to plain bool  
• RMW operation that stores a new value if the current value is equal to an expected value is 

compare_exchange_{weak/strong}();  
• If we have spurious failure: 
bool expected=false; extern atomic_bool b; // set somewhere else 
while(!b.compare_exchange_weak(expected,true) && !expected);  
• May not be lock free, need to check per instance  

 

IBM 145 



Basic atomics 

• atomic<bool> 
– Load, store, swap, cas 

• atomic<int> 
– Load, store, swap, cas 
– Fetch-and-(add, sub, and, or, xor) 

• atomic<void *> 
– Load, store, swap, cas 
– Fetch-and-(add, sub) 

 

IBM 146 



Std::atomic<integral> 
• this adds fetch_and, fetch_or, fetch_xor, and compound assignments like:  
• +=,-=,&=,^=, pre and post increment and decrement  
• missing division, multiplication and shift operations, but atomic integrals are 

usually used as counters or bit masks, this is not a big loss  
• all semantics match fetch_add and fetch_sub for atomic_address: returns old 

value  
• the compound assignments return new value  
• ++x increments the variable and returns new value, x++ increments the variable 

and returns old value  
• result is the value of the associated integral type  

IBM 147 



Std::atomic <> template 
• std::atomic<> to create an atomic user-defined type 
• Specializations for integral types derived from std::atomic_integral_type, and pointer types 
• Main benefit of the template is atomic variants of user-defined types, can't be just any UDT, it must fit this 

criteria:  
– must have trivial copy-assignment operator: no virtual functions or virtual bases and must use the compiler-

generated copt-assignment operator  
– every base class and non-static data member of UDT must also have a trivial copy-assignment operator  
– Must be bitwise equality comparable  

• Only have  
– load(), store() 

• Assignment and conversion to the UDT 
– exchange(), compare_exchange_weak(), compare_exchange_strong() 
– assignment from and conversion to an instance of type T 

IBM 148 



Atomic templates 
• Makes an atomic type from a non-atomic type  

– Must be bitwise copyable and comparable 
• Defined specializations for basic types and pointers 
• Suggested specializations for alignment and size 

atomic <int *> aip = {0}; 
aip=ip; aip+=4; 
atomic <small_type> ag={ …. }; 
while (!ag.compare_swap(&ag, &g.g+4)); 
atomic<circus > ac; //works, but not recommended 

IBM 149 



Atomic freedom 

• Lock-free 
– Robust to crashes 
– Someone will make progress 
– C++14: “shall” obstruction-free and “should” for 

lock-free 
• Wait-free 

– Operations completed in a bounded time 
– Cas vs ll/sc 

• Address-free 
– Atomicity does not depend on using the same 

address 
 

IBM 150 



Lock-free atomics 

• Large atomics have no hardware support 
– Implemented with locks 

• Locks and signals don’t mix 
– Test for lock-free 

• Compile-time macros for basic types 
– Always lock-free 
– Never lock-free 

• RTTI for each type 

IBM 151 



Wait-free atomics 

• Hard to implement without direct HW support 
– Resulting programs is usually HW-specific 
– Hard to be portable anyway 

• IBM argued against it since ll/sc is not wait-
free 

• Few who write this seemed to cared anyway 
– No requirement for it 
– No query about it 

IBM 152 



Address-free atomics 
• Memory may not have a consistent address 

– Processes sharing memory may not have the same address for that 
memory 

– Memory may be mapped into the address space twice 
• Atomic operations must be address-free to work 

– One small tool for inter-process communication 
• A lock-free operation is address-free 

– Not clear we can say this in a std way 
– But we will make our intent clear 

 

IBM 153 



Compiler Impact 
• Memory model does not say how to make an application thread safe 

– Assumption is that source presented to compiler is thread safe 
– Undefined semantics for code with any data races 

• Memory model describes legal transformations on already safe code 
– Compiler may not introduce any data races 

• Memory model concerned with performance 
– Limited set of optimizations disallowed – may introduce data race 
– Allows some memory optimizations across locks 

• Quality implementation 
– Most implementations already support a low quality implementation 
– Acquire/release operations seen as calls to opaque global functions – All shared variables may 

be referenced and modified 

IBM 154 



atomics 

atomic<int> alp; alp=4; alp+=3; 
atomic<int> current; 
int desired, expected=current.load(); 
do desired=function(expected); 
while(!current.compare_exchange_weak(expect

ed, desired)); 

IBM 155 



Race Free semantics and Atomic Memory operations 

• If a program has a race, it has undefined behavior 
– This is sometimes known as “catch fire” semantics 
– No compiler transformation is allowed to introduce a race 

• no invented writes 
• Possibly fewer speculative stores and (potentially) loads 

• There are atomic memory operations that don’t cause races 
– Can be used to implement locks/mutexes 
– Also useful for lock-free algorithms 

• Atomic memory operations are expressed as library function calls 
– Reduces need for new language syntax 

 
 

IBM 156 



Memory Ordering Operations 
enum memory_order { 

Memory_order_consumed, 
memory_order_relaxed, // just atomic, no constraint 
memory_order_release, 
memory_order_acquire, 
memory_order_acq_rel, // both acquire and release 
memory_order_seq_cst }; // sequentially consistent 
     // (even stronger than cq_rel) 

• Every atomic operation has a default form, implicitly using seq_cst, and a form 
with an explicit order argument 

• When specified, argument is expected to be just an enum constant 
 

IBM 157 



Memory Ordering Constraints 
• Sequential Consistency 

– Single total order for all SC ops on all variables 
– default 

• Acquire/Release 
– Pairwise ordering rather than total order 
– Independent Reads of Independent Writes don't require synchronization 

between CPUs 
• Relaxed Atomics 

– Read or write data without ordering 
– Still obeys happens-before 

 
 

IBM 158 



Operations available on atomic types 
atomic_flag bool/others T* integral 

test_and_set, 
clear 

Y 

is_lock_free Y Y Y 

load, store, 
exchange, 
compare_exchan
ge_weak+strong 

Y Y Y 

fetch_add (+=), 
fetch_sub (-=), 

++, -- 

Y Y 

fetch_or (|=), 
fetch_and (&=), 
fetch_xor (^=) 

Y 

159 IBM 



Sequencing redefined for serial 
program 

• Sequence points are … gone! 
• Sequence are now defined by ordering 

relations 
– Sequence-before 
– Indeterminately-sequenced 

• A write/write or read/write pair relations 
– That are not sequenced before 
– That are not indeterminately-sequenced 
– Results in undefined behaviour 

 
IBM 160 



Sequencing extended for parallel 
programs 

• Sequenced-before 
– Provides intra-thread ordering 

• Synchronizes with (Acquire and release) 
– Provide inter-thread ordering 

• Happens-before relation 
– Between memory operations in different threads 

IBM 161 



Sequenced before 
• If a memory update or side-effect a is-sequenced-before another memory operation or side-

effect b,  
– then informally a must appear to be completely evaluated before b in the sequential 

execution of a single thread, e.g. all accesses and side effects of a must occur before those of 
b.  

– We will say that a subexpression A of the source program is-sequenced-before another 
subexpression B of the same source program to indicate that all side-effects and memory 
operations performed by an execution of A occur-before those performed by the 
corresponding execution of B, i.e. as part of the same execution of the smallest expression 
that includes them both.  

• We propose roughly that wherever the current standard states that there is a sequence point 
between A and B, we instead state that A is-sequenced-before B. This will constitute the 
precise definition of is-sequenced-before on subexpressions, and hence on memory actions 
and side effects.  

IBM 162 



Synchronizes with 
• only between operations on atomic types  
• operations on a data structure ( locking a mutex) might provide this relationship if the data 

structire contains atomic types, and the operations on that data structure perform the 
appropriate operations internally  

• definition:  
– a suitably-tagged atomic write operation on a variable x 

synchronizes-with a suitably-tagged atomic read operation on x that reads the value stored 
by (a) that write, (b) a subsequent atomic write operation on x by the same thread that 
performed the initial write, or (c) an atomic read-modify-write operation on x (such as 
fetch_add() or compare_exchange_weak()) by any thread, that read the value written. 

• Store-release synchronizes-with a load-acquire 

IBM 163 



Happens before 

• It specifies which operations see the effects of 
which other operations.  

• An evaluation A happens before an evaluation 
B if: 
– A is sequenced before B, or 
– A synchronizes with B, or 
– for some evaluation X, A happens before X and X 

happens before B. 

 
IBM 164 



Happens-before 

IBM 165 

//#3 

#3 

#3 

#4 

#1 

#2 



Sequential Consistency implies a total 
ordering 

std::atomic_bool x,y; 
std::atomic_int z; 
void write_x() 
{ 
 x.store(true,std::memory_order_seq_cst); //2 
} 
void write_y() 
{ 
 y.store(true,std::memory_order_seq_cst); //3 
} 
void read_x_then_y() 
{ 

while(!x.load(std::memory_order_seq_cst)); 
if(y.load(std::memory_order_seq_cst)) //4 
 ++z; 

} 
void read_y_then_x() 
{ 

while(!y.load(std::memory_order_seq_cst)); 
if(x.load(std::memory_order_seq_cst)) //5 
 ++z; 

} 

int main()  
{  

x=false;  
y=false;  
z=0;  
std::thread a(write_x);  
std::thread b(write_y);  
std::thread c(read_x_then_y);  
std::thread d(read_y_then_x);  
a.join();  
b.join();  
c.join();  
d.join();  
assert(z.load()!=0); //1  

}  

 

IBM 166 



SC and happens-before 

IBM 167 

std::atomic_bool x,y; std::atomic_int z;x=false;y=false;z=0; 

x.store(true);//2 y.store(true);//3 

while(!x.load()); 

If (y.load())//4 

{++z;} 

while(!y.load()); 

If (x.load())//5 

{++z;} 

assert(z.load()!=0); //1 



Relaxed operations have little ordering requirement 

std::atomic_bool x,y;  
std::atomic_int z;  
void write_x_then_y()  
{  

x.store(true,std::memory_order_relax
ed); //4  

y.store(true,std::memory_order_relax
ed); //5  

}  
void read_y_then_x()  
{  

while(!y.load(std::memory_order_rel
axed)); //3  

if(x.load(std::memory_order_relaxed)
) //2  
++z;  

}  
 

int main()  
{  

x=false;  
y=false;  
z=0;  
std::thread a(write_x_then_y);  
std::thread b(read_y_then_x);  
a.join();  
b.join();  
assert(z.load()!=0); //1  

}  
 

IBM 168 



Relaxed and happens-before 

IBM 169 

std::atomic_bool x,y; std::atomic_int z;x=false;y=false;z=0; 

x.store(true);//4 

y.store(true);//5 

while(!y.load());//3 

If (x.load())//2 

{++z;} 

assert(z.load()!=0); //1 



Acquire-Release does not mean a total 
ordering 

std::atomic_bool x,y;  
std::atomic_int z;  
void write_x()  
{  
 x.store(true,std::memory_order_release);  
}  
void write_y()  
{  
 y.store(true,std::memory_order_release);  
}  
void read_x_then_y()  
{  

while(!x.load(std::memory_order_acquire));  
if(y.load(std::memory_order_acquire)) //3  
 ++z;  

}  
void read_y_then_x()  
{  

while(!y.load(std::memory_order_acquire));  
if(x.load(std::memory_order_acquire)) //2  
 ++z;  

}  
 

int main()  
{  

x=false;  
y=false;  
z=0;  
std::thread a(write_x);  
std::thread b(write_y);  
std::thread c(read_x_then_y);  
std::thread d(read_y_then_x);  
a.join();  
b.join();  
c.join();  
d.join();  
assert(z.load()!=0); //1  

}  
 

IBM 170 



Acquire-Release with Happens-before 

IBM 171 

std::atomic_bool x,y; std::atomic_int z;x=false;y=false;z=0; 

x.store(true); y.store(true); 

while(!x.load()); 

If (y.load())//3 

{++z;} 

while(!y.load()); 

If (x.load())//2 

{++z;} 

assert(z.load()!=0); //1 



Agenda 

• C11, C++11, C++14, SG5 TM goals and 
timelines 

• C++ Standard Transactional Memory status 
• Multithreading support in C11 and C++11 
• The problems of Concurrency before C/C++ 11 
• Language support 
• Memory Model 
• Fragen? 

IBM 172 



Food for thought and Q/A 
• This is the chance to get a copy before you have to pay for it: 

– http://www.hpl.hp.com/personal/Hans_Boehm/c++mm 

– C++ : http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf 

– C++ (last free version): http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 

– C: http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1570.pdf 

• Participate and feedback to Compiler 
– What features/libraries interest you or your customers? 
– What problem/annoyance you would like the Std to resolve? 
– Is Special Math important to you? 
– Do you expect 0x features to be used quickly by your customers? 

• Talk to me at my blog: 
– http://www.ibm.com/software/rational/cafe/blogs/cpp-

standard 
 

 173 

http://www.hpl.hp.com/personal/Hans_Boehm/c++mm�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf�


174 

My blogs and email address 
• OpenMP CEO:                                                       http://openmp.org/wp/about-openmp/ 

My Blogs:                                                               http://ibm.co/pCvPHR 
C++11 status:                        http://tinyurl.com/43y8xgf  
Boost test results                                                   
http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L&uid=swg27006911 
C/C++ Compilers Support/Feature Request Page     
http://www.ibm.com/software/awdtools/ccompilers/support/ 
http://www.ibm.com/support/docview.wss?uid=swg27005811 
STM:                                                                      https://sites.google.com/site/tmforcplusplus/ 

• Chair of WG21 SG5 Transactional Memory 
• IBM and Canada C++ Standard Head of Delegation 
• ISOCPP.org Director, Vice President                 http://isocpp.org/wiki/faq/wg21:michael-wong 
• Vice Chair of Standards Council of Canada Programming Languages 

• Tell us how you use OpenMP: 
• http://openmp.org/wp/whos-using-openmp/ 

https://sites.google.com/site/tmforcplusplus/�


Acknowledgement 

• Some slides are based on committee 
presentations by various committee members, 
their proposals, and private communication 

IBM 175 



? FRAGEN 



Ich freue mich  

auf Ihr 
Feedback! 

Hat Ihnen mein Vortrag gefallen? 


	Multithreaded C11 & C++11: �the Dawn of new Standards�(and a preview of upcoming Transactional Memory TS)
	Acknowledgement and Disclaimer
	IBM Rational Disclaimer
	The IBM Rational C/C++ Café
	Agenda
	Where were you in 1998?
	C and C++ Standard Progress
	Slide Number 8
	C++14 DIS, 8 TS’s under develpoment (by Herb Sutter)
	C++14 is approved (photos by Chandler Carruth)
	Current Project Details
	Project Time line                                                
	Agenda
	Why do we need a TM language?
	What is hard about adding TM to C++
	Project History
	Active members
	Commercial Hardware TMs
	Commercial/OS Compilers
	Design goals
	Locks are Impractical for�Generic Programming=callback
	What locks does x = y acquire?
	Transactions Naturally Fit�Generic Programming Model
	The Problem
	Don’t We Know This Already?
	Conclusion
	TM Patterns and Use Cases
	Current Status of SG5 TM
	Support for TM in C++ std library
	2014: SG5 TM Language in a nutshell (N3919)
	What is transaction-safe?
	atomic Examples
	synhronized examples
	Agenda
	Is this legal C++03 syntax?
	Hello Concurrent World
	Can you do this with TLS before C11/C++11?
	Is this valid C++ today? Are these equivalent?
	C++11, C11
	Status of Language Standards as of 1H 2013
	Organization & Sponsors
	Sum of all things C11 & C++11
	C++11 Library
	Sum of all things C11
	Removed or Deprecated features
	C++11 land: http://fearlesscoder.blogspot.ca/2012/01/c11-lands.html
	What changed in C++11: http://cpprocks.com/c11-a-visual-summary-of-changes/
	Slide Number 48
	What changed in C++11
	What changed in C++11 STL:http://cpprocks.com/cpp11-stl-additions
	Concurrency in C11/C++11
	Introduction to concurrency
	Concurrency core/library
	What we got
	What we did not get
	The grand scheme of Concurrency
	Memory Model and Consistency model, a quick tutorial
	Sequential Consistency: a tutorial
	Sequential Consistency for program understanding
	Now add fences to control reordering
	Agenda
	Memory Model and instruction reordering
	Memory Model and Consistency model
	Problems for concurrency in 2005
	Problem1: Hardware at the bottom of the stack
	Hardware at the bottom of the stack
	Transformations: in the name of speed
	Dekker’s and Peterson’s Algorithms
	What really happens when you are not looking
	Memory Ordering and fences in 2006
	Performance
	Independent Reads with Independent Writes
	Architecture in late 2007
	Problem 2: Languages and Compilers
	C++11 programming rules:
	Consequence of “no async changes” compiler assumption:
	C and C++ thread realities before standardization
	Problem 3: A Volatile Market
	Volatile
	POSIX Pthread C binding
	C++ 11 WP solution
	Problem 4: Compiler generated data races
	Adjacent bitfield memory
	Adjacent scalar types
	Other things that go Bump in the night
	Eliding locks
	Write speculation
	Lessons learned
	C++11 WP solution:
	Non-terminating loops
	Subtle implication of the C++11 rule
	Consequence
	Problem 5: C++ destructors
	C++11 WP solution
	Problem 6: Thread libraries
	What reordering should we allow?
	Trylock, why pthread doesn’t allow expected reordering
	Some open source pthread lock implementations 2006
	C++11 WP solution:
	Problem 7: C++ Standard Libraries
	C++11 solution
	Problem 8: thread –safe C library
	Use MT-Safe Routines 
	Use MT-Safe Routines 
	Problem 9: broken C++ idioms
	Why not drop down to threads?
	Locking solution with threads
	Double-checked locking pattern
	Example: Lazy Initialization 
	Example: Lazy Initialization Multithreaded Version
	Double-checked Locking
	Fixing DCL
	Memory Consistency Model 
	Memory Consistency Model 
	Memory Consistency Model 
	C++11 solution
	Agenda
	Can you do this today with TLS?
	Non-atomic Variables
	Thread local storage variable
	Extend TLS
	Initialization of static-duration variables
	Function-local static storage
	Do not use a mutex during Initialization?
	Global variable
	If you have to dynamically initialize…
	destruction
	Agenda
	Is this valid C++ today? Are these equivalent?
	Memory Model
	Memory Model
	Message shared memory
	What is a memory location
	Data race condition
	Effect on compiler optimization
	Atomics: To Volatile or Not Volatile
	Requirements on atomics
	Consistency problem
	Consistency models
	Atomic Design
	Race Free semantics and Atomic Memory operations
	Atomic Operations and Type
	Standard Atomic Types
	Minimal atomics
	Std::atomic<bool>
	Basic atomics
	Std::atomic<integral>
	Std::atomic <> template
	Atomic templates
	Atomic freedom
	Lock-free atomics
	Wait-free atomics
	Address-free atomics
	Compiler Impact
	atomics
	Race Free semantics and Atomic Memory operations
	Memory Ordering Operations
	Memory Ordering Constraints
	Operations available on atomic types
	Sequencing redefined for serial program
	Sequencing extended for parallel programs
	Sequenced before
	Synchronizes with
	Happens before
	Happens-before
	Sequential Consistency implies a total ordering
	SC and happens-before
	Relaxed operations have little ordering requirement
	Relaxed and happens-before
	Acquire-Release does not mean a total ordering
	Acquire-Release with Happens-before
	Agenda
	Food for thought and Q/A
	My blogs and email address
	Acknowledgement
	?
	Hat Ihnen mein Vortrag gefallen?

