
Torvald Riegel | HTDC 20141

(Software) Transactional Memory

Building Blocks

Torvald Riegel
Red Hat
14/03/17

Torvald Riegel | HTDC 20142

Concurrent programming

● End of frequency scaling → Hardware parallelism (TLP)
→ Parallel software → Concurrency
→ Shared-memory synchronization

● Concurrent = at the same time and not independent
● Concurrent actions need to synchronize with each other

 Shared memory (synchronization)
+ Transactions
= Transactional memory (TM)

● Atomicity enables synchronization
● Database folks: think atomicity + isolation

Torvald Riegel | HTDC 20143

Why TM?

● Shared-memory synchronization still matters
● Message passing isn’t necessarily easier when there is (conceptually)

shared state
● Other major approaches to shared-memory synchronization aren’t

perfect
● Mutual exclusion via locks

● Relies on conventions: which lock protects which data?
● Deadlock issues: need global lock acquisition order
● Fine- vs. coarse-granular locks: performance vs. Ease-of-use

● Lock elision (using TM hardware to try to run critical sections in parallel):
● Programming model is still locks
● Performance depends a lot on hardware

● Custom concurrent code based on low-level hardware primitives
● Primitives allow for atomic access to single memory locations

→ Accessing several locations atomically requires complex code

● Can we have something else that doesn’t have these drawbacks?

Torvald Riegel | HTDC 20144

TM is ...?

● ... a certain (class of) concurrent algorithm(s)?
● ... a hardware mechanism?
● ... a means for easy parallelization of programs?
● ... bound to fail?
● ... a research toy?
● ... generally better than locking?

Torvald Riegel | HTDC 20145

TM is a programming abstraction

● Underlying vision: Allow programmers...
... to declare which code sequences are atomic
... instead of requiring them to implement how to make those atomic.

● Generic implementation ensures atomicity
● Not specific to a particular program
● Purely SW (STM), purely HW (HTM), or mixed SW/HW (HyTM)

● How to provide a programming abstraction?
● Good trade-off between performance and ease-of-use for the

mainstream programmer
● Integrate with high-level programming languages

● Focus of this talk: vertical (S)TM implementation stacks for general-
purpose C/C++ userspace programs
→ (S)TM Building Blocks

Torvald Riegel | HTDC 20146

Agenda

● Basics
● TM history
● TM requirements
● Transactional language constructs for C/C++

● Implementation basics
● STMs

● Design space
● Time-based STM
● Performance
● libitm

● Compiler-based optimizations
● Suggestions for research topics
● Q & A

Torvald Riegel | HTDC 20147

Brief history of TM

● 1993: TM proposed as a HW feature (Herlihy & Moss)
● 1995: Software TM (Shavit & Touitou)
● 2003: First dynamic STMs (Harris & Fraser; Herlihy et al.)
● 2006: First time-based STM (Riegel et al., Dice et al.)
● 2006: First vertical TM SW stacks for Java (Intel, Microsoft)
● 2007: First C/C++ compiler support for TM
● 2009: Sun's Rock CPU features simple HW support for TM
● 2012: ISO C++ study group on TM (SG5); GCC support
● 2013: Intel and IBM CPUs announced with HW support for TM

Torvald Riegel | HTDC 20148

Brief history of TM: Don’t ignore databases!

● Many differences:
● Disk vs. memory (at least in the past...)
● Just transactions vs. transactional and nontransactional accesses
● Focus on failure atomicity, dependability, persistence

● Many things that are relevant for TM:
● Two-phase locking, conflict serializability, recoverability, ...

● If comparing to DB theory, consider recent definitions

● Good overview: Weikum and Vossen, “Transactional Information
Systems: Theory, Algorithms, and the Practice of Concurrency Control
and Recovery”, 2002

Torvald Riegel | HTDC 20149

TM requirements

● Usability
● Need integration with programming language

● Library interface makes code reuse a lot harder
● Want to execute transactions speculatively

● TM semantics need to be relatively easy to understand
● Composability

● Transactions needs to compose w/ each other
● Code reuse: keep (most of) semantics unchanged even if in transaction
● Transactions must not affect unrelated nontransactional code

● Performance
● Goal: A useful balance between ease-of-use and performance
● Single-thread overheads
● Scalability

Torvald Riegel | HTDC 201410

C/C++ language constructs

● Declare that compound statements must execute atomically
● Example:

void f() {
 __transaction_atomic { if (x < 10) y++; }
}

● No data annotations or special data types required
● Existing (sequential) code can be used in transactions (e.g., function

calls)
● Nested transactions are allowed:

void g() {
 __transaction_atomic { if (y < 23) f(); }
}

● Keywords aren’t final

Torvald Riegel | HTDC 201411

Restrictions on atomic transactions

● Code in atomic transactions must be transaction-safe
● Compiler checks whether code is safe
● Functions not known to be safe are unsafe

● SG5 has proposed alternatives
● For cross-CU calls / function pointers, annotate functions:

__attribute__((transaction_safe)) void library_func();

● Unsafe code:
● volatile:

● Incompatible with failure atomicity
● Performance: speculative execution not allowed

● Atomics: would slow down atomics outside of transactions!
● Locks: unsafe currently, but could be made safe
● Other synchronization mechanisms: compatible with atomicity?

● Further information: ISO C++ paper N3718

Torvald Riegel | HTDC 201412

Synchronization semantics

● Transactions extend the C11/C++11 memory model
● All transactions totally ordered
● Order contributes to memory model’s happens-before
● TM ensures some valid order consistent with happens-before
● Does not imply sequential execution at runtime!

● Data-race freedom still required (as with locks, ...)
● Publisher:

init(data);
__transaction_atomic { data_public = true; }

● Consumer:
Correct: __transaction_atomic {
 if (data_public) use(data);
 }

Incorrect: __transaction_atomic {
 temp = data; // Data race
 if (data_public) use(temp);
 }

Torvald Riegel | HTDC 201413

TM supports modular programming

● Programmers don’t need to manage association between shared data
and synchronization metadata (e.g., locks)

● TM implementation takes care of that
● Functions containing only transactional synchronization compose

without deadlock
● Nesting order of transactions does not matter
● But can’t expect another thread to make progress in an atomic

transaction!
● Example: Synchronize moving an element between lists

void move(list& l1, list& l2, element e)
{
 if (l1.remove(e)) l2.insert(e);
}

● TM: __transaction_atomic { move(A, B, 23); }
● Locks: ?

Torvald Riegel | HTDC 201414

Agenda

● TM basics
● TM history
● TM requirements
● Transactional language constructs for C/C++

● Implementation basics
● STMs

● Design space
● Time-based STM
● Performance
● libitm

● Compiler-based optimizations
● Suggestions for research topics
● Q & A

Torvald Riegel | HTDC 201415

TM-based synchronization

Torvald Riegel | HTDC 201416

Implementation: Compiler vs. runtime library

● Implementation complexity/possibilities vs. performance trade-off
● Typically no JIT compilation of C/C++ programs

● Compiled code is fixed, potentially for a long time
● Delegation to runtime library yields implementation flexibility

● Especially with dynamic linking of the runtime library

Split compiler/library
responsibilities at ABI

Torvald Riegel | HTDC 201417

What the compiler does

● Ensures atomicity guarantee of transactions (at compile time!)
● Finds all transaction-safe code (implicitly or by annotation)
● Checks that transaction-safe code is indeed safe

● Creates an instrumented clone of all transactional code
● Transaction-safe functions, code in transactions
● Memory loads/stores rewritten to calls to TM runtime library
● Function calls redirected to instrumented clones
● Result: both an instrumented and uninstrumented code path

● Generate begin/commit code for each transaction
● Runtime library decides whether to execute instrumented or

uninstrumented code path

Torvald Riegel | HTDC 201418

What the runtime library must do

● Establish a (virtually) total order for transactions
● Don’t want to select a fixed position in the order when transaction starts
● Code relies on well-defined execution (“as if” by abstract machine)
● Need to constrain speculation to satisfy “as if”

● Rules for each transaction
● Pick a valid position in the transaction order dynamically

● Position must be consistent with happens-before
● Nontransactional synchronization
● Publication safety

● Only return values consistent with this position
● Transaction’s snapshot always needs to be consistent

● Change position only if transparent to the code (i.e., would have returned
same values)

● After commit, position is final – all threads need to agree on it
(privatization safety)

Torvald Riegel | HTDC 201419

Agenda

● TM basics
● TM history
● TM requirements
● Transactional language constructs for C/C++

● Implementation basics
● STMs

● Design space
● Time-based STM
● Performance
● libitm

● Compiler-based optimizations
● Suggestions for research topics
● Q & A

Torvald Riegel | HTDC 201420

STM algorithms for C/C++

Torvald Riegel | HTDC 201421

STM algorithm design space (simplified)

● Loads
● Visible reads
● Invisible reads with incremental validation
● Invisible reads with time-based validation

● Stores
● Write-through (with undo logging if abort possible)
● Write-back with redo logging

● Few synchronization objects vs. multiple
● For example, single lock vs. array of locks

Torvald Riegel | HTDC 201422

Correctness

● All major STMs produce interleavings similar to (strong) two-phase
locking

● Phase 1: grab locks for all accesses
● Phase 2: release locks
● Invisible reads: check that transaction could have had a read lock
● Most algorithms do not release locks before commit (strong 2PL)

● Two-phase locking results in total order of all transactions
● At some point during the transaction, had locks for all data
● Read locks are okay because no constraints on order with other reads

● If using invisible reads, STMs do more to ensure privatization safety
● Check for whether a read lock could have been held is not immediate;

some transactions may not be aware of a change in the transaction order
● A few more details

● Consistency and contributing to happens-before is straightforward
● Need a seq-cst fence somewhere to put empty transactions in total order

Torvald Riegel | HTDC 201423

Time-based STM

● Time-based: Updates tagged with timestamp from global time base
● Allows for very efficient atomic snapshots
● Works with write-through, write-back, ...
● Time bases: shared counters, real-time clocks, ...
● Very similar algorithms work in distributed settings (Google’s Percolator)

Torvald Riegel | HTDC 201424

Lazy Snapshot Algorithm (LSA)

● Global time base (e.g., shared integer counter)
● Memory locations mapped to ownership records (Orec):

● Timestamp (from global time base): memory “not valid before”
● Lock bit: must not access associated memory if someone else locked it

Orec 1

A
dd

re
ss

 s
pa

ce

Orec 2

Orec 3

Global time base

Torvald Riegel | HTDC 201425

Lazy Snapshot Algorithm (2)

● Txn start: read current global time → snapshot time (ST) of txn
● Txn load: try to read virtually at snapshot time

● Can read memory and Orec atomically w/ additional synchronization
● Valid read if Orec.timestamp <= ST
● Reading (memory mapped to) Orec 1&2 works → Atomic snapshot

Orec 1

A
dd

re
ss

 s
pa

ce

Orec 2

Orec 3

Global time base

Txn A

S
ta

rt

ST

R
 O

re
c

1
R

 O
re

c
2

Torvald Riegel | HTDC 201426

Lazy Snapshot Algorithm (3)

● Another txn updated Orec 3 → Txn A can't read Orec 3
● (Could potentially read from older version in multi-version variant of LSA)

● Snapshot extension: Snapshot still valid at a later time?
● Yes: Orec 1 & 2 didn't change in meantime
● Can read Orec 3 now → snapshot still atomic

Orec 1

A
dd

re
ss

 s
pa

ce

Orec 2

Orec 3

Global time base

Txn A

S
ta

rt

R
 O

re
c

1
R

 O
re

c
2ST

E
xt

en
d

R
 O

re
c

3

Torvald Riegel | HTDC 201427

Lazy Snapshot Algorithm (4)
● Updating Orec 2:

● Acquire write lock on Orec 2 (if timestamp <= ST, otherwise abort)
● Store prior memory value in undo log, update memory

● Commit:
● Acquire unique commit time (CT) from time base (e.g., atomic-inc)
● Can commit iff we can extend ST to CT-1:

● Release Orec 2 lock, set Orec2.timestamp to CT

Orec 1

A
dd

re
ss

 s
pa

ce

Orec 2

Orec 3

Global time base
Txn A

S
ta

rt

R
 O

re
c

1
R

 O
re

c
2

E
xt

en
d

R
 O

re
c

3

W
 O

re
c

2

C
om

m
it CT

E
xt

en
d

R
el

ea
se

Torvald Riegel | HTDC 201428

LSA implemented using C++11’s memory model

Torvald Riegel | HTDC 201429

Privatization safety

● Scenario:
1) Privatizing txn commits

data_public = false;

2) Reading transactions not aware of commit
if (data_public) use(data);

3) Nontransactional code after privatizing transaction executes
destruct(data);

● Won’t happen with visible reads if orecs held until after commit/abort

● Potential problems:
● Reader might read privatized data (e.g., if snapshot time is too old)

● Inconsistent values (and a data race)
● Memory protection makes accesses visible to kernel, signal

handlers, ...
● Reader might have to undo changes to privatized data

● Some single-orec invisible read algorithms not affected

Torvald Riegel | HTDC 201430

Implementing privatization safety

● Serialized commits due to using single orec
● Readers aware of commit as soon as validating any data load
● But data load still happens (i.e., memory protection problem)
● Performance problem: single orec / serialized commits limit scalability

● Quiescence
● Wait for all other transactions to be aware of privatizing commit

● Time-based: wait until all snapshots more recent than commit
● Performance problem:

● Need to find global minimum: scan all threads or combining-based
● Need to assume all update transactions may privatize because

program invariants aren’t known

Torvald Riegel | HTDC 201431

Performance

● Be careful when trying to draw conclusions!
● Implementations are work-in-progress (e.g., libitm, HTMs, ...)
● Performance heavily influenced by many factors

● HW, compiler, TM algorithm, HTM implementation, allocator, LTO or
not, ...

● Txn conflict probability, txn length, load/store ratio in txns, memory
access patterns, data layout, allocation patterns, other code
executed in txns, ...

● Tuning for real-world workloads: chicken-and-egg situation
● Optimization / tuning needs to be practical!

● Otherwise, won’t have impact in the real world
● Need to consider the whole stack

● Use common benchmarks
● Patrick Marlier maintains an updated version of STAMP
● Contribute and/or maintain new benchmarks if you can

Torvald Riegel | HTDC 201436

Memory-to-orec mapping

● Try to map 64b addresses into array of orecs
● shift: number of least-significant bits to discard
● orecs = 1 << orecsbits: number of orecs
● uintptr_t a = (uintptr_t)addr >> shift;

● Simple mapping:
● index = a & (orecs – 1);

● Multiplicative hashing:
● uint64_t random64 = (11400714818402800990ULL >> shift) | 1;
● index = ((a * random64) >> (64 – shift – orecsbits)) & (orecs – 1);

● Multiplicative hashing (32b variant):
● uint32_t random32 = 81007;
● index = ((uint32_t)a * random32) >> (32 – orecsbits);

Torvald Riegel | HTDC 201438

Performance: Rough estimates that are probably
still true in the future

● Single-thread performance
● STM slower than sequential
● STM slower (or equal) to coarse locking
● HTM about as fast as uncontended critical section

● If HTM can run the transaction
● Multiple-thread performance

● STM scales well
● But less likely if low single-thread overhead

● HTM scales well
● Unless slower fallback needs to run frequently

● Hybrid STM/HTM: hopefully HTM performance with a fallback that scales
● TM runtime libraries can adapt at runtime!

Torvald Riegel | HTDC 201439

libitm: GCC’s TM runtime library

● Different STM implementations (method-*.cc)
● Default: LSA with array of orecs and simple mapping
● Others: Single-orec LSA, serial mode w/ or w/o undo logging
● Uses instrumented code path

● HTM used if available
● But serial mode as fallback, no HyTM implementation yet
● HW transactions use uninstrumented code path

● No advanced tuning yet (e.g., no back-off or contention management)
● Implemented in C++ with some restrictions
● No overview documentation yet, but extensive comments in the code

Torvald Riegel | HTDC 201440

Benefits of using GCC/libitm as base for your
implementations

● TM algorithms are already modular components in libitm
● Separate from common begin/commit/... code, low-level ABI, ...
● Not architecture-specific
● Well-defined init/shutdown and interaction with serial mode

● Steps to implement a new TM algorithm:
● Implement one class with load/store template functions and algorithm-

specific begin/commit parts
● Implement another class if you have algorithm-specific global state
● Make the class available to the algorithm selection logic

● You benefit from contributions and maintenance by others
● Real-world impact if you contribute your work to GCC
● Many interesting things besides TM algorithms to work on (e.g.,

improving the (auto-)tuning)

Torvald Riegel | HTDC 201441

Agenda

● TM basics
● TM history
● TM requirements
● Transactional language constructs for C/C++

● Implementation basics
● STMs

● Design space
● Time-based STM
● Performance
● libitm

● Compiler-based optimizations
● Suggestions for research topics
● Q & A

Torvald Riegel | HTDC 201442

Compile-time TM optimizations

Torvald Riegel | HTDC 201443

Divide-and-conquer approach:
Partition application data automatically

● Use points-to analysis to infer knowledge about the program:
● Which object a load/store targets
● Properties of an object, relation to other objects

● Ways to exploit it:
● Partition-aware STM and dynamic tuning

● Track partition instances at runtime
● Partition instance known at each transactional load/store
● Partitions are disjoint → can synchronize differently per partition

● Examples: LSA, exclusive lock, read-only partitions, …
● Colocating application data and TM metadata

● If objects are type-stable, embed orecs into them
● Avoids performance problems of simple memory-to-orec mapping
● Higher memory access locality

● Automatic lock allocation
● Not yet used in commercial TM implementations AFAIK

Torvald Riegel | HTDC 201444

Example memory partition graph

Torvald Riegel | HTDC 201445

Agenda

● TM basics
● TM history
● TM requirements
● Transactional language constructs for C/C++

● Implementation basics
● STMs

● Design space
● Time-based STM
● Performance
● libitm

● Compiler-based optimizations
● Suggestions for research topics
● Q & A

Torvald Riegel | HTDC 201446

TM-based synchronization: Time

● Timing depends a lot on how transactions are used!
● Lack of real-world workloads is still a problem

Torvald Riegel | HTDC 201447

Other potential research topics

● Integrate with parallelization abstractions
● Schedules parallel work that might want to synchronize
● Try to exploit that you control the parallelism implementation

● Better automatic classification of transactional workloads
● Which metrics actually matter?
● Practical ways to understand workloads at runtime
● Needs more real-world usage experience and benchmarks

● Improve automatic performance tuning
● We know many different ways for how to synchronize transactions – but

we don’t really know when to pick which of these
● Based on understanding the workload

● Practical compile-time optimizations
● Privatization safety: anything that makes it faster
● TM and failure atomicity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

