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Concurrent programming

● End of frequency scaling → Hardware parallelism (TLP)
→ Parallel software → Concurrency
→ Shared-memory synchronization

● Concurrent = at the same time and not independent
● Concurrent actions need to synchronize with each other

   Shared memory (synchronization)
+ Transactions
= Transactional memory (TM)

● Atomicity enables synchronization
● Database folks: think atomicity + isolation
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Why TM?

● Shared-memory synchronization still matters
● Message passing isn’t necessarily easier when there is (conceptually) 

shared state
● Other major approaches to shared-memory synchronization aren’t 

perfect
● Mutual exclusion via locks

● Relies on conventions: which lock protects which data?
● Deadlock issues: need global lock acquisition order
● Fine- vs. coarse-granular locks: performance vs. Ease-of-use

● Lock elision (using TM hardware to try to run critical sections in parallel):
● Programming model is still locks
● Performance depends a lot on hardware

● Custom concurrent code based on low-level hardware primitives
● Primitives allow for atomic access to single memory locations

→ Accessing several locations atomically requires complex code

● Can we have something else that doesn’t have these drawbacks?
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TM is ...?

● ... a certain (class of) concurrent algorithm(s)?
● ... a hardware mechanism?
● ... a means for easy parallelization of programs?
● ... bound to fail?
● ... a research toy?
● ... generally better than locking?
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TM is a programming abstraction

● Underlying vision: Allow programmers...
... to declare which code sequences are atomic
... instead of requiring them to implement how to make those atomic.

● Generic implementation ensures atomicity
● Not specific to a particular program
● Purely SW (STM), purely HW (HTM), or mixed SW/HW (HyTM)

● How to provide a programming abstraction?
● Good trade-off between performance and ease-of-use for the 

mainstream programmer
● Integrate with high-level programming languages

● Focus of this talk: vertical (S)TM implementation stacks for general-
purpose C/C++ userspace programs
→ (S)TM Building Blocks
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Agenda

● Basics
● TM history
● TM requirements
● Transactional language constructs for C/C++

● Implementation basics
● STMs

● Design space
● Time-based STM
● Performance
● libitm

● Compiler-based optimizations
● Suggestions for research topics
● Q & A
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Brief history of TM

● 1993: TM proposed as a HW feature (Herlihy & Moss)
● 1995: Software TM (Shavit & Touitou)
● 2003: First dynamic STMs (Harris & Fraser; Herlihy et al.)
● 2006: First time-based STM (Riegel et al., Dice et al.)
● 2006: First vertical TM SW stacks for Java (Intel, Microsoft)
● 2007: First C/C++ compiler support for TM
● 2009: Sun's Rock CPU features simple HW support for TM
● 2012: ISO C++ study group on TM (SG5); GCC support
● 2013: Intel and IBM CPUs announced with HW support for TM
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Brief history of TM: Don’t ignore databases!

● Many differences:
● Disk vs. memory (at least in the past...)
● Just transactions vs. transactional and nontransactional accesses
● Focus on failure atomicity, dependability, persistence

● Many things that are relevant for TM:
● Two-phase locking, conflict serializability, recoverability, ...

● If comparing to DB theory, consider recent definitions

● Good overview: Weikum and Vossen, “Transactional Information 
Systems: Theory, Algorithms, and the Practice of Concurrency Control 
and Recovery”, 2002
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TM requirements

● Usability
● Need integration with programming language

● Library interface makes code reuse a lot harder
● Want to execute transactions speculatively

● TM semantics need to be relatively easy to understand
● Composability

● Transactions needs to compose w/ each other
● Code reuse: keep (most of) semantics unchanged even if in transaction
● Transactions must not affect unrelated nontransactional code

● Performance
● Goal: A useful balance between ease-of-use and performance
● Single-thread overheads
● Scalability
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C/C++ language constructs

● Declare that compound statements must execute atomically
● Example:

void f() {
  __transaction_atomic { if (x < 10) y++; }
}

● No data annotations or special data types required
● Existing (sequential) code can be used in transactions (e.g., function 

calls)
● Nested transactions are allowed:

void g() {
  __transaction_atomic { if (y < 23) f(); }
}

● Keywords aren’t final
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Restrictions on atomic transactions

● Code in atomic transactions must be transaction-safe
● Compiler checks whether code is safe
● Functions not known to be safe are unsafe

● SG5 has proposed alternatives
● For cross-CU calls / function pointers, annotate functions:

__attribute__((transaction_safe)) void library_func();

● Unsafe code:
● volatile:

● Incompatible with failure atomicity
● Performance: speculative execution not allowed

● Atomics: would slow down atomics outside of transactions!
● Locks: unsafe currently, but could be made safe
● Other synchronization mechanisms: compatible with atomicity?

● Further information: ISO C++ paper N3718
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Synchronization semantics

● Transactions extend the C11/C++11 memory model
● All transactions totally ordered
● Order contributes to memory model’s happens-before
● TM ensures some valid order consistent with happens-before
● Does not imply sequential execution at runtime!

● Data-race freedom still required (as with locks, ...)
● Publisher:

init(data);
__transaction_atomic { data_public = true; }

● Consumer:
Correct:   __transaction_atomic {
             if (data_public) use(data);
          }

Incorrect:  __transaction_atomic {
             temp = data;     // Data race
             if (data_public) use(temp);
          }
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TM supports modular programming

● Programmers don’t need to manage association between shared data 
and synchronization metadata (e.g., locks)

● TM implementation takes care of that
● Functions containing only transactional synchronization compose 

without deadlock
● Nesting order of transactions does not matter
● But can’t expect another thread to make progress in an atomic 

transaction!
● Example: Synchronize moving an element between lists

void move(list& l1, list& l2, element e)
{
  if (l1.remove(e)) l2.insert(e);
}

● TM: __transaction_atomic { move(A, B, 23); }
● Locks: ?
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Agenda

● TM basics
● TM history
● TM requirements
● Transactional language constructs for C/C++

● Implementation basics
● STMs

● Design space
● Time-based STM
● Performance
● libitm

● Compiler-based optimizations
● Suggestions for research topics
● Q & A
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TM-based synchronization
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Implementation: Compiler vs. runtime library

● Implementation complexity/possibilities vs. performance trade-off
● Typically no JIT compilation of C/C++ programs

● Compiled code is fixed, potentially for a long time
● Delegation to runtime library yields implementation flexibility

● Especially with dynamic linking of the runtime library

Split compiler/library 
responsibilities at ABI
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What the compiler does

● Ensures atomicity guarantee of transactions (at compile time!)
● Finds all transaction-safe code (implicitly or by annotation)
● Checks that transaction-safe code is indeed safe

● Creates an instrumented clone of all transactional code
● Transaction-safe functions, code in transactions
● Memory loads/stores rewritten to calls to TM runtime library
● Function calls redirected to instrumented clones
● Result: both an instrumented and uninstrumented code path

● Generate begin/commit code for each transaction
● Runtime library decides whether to execute instrumented or 

uninstrumented code path
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What the runtime library must do

● Establish a (virtually) total order for transactions
● Don’t want to select a fixed position in the order when transaction starts
● Code relies on well-defined execution (“as if” by abstract machine)
● Need to constrain speculation to satisfy “as if”

● Rules for each transaction
● Pick a valid position in the transaction order dynamically

● Position must be consistent with happens-before
● Nontransactional synchronization
● Publication safety

● Only return values consistent with this position
● Transaction’s snapshot always needs to be consistent

● Change position only if transparent to the code (i.e., would have returned 
same values)

● After commit, position is final – all threads need to agree on it 
(privatization safety)
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STM algorithms for C/C++
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STM algorithm design space (simplified)

● Loads
● Visible reads
● Invisible reads with incremental validation
● Invisible reads with time-based validation

● Stores
● Write-through (with undo logging if abort possible)
● Write-back with redo logging

● Few synchronization objects vs. multiple
● For example, single lock vs. array of locks
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Correctness

● All major STMs produce interleavings similar to (strong) two-phase 
locking

● Phase 1: grab locks for all accesses
● Phase 2: release locks
● Invisible reads: check that transaction could have had a read lock
● Most algorithms do not release locks before commit (strong 2PL)

● Two-phase locking results in total order of all transactions
● At some point during the transaction, had locks for all data
● Read locks are okay because no constraints on order with other reads

● If using invisible reads, STMs do more to ensure privatization safety
● Check for whether a read lock could have been held is not immediate; 

some transactions may not be aware of a change in the transaction order
● A few more details

● Consistency and contributing to happens-before is straightforward
● Need a seq-cst fence somewhere to put empty transactions in total order
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Time-based STM

● Time-based: Updates tagged with timestamp from global time base
● Allows for very efficient atomic snapshots
● Works with write-through, write-back, ...
● Time bases: shared counters, real-time clocks, ...
● Very similar algorithms work in distributed settings (Google’s Percolator)
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Lazy Snapshot Algorithm (LSA)

● Global time base (e.g., shared integer counter)
● Memory locations mapped to ownership records (Orec):

● Timestamp (from global time base): memory “not valid before”
● Lock bit: must not access associated memory if someone else locked it
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Lazy Snapshot Algorithm (2)

● Txn start: read current global time → snapshot time (ST) of txn
● Txn load: try to read virtually at snapshot time

● Can read memory and Orec atomically w/ additional synchronization
● Valid read if Orec.timestamp <= ST
● Reading (memory mapped to) Orec 1&2 works → Atomic snapshot
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Lazy Snapshot Algorithm (3)

● Another txn updated Orec 3 → Txn A can't read Orec 3
● (Could potentially read from older version in multi-version variant of LSA)

● Snapshot extension: Snapshot still valid at a later time?
● Yes: Orec 1 & 2 didn't change in meantime
● Can read Orec 3 now → snapshot still atomic

Orec 1

A
dd

re
ss

 s
pa

ce

Orec 2

Orec 3

Global time base

Txn A

S
ta

rt

R
 O

re
c 

1
R

 O
re

c 
2ST

E
xt

en
d

R
 O

re
c 

3



Torvald Riegel | HTDC 201427

Lazy Snapshot Algorithm (4)
● Updating Orec 2:

● Acquire write lock on Orec 2 (if timestamp <= ST, otherwise abort)
● Store prior memory value in undo log, update memory

● Commit:
● Acquire unique commit time (CT) from time base (e.g., atomic-inc)
● Can commit iff we can extend ST to CT-1:

● Release Orec 2 lock, set Orec2.timestamp to CT
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LSA implemented using C++11’s memory model
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Privatization safety

● Scenario:
1) Privatizing txn commits

data_public = false;

2) Reading transactions not aware of commit
if (data_public) use(data);

3) Nontransactional code after privatizing transaction executes
destruct(data);

● Won’t happen with visible reads if orecs held until after commit/abort

● Potential problems:
● Reader might read privatized data (e.g., if snapshot time is too old)

● Inconsistent values (and a data race)
● Memory protection makes accesses visible to kernel, signal 

handlers, ...
● Reader might have to undo changes to privatized data

● Some single-orec invisible read algorithms not affected
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Implementing privatization safety

● Serialized commits due to using single orec
● Readers aware of commit as soon as validating any data load
● But data load still happens (i.e., memory protection problem)
● Performance problem: single orec / serialized commits limit scalability

● Quiescence
● Wait for all other transactions to be aware of privatizing commit

● Time-based: wait until all snapshots more recent than commit
● Performance problem:

● Need to find global minimum: scan all threads or combining-based
● Need to assume all update transactions may privatize because 

program invariants aren’t known
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Performance

● Be careful when trying to draw conclusions!
● Implementations are work-in-progress (e.g., libitm, HTMs, ...)
● Performance heavily influenced by many factors

● HW, compiler, TM algorithm, HTM implementation, allocator, LTO or 
not, ...

● Txn conflict probability, txn length, load/store ratio in txns, memory 
access patterns, data layout, allocation patterns, other code 
executed in txns, ...

● Tuning for real-world workloads: chicken-and-egg situation
● Optimization / tuning needs to be practical!

● Otherwise, won’t have impact in the real world
● Need to consider the whole stack

● Use common benchmarks
● Patrick Marlier maintains an updated version of STAMP
● Contribute and/or maintain new benchmarks if you can
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Memory-to-orec mapping

● Try to map 64b addresses into array of orecs
● shift: number of least-significant bits to discard
● orecs =  1 << orecsbits: number of orecs
● uintptr_t a = (uintptr_t)addr >> shift;

● Simple mapping:
● index = a & (orecs – 1);

● Multiplicative hashing:
● uint64_t random64 = (11400714818402800990ULL >> shift) | 1;
● index = ((a * random64) >> (64 – shift – orecsbits)) & (orecs – 1);

● Multiplicative hashing (32b variant):
● uint32_t random32 = 81007;
● index = ((uint32_t)a * random32) >> (32 – orecsbits);
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Performance: Rough estimates that are probably 
still true in the future

● Single-thread performance
● STM slower than sequential
● STM slower (or equal) to coarse locking
● HTM about as fast as uncontended critical section

● If HTM can run the transaction
● Multiple-thread performance

● STM scales well
● But less likely if low single-thread overhead

● HTM scales well
● Unless slower fallback needs to run frequently

● Hybrid STM/HTM: hopefully HTM performance with a fallback that scales
● TM runtime libraries can adapt at runtime!
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libitm: GCC’s TM runtime library

● Different STM implementations (method-*.cc)
● Default: LSA with array of orecs and simple mapping
● Others: Single-orec LSA, serial mode w/ or w/o undo logging
● Uses instrumented code path

● HTM used if available
● But serial mode as fallback, no HyTM implementation yet
● HW transactions use uninstrumented code path

● No advanced tuning yet (e.g., no back-off or contention management)
● Implemented in C++ with some restrictions
● No overview documentation yet, but extensive comments in the code
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Benefits of using GCC/libitm as base for your 
implementations

● TM algorithms are already modular components in libitm
● Separate from common begin/commit/... code, low-level ABI, ...
● Not architecture-specific
● Well-defined init/shutdown and interaction with serial mode

● Steps to implement a new TM algorithm:
● Implement one class with load/store template functions and algorithm-

specific begin/commit parts
● Implement another class if you have algorithm-specific global state
● Make the class available to the algorithm selection logic

● You benefit from contributions and maintenance by others
● Real-world impact if you contribute your work to GCC
● Many interesting things besides TM algorithms to work on (e.g., 

improving the (auto-)tuning)
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Agenda

● TM basics
● TM history
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● Transactional language constructs for C/C++
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● Q & A
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Compile-time TM optimizations
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Divide-and-conquer approach:
Partition application data automatically

● Use points-to analysis to infer knowledge about the program:
● Which object a load/store targets
● Properties of an object, relation to other objects

● Ways to exploit it:
● Partition-aware STM and dynamic tuning

● Track partition instances at runtime
● Partition instance known at each transactional load/store
● Partitions are disjoint → can synchronize differently per partition

● Examples: LSA, exclusive lock, read-only partitions, …
● Colocating application data and TM metadata

● If objects are type-stable, embed orecs into them
● Avoids performance problems of simple memory-to-orec mapping
● Higher memory access locality

● Automatic lock allocation
● Not yet used in commercial TM implementations AFAIK
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Example memory partition graph
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TM-based synchronization: Time

● Timing depends a lot on how transactions are used!
● Lack of real-world workloads is still a problem
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Other potential research topics

● Integrate with parallelization abstractions
● Schedules parallel work that might want to synchronize
● Try to exploit that you control the parallelism implementation

● Better automatic classification of transactional workloads
● Which metrics actually matter?
● Practical ways to understand workloads at runtime
● Needs more real-world usage experience and benchmarks

● Improve automatic performance tuning
● We know many different ways for how to synchronize transactions – but 

we don’t really know when to pick which of these
● Based on understanding the workload

● Practical compile-time optimizations
● Privatization safety: anything that makes it faster
● TM and failure atomicity
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