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Transactional Memory 

! Designate sections of code to be executed as transactions 
–  committed transactions appear to take effect atomically 
–  aborted transactions are not observed by other transactions 

! Very active area of research 
–  TM implementations: hardware, software, hybrid 
–  specification and verification 
–  applications and user studies 
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Why Specify and Verify? 

! Show that a TM implementation is correct. 
! Show that an application using TM is correct. 
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Transactional Memory Specifications 

! Necessary for reasoning rigorously about TM 
–  especially important as TM is a foundation for concurrent programming 

! Variety of specifications 
–  different contexts: hardware/software, managed/unmanaged, etc. 
–  different uses: define allowed behavior, exposition, formal verification 

!  Interaction with other features 
–  nontransactional operations, exceptions 
–  condition synchronization 
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Desiderata for Specifications 

! Precise, unambiguous 
! Complete 
! Easy to understand 
! Flexible for implementors 
! Composable 
! Theory for reasoning about systems and their behavior 
! Tools for formal verification 
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TM Specification: A First Attempt 

! Committed transactions appear to execute atomically 
! Aborted transactions not observed by other transactions 
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TM Specification: A First Attempt 

! Committed transactions appear to execute atomically. 
! Aborted transactions not observed by other transactions. 

! Guarantees for active and aborted transactions? 
! When do transactions commit or abort? 
!  “Execute atomically”? Ordering and consistency guarantees? 
! TM interface and well-formedness? 
! Nontransactional operations? 
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Outline 

! Formal model for concurrent programs 
! Basic TM correctness properties (opacity, TMS1) 
! Verifying real TM algorithms (TMS2, NOrec) 
! Nontransactional operations (NTMS1) 
! Adding support for transactions in C++ 
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Formal Model for 
Concurrent Programs 
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Modeling Concurrent Programs 

! State-transition system 
–  label transitions with actions 
–  actions may be external (i.e., observable) or internal 
–  an execution is a sequence of steps/transitions 
–  a trace (aka history) is the sequence of external actions in an execution 
–  traces generated by system are observable behavior 

! Specification specifies properties that the traces must satisfy. 
–  traces that satisfy these properties are called legal histories 
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Background: I/O Automata 

!  states (including one or more start states) 
! actions, either external (input/output) or internal 
!  transition relation: (state, action, state) 
!  fairness partition (elided) 

! executions: s0, a1, s1, a2, s2,… (s0 is start state) 
!  traces: projection of executions onto external actions 

–  visible behavior of automaton 
–  trace inclusion = implementation (not bisimulation) 
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Background: Invariants 

! A state is reachable if it is in some execution. 
! An invariant is a property that is true of all reachable states. 

–  the most important tool in reasoning about concurrent programs 
–  often proved by induction on the length of executions 
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Background: Trace Properties 

! A trace property is a set of sequences of events. 
! Automaton A satisfies trace property P if every trace of A is in P.  

–  typically proved by induction on the length of an execution  
(of which the trace is a projection) 

–  proofs mostly ad hoc, with theorems specific to certain trace properties 

! May include traces that are “infeasible” 
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Background: Automaton as Specification 

! An automaton generates a set of traces. 
–  can use this as a specification 
–  includes only feasible traces (they are generated by automaton) 
–  more detailed, more “boilerplate” 
–  intuitive properties may be obscured 

! Can embed in IOA: every step must preserve legal-history predicate 
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Background: Simulation Proofs 

! Forward simulation f from C to A 
–  relation on states(C) × states(A) 
–  for every start state of C, there is a corresponding start state of A 
–  for every step (s,a,s’) of C and every state u of A corresponding to s, there 

is a state u’ of A corresponding to s’ such that there is a (possibly empty) 
sequence of steps from u to u’ that appears identical to the step of C. 

a 

a 

f f 
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Background: Simulation Proofs 

! Many variants 
–  forward simulation, backward simulation, refinement, history mapping,… 

! Existence of simulation implies trace inclusion 
–  forward and backward simulations are complete 
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Hierarchical, Reusable Proofs 

! High-level specification captures abstract requirements 
!  Intermediate specification for implementation approach 
! Model algorithms at multiple levels 

! Automata all the way down 
–  abstraction all the way up 
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Basic TM Correctness 
Properties 
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TM Interface  

!  invocations 
–  begint 
–  invt(op) 
–  committ 
–  cancelt 

! Assumes sequential specification of “object type” 
–  typically read/write memory (i.e., ops are read(x) or write(x,v)) 

! Only transactional operations 

!  responses 
–  beginOkt 
–  respt(r) 
–  commitOkt 
–  abortt 
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TM Correctness Properties 

! Committed transactions appear to execute atomically. 
! Aborted transactions not observed by other transactions. 
! Traces are well-formed. 
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TM Correctness Properties 

! Committed transactions appear to execute atomically 
! Aborted transactions not observed by other transactions 

! When do transactions commit or abort? 
! Guarantees for aborted transactions? active transactions? 
! Ordering and consistency guarantees? 
! Nontransactional operations? 
! … 
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Well-formedness 

! Each transaction starts with begin invocation 
! Alternating invocation and matching response 

–  abort can match any invocation 

! No invocation after commit or abort response 

! These restrict clients of TM as well as the TM system. 
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Serializability 

!  “Equivalent” to some serial execution of committed transactions 
–  ordering and consistency guarantees for committed transactions 

! No guarantees for active and aborted transactions 
! No nontransactional operations 

! Define correct serial execution (only committed transactions) 
! Define equivalence  
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Opacity 

! Active/aborted transactions “consistent” with committed transactions 
! Appropriate when transactions cannot be sandboxed 

–  otherwise transactions may cause unrecoverable run-time errors 
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Opacity 

! Active/aborted transactions “consistent” with committed transactions 
! Appropriate when transactions cannot be sandboxed 

–  otherwise transactions may cause unrecoverable run-time errors 

! Specified as predicate on histories 
–  originally not prefix-closed 
–  all prefixes must satisfy “final-state opacity” 

! Stronger than necessary to avoid run-time errors 
–  virtual world consistency (VWC), TMS1 
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Opacity as an Automaton 

! State variables:  
–  extOrder 

–  for each transaction t: statust, opst, pendingOpt 
–  updated in obvious way 

! Well-formedness 
! Responses have (final-state) opacity as postcondition 
! Equivalent version with validation preconditions 

–  validCommit, validFail, validResp 
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TMS1 

! Active/aborted transactions only need to be consistent with some 
possible serial execution of transactions 

–  must include all prior committed transactions 
–  must not include any prior aborted transactions 

! Specified as I/O automaton 
–  validation conditions (validCommit, validFail, validResp) 

! Proved that opacity automaton implements TMS1 
–  verified in formal framework using PVS 
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Formal Framework for 
Specifying and Verifying 
Transactional Memory 
Algorithms 
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A framework for verifying TM 
!  I/O automata and simulation techniques 
! PVS verification system 
! Framework comprises: 

–  formalize automata/simulation theory 
–  specifications of TMS1, Opacity, TMS2 (several variants) 
–  proof that Opacity implements TMS1 
–  proof that TMS2 implements Opacity (for read-write memory) 
–  proofs of equivalence of various TMS2 variants 
–  formalization of NOrec algorithm 
–  proof that NOrec implements TMS2 
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PVS verification system 

! Typed higher-order logic 
! Rewriting-based theorem prover 

–  proof obligations: lemmas, type-correctness conditions (TCCs) 
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Automata in PVS 
Automata[State, Action: TYPE+, 
                start: nonempty_pred[State], 
                trans: pred[[State,Action,State]]]: THEORY BEGIN 

FiniteStepSeq: TYPE =  
    [# actions: finseq[Action],  
        states: { ss: nonempty_finseq[State] | length(ss) = length(actions) + 1 } #] 

s, s0, s1: VAR State 
a: VAR Action 
stepseq: VAR FiniteStepSeq 

length(stepseq): nat = stepseq`actions`length 

steps(stepseq): finseq[Step] =  
  (# length := length(stepseq`actions), 
      seq := LAMBDA (n: below[length(stepseq`actions)]):  
                   (stepseq`states(n), stepseq`actions(n), stepseq`states(n+1)) #) 
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finiteExecFrag(stepseq): bool =  
  FORALL (n: below[length(stepseq)]): trans(steps(stepseq)(n)) 

finiteExecution(stepseq): bool =  
  finiteExecFrag(stepseq) AND start(first(stepseq)) 

reachable(s: State): INDUCTIVE bool =  
  start(s) OR (EXISTS s0: State, a:Action): reachable(s0) AND trans(s0,a,s)) 

invariant(p: pred[State]): bool = 
  FORALL (s State): reachable(s) IMPLIES p(s) 

invariantInduction: LEMMA 
  FORALL (p: pred[State]): 
      (FORALL s: start(s) IMPLIES p(s)) AND 
      (FORALL s0: State, a: Action, s1: State: 
         reachable(s0) AND reachable(s1) AND p(s0) AND trans(s0,a,s1) IMPLIES p(s1)) 
    IMPLIES invariant(p) 

END Automata 

Automata in PVS 
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TMS2: “Write-latest” 

! beginIdxt: “timestamp” of state at beginning of txn t 
! mem: sequence of memory states 
! wrSett: write set of t 
!  rdSett: read set of t 
! pct: bookkeeping 
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TMS2[Txn, Loc, Val: TYPE+, validInit: nonempty_pred[[Loc -> Val]]]: THEORY BEGIN 

ActionType: DATATYPE ... 
Action: TYPE+ = [# txn: Txn, acttype: ActionType #] 
State: TYPE = 
  [# pc: [Txn -> PCValue], 
     beginIdx: [Txn -> nat], 
     mem: nonempty_finseq[RWState], 
     wrSet: [Txn -> PartialFunction[Loc,Val]], 
     rdSet: [Txn -> PartialFunction[Loc,Val]] #] 

start(s): bool =  
     s`mem`length = 1 AND  
     validInit(last(s`mem)) AND 
     (FORALL t:  s`pc(t) = notStarted AND 
                         s`rdSet(t) = emptyMap AND 
                         s`wrSet(t) = emptyMap) 

precondition(a)(s): bool = … 
effect(a,s): State = ... 
trans(s0,a,s1): bool = precondition(a)(s0) AND s1 = effect(a,s0) 
IMPORTING Automata[State, Action, start, trans] 
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ActionType: DATATYPE WITH SUBTYPES external, internal 
BEGIN 
  beginTxn: beginTxn?                               : external 
  beginOk: beginOk?                                  : external 
  inv(i: Invocation): inv?                              : external 
  resp(r: Response): resp?                         : external 
  commit: commit?                                      : external 
  commitOk: commitOk?                             : external 
  cancel: cancel?                                         : external 
  abort: abort?                                             : external 
  doReadWritten(l: Loc): doReadWritten?                     : internal 
  doReadUnwritten(l: Loc, n: nat): doReadUnwritten?  : internal 
  doWrite(l:Loc, v: Val): doWrite?                                  : internal 
  doCommitReadOnly: doCommitReadOnly?               : internal 
  doCommitWriter: doCommitWriter?                            : internal 
END ActionType 
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precondition(a)(s): bool = LET t = a`txn IN  
  CASES a`acttype OF 
    beginTxn: s`pc(t) = notStarted, 
    beginOk: s`pc(t) = beginPending, 
    inv(i): s`pc(t) = ready, 
    resp(r):       (readResp?(s`pc(t)) AND r = readOk(v(s`pc(t)))) 
                OR (writeRespOk?(s`pc(t)) AND r = writeOk), 
    commit: s`pc(t) = ready, 
    commitOk: s`pc(t) = commitRespOk, 
    cancel: s`pc(t) = ready, 
    abort: s`pc(t) = beginPending OR 
              reading?(s`pc(t)) OR 
              writing?(s`pc(t)) OR 
              s`pc(t) = doCommit OR 
              s`pc(t) = cancelPending, 
    doReadWritten(l): s`pc(t) = reading(l) AND dom(s`wrSet(t))(l), 
    doReadUnwritten(l,n): s`pc(t) = reading(l) AND  
                                        NOT dom(s`wrSet(t))(l) AND 
                                        validIndex(s,t,n), 
    doWrite(l,v): s`pc(t) = writing(l,v), 
    doCommitReadOnly:    s`pc(t) = doCommit AND dom(s`wrSet(t)) = emptyset, 
    doCommitWriter: s`pc(t) = doCommit AND 
                                dom(s`wrSet(t)) /= emptyset AND 
                                readCons(last(s`mem),s`rdSet(t)) 
  ENDCASES 
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effect(a,s): State =  
  IF precondition(a)(s) THEN LET t = a`txn IN  
    CASES a`acttype OF 
      beginTxn: s WITH [`pc(t) := beginPending,`beginIdx(t) := s`mem`length-1], 
      beginOk: s WITH [`pc(t) := ready], 
      inv(i): s WITH [`pc(t) := IF read?(i) THEN reading(l(i)) ELSE writing(l(i),v(i)) ENDIF], 
      resp(r): s WITH [`pc(t) := ready], 
      commit: s WITH [`pc(t) := doCommit], 
      commitOk: s WITH [`pc(t) := committed], 
      cancel: s WITH [`pc(t) := cancelPending], 
      abort: s WITH [`pc(t) := aborted], 
      doReadWritten(l): s WITH [`pc(t) := readResp(down(s`wrSet(t)(l)))], 
      doReadUnwritten(l,n): (s WITH [`pc(t) := readResp(v), `rdSet(t)(l) := up(v)] 
                                             WHERE v = s`mem(n)(l)), 
      doWrite(l,v): s WITH [`pc(t) := writeRespOk, `wrSet(t)(l) := up(v)], 
      doCommitReadOnly: s WITH [`pc(t) := commitRespOk], 
      doCommitWriter: s WITH [`pc(t) := commitRespOk, 
                                                `mem := s`mem o oride(last(s`mem), s`wrSet(t))] 
    ENDCASES 
  ELSE 
    arbitraryState 
  ENDIF 
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TMS2 variants 
! TxnOrdTMS2 

–  keeps track of order of committing writing transactions 
–  history mapping from TMS2 

! TxnOrdTMS2WithFailures 
–  allows aborted transactions in order above 

! ReservationTMS2 
–  writers “reserve place” in order, but they may abort 
–  requires backward simulation to TxnOrdTMS2WithFailures 

! TxnOrdTMS2Augmented 
–  maintains history variables useful to prove opacity 
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TMS2 

TxnOrdTMS2Augmented 

TxnOrdTMS2WithFailures 

TxnOrdTMS2 

ReservationTMS2 

Proofs in framework 

history mapping 

backward simulation 
refinement 
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TxnOrdTMS2Augmented 

TxnOrdTMS2 

Proofs in framework 

history mapping 
forward simulation 

Opacity 

TMS1 
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NOrec algorithm [Dalessandro et al.] 

! Simple deferred-update alg: “no ownership records” 
–  write shared memory on commit 
–  maintain private read and write sets 
–  reads are invisible 

! Sequence lock to protect writeback 
–  serializes commit of writing transactions 
–  readers check that lock is not held 

! Value (re)validation when sequence lock changes  
! Low overhead 

–  good when conflicts are rare 
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NOrec automata 

Automaton Action 
types 

Possible pc 
values 

NOrecAtomicCommitValidate 15 13 
NOrecDerived 19 13 
NOrec 21 15 
NOrecPaperPseudocode 45 35 
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Verifying Transactional Memory 

! Formal framework in PVS 
–  typed higher order logic 
–  rewriting-based theorem prover 

!  Includes libraries for I/O automata, TM specs, etc. 
–  also library for sequences 

! Formally verified proofs of TM algorithm and specifications 
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NOrec 

! Simple deferred-update algorithm: “no ownership records” 
–  reads are invisible 

! Sequence lock to protect writeback 
–  serializes commit of writing transactions 
–  readers check that lock is not held 

! Value (re)validation when sequence lock changes  
! Low overhead 

–  good when conflicts are rare 
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Hierarchy of NOrec Automata 

! Verify that each implements the preceding one 

Automaton Action 
types 

Possible pc 
values 

NOrecAtomicCommitValidate 15 13 
NOrecDerived 19 13 
NOrec 21 15 
NOrecPaperPseudocode 45 35 
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TMS2: A Common Implementation Approach 

! State variables 
–  mem: sequence of memory states 
–  beginIdxt: “timestamp” of state at beginning of transactiont 
–  wrSett: write set of t 
–  rdSett: read set of t 
–  pct: bookkeeping 

!  Implements TMS1 
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TMS2: A Common Implementation Approach 

! Assumes read/write memory 
! Deferred update 

–  write shared memory on commit 
–  maintain private read and write sets 

! Can read in the past, but always write the current value 
–  new reads extend and validate read set 
–  writing transactions validate read set during commit 
–  no validation needed to commit read-only transactions 
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TMS2: A Common Implementation Approach 

! State variables 
–  mem: sequence of memory states 
–  beginIdxt: “timestamp” of state at beginning of transactiont 
–  wrSett: write set of t 
–  rdSett: read set of t 
–  pct: bookkeeping 

!  Implements TMS1 (for read/write memory) 
! Several variants: ReservationTMS2, … 
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Proofs Verified in Framework 
TMS2 

NOrecPaperPseudocode 

NOrecAtomicCommitValidate 

NOrecDerived 

NOrec refinement 
forward simulation 
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Proofs Verified in Framework 

TMS2 

TxnOrdTMS2Augmented 

TxnOrdTMS2WithFailures 

TxnOrdTMS2 

ReservationTMS2 

history mapping 

backward simulation 
refinement 
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Proofs Verified in Framework 

TxnOrdTMS2Augmented 

TxnOrdTMS2 

history mapping 
forward simulation 

Opacity 

TMS1 
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Nontransactional 
Operations 
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Why Nontransactional Operations? 

! Real systems provide a variety of synchronization mechanisms. 
! Different mechanisms are better for some tasks. 
! Transactional access must be mediated, incurring overhead. 
! Programs that use TM may need legacy libraries. 

–  technical, legal, business issues 
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TM Interface with Nontransactional Operations 

!  input (invocations) 
–  begint 
–  tInvt(op) 
–  committ 
–  cancelt 
–  nInvn(op) 

! well-formedness for data-race free programs and correct TMs 

! output (responses) 
–  beginOkt 
–  tRespt(r) 
–  commitOkt 
–  abortt 
–  nRespn(r) 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 57 

Extending TMS1 with Nontransactional 
Operations 

! Validity conditions 
–  adjust transaction validity conditions to handle nontransactional operations 
–  new validity condition for nontransactional operations 

! Handle data races 
–  correct TM may exhibit arbitrary behavior if program is racy 
–  non-racy programs may cause races if TM gives incorrect results 
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Defining data races 

! Conflict relation: symmetric binary relation specified by object type 
! Transactions never race with each other. 
! Nontransactional operations race iff they conflict and overlap. 
! Nontransactional operation races with a transaction iff  

–  they overlap and 
–  any operation invoked by the transaction conflicts with the 

nontransactional operation. 
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NTMS1 Internals 

! State variables 
–  status[x] 
–  ops[x] 
–  opInv[x] 
–  invokedCommit[x] 
–  extOrder 

–  tmHavoc 

!  set if a race is detected (new internal action: observeRace) 
!  every output action is enabled when tmHavoc is set 

!  Validity preconditions 
!  validCommit 
!  validFail 
!  tValidResp 
!  nValidResp 
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Data-race-free Clients 

! Add cHavoc flag 
–  set when violation of TM correctness is detected 
–  internal action: observeIncorrectTM 
–  every output action is enabled when cHavoc is set 
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Data-race-free Clients 

! Add cHavoc flag 
–  set when violation of TM correctness is detected 
–  internal action: observeIncorrectTM 
–  every output action is enabled when cHavoc is set 

TM clients specify required correctness condition 
(may be weaker than actual TM guarantee) 
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NTMS1 with Data-race-free Clients 

! Proved that this is equivalent to same clients with strongly atomic TM 
–  nontransactional operations equivalent to committed “mini-transaction” 
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NTMS1 with Data-race-free Clients 

! Proved that this is equivalent to same clients with strongly atomic TM 
–  nontransactional operations equivalent to committed “mini-transaction” 

! No dependency on conflict relation! 
–  change in conflict relation shifts burden between clients and TM 
–  empty conflict relation = strongly atomic TM 
–  total conflict relation = completely synchronized shared memory access 
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Privatization-safety 

! A shared memory location that is made private by a transaction can be 
accessed without instrumentation after transaction commits. 

! NTMS1 does not guarantee privatization-safety. 
! No precise definition of privatization-safety exists. 
! Privatization-safety can’t be specified without changing interface! 

–  it restricts internal TM details 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 65 

Support for Transactions in 
C++ 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 66 

Transactional Memory for C++ 

! Developed by SG5 
–  evolved from Draft Specification for Transactional Constructs in C++ 

(written by industry group) 
!  Intended to provide pragmatic basic set of features 

–  omits/simplifies several controversial/complicated features of Draft Spec  

Disclaimer:  Opinions/interpretations are my own.   
They do not represent the position of my employer,  

and may differ from others in SG5. 
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Atomicity and its discontents 

! Transaction is indivisible (appears to occur at a single point) 
–  within transaction: no outside interference 
–  outside transaction: no partial effects/intermediate states observed 
–  transaction either completes or has no effect 

! Races 
! Transaction-unsafe code 
! Exceptions 
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Races 

! Accesses within transactions do not race with each other . 
! Transactional accesses may race with nontransactional accesses. 

–  require additional synchronization to avoid data races 

! Racy programs have undefined behavior. 
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Races 

! Accesses within transactions do not race with each other . 
! Transactional accesses may race with nontransactional accesses. 

–  require additional synchronization to avoid data races 

! Racy programs have undefined behavior. 

Why is there a data race if transactions are atomic? 
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Transaction-unsafe code 

! Some operations are difficult, expensive or impossible to execute 
atomically. 

–  I/O 
–  access to volatiles, atomic variables 
–  asm 
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Transaction-unsafe code 

! Some operations are difficult, expensive or impossible to execute 
atomically. 

–  I/O 
–  access to volatiles, atomic variables 
–  asm 

Implementation approaches: 
 - implicit global lock 
 - speculative execution 
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Transaction-unsafe code 

! Some operations are difficult, expensive or impossible to execute 
atomically. 

–  I/O 
–  access to volatiles, atomic variables 
–  asm 

! Two approaches 
–  forbid transaction-unsafe code within transaction 
–  allow transaction-unsafe code, relax atomicity guarantee 
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Two kinds of transactions 

! Atomic transactions 
–  will appear atomic (guaranteed at translation time) 
–  must not contain transaction-unsafe code 

! Relaxed transactions 
–  as if taking global mutex + no atomic transaction takes effect concurrently 
–  any code permitted 
–  not guaranteed to appear atomic (hence “relaxed”) 
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Two kinds of transactions 

! Atomic blocks 
–  will appear atomic (guaranteed at translation time) 
–  must not contain transaction-unsafe code 

! Synchronized blocks 
–  as if taking global mutex + no atomic transaction takes effect concurrently 
–  any code permitted 
–  not guaranteed to appear atomic 

No data races between accesses in atomic and synchronized blocks. 
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Synchronized blocks 

! Allows transaction-unsafe code 
! Some uses:  

–  logging, error reporting 
–  accessing mutex-protected resources 
–  use of shared_ptr (which uses atomics) 
–  “pure” functions that use helper threads 

! Provides alternative to mutexes in many cases 
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Synchronized block example 

int i = 0;	

void f() {	
  synchronized {	
    if (unlikely_condition)	
      std::cerr << “oops” << std::endl;	
    ++i;	
  }	
} 	
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Challenges for atomic blocks 

! Checking for transaction-unsafe code 
–  how to check function calls 

! Handling escaping exceptions 
–  commit or cancel? 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 80 

Guaranteeing atomicity: transaction-safe code 

! Some code is difficult, expensive, or impossible to execute atomically. 
–  I/O, atomics, volatile, asm 

! Such transaction-unsafe code is forbidden within atomic blocks. 
–  guarantees atomicity, checked at translation time 
–  easy for lexically enclosed code 
–  what about function calls? 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 81 

Transaction-safety for function calls 

! Named functions 
–  easy if definition is available 
–  annotate declaration 
–  otherwise, assume safe: check at link time (name mangling) 

! Virtual functions 
–  annotate declaration 

! Function pointers 
–  annotate declaration + extend type system 
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Transaction-safety for named functions 

void f1() transaction_safe;	
void f2();	

void g() {	
  atomic {	
    f1();  // ok	
    f2();  // ok iff defn of “f2” has no unsafe code	
  }	
}	

NB: not final form 
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Transaction-safety for named functions 

void f1() transaction_safe;  // header file	

void f1() {	
  volatile v = 0;  // error: unsafe code	
}	

void f2() {	
  volatile v = 0;  // mangled name of “f2” prevents	
}                  // use inside transactions	
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Transaction-safety for virtual functions 

struct S {	
  virtual void f() transaction_safe;	
};	

struct D : S {	
  void f() {        // implicitly declared transaction-safe	
    volatile v = 0; // error	
  }	
};	
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Transaction-safety for function pointers 

void f() transaction_safe;	
void g();	
void (*pf1)() = &f;                  // ok	
void (*pf2)() transaction_safe = &f; // ok	
void (*pg)() transaction_safe = &g;  // ok iff defn of g is safe	

void h() {	
  atomic {	
    (*pf1)();   // error 	
    (*pf2)();   // ok	
  }	
}	

NB: not final form 
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Explicitly transaction-unsafe functions 

! May explicitly declare functions transaction_unsafe 
–  documents intention  
–  reduces code bloat (i.e., generating superfluous “safe” variant) 

void f() transaction_unsafe;	
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Transaction-safety of standard library 

! memcpy, memset, etc. 
! malloc and free	
! new and delete	
! abort	

!  containers (e.g., vector, string) 
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Transaction-safety for function calls: Summary 

! Calls to named functions are considered safe unless 
–  definition is available and contains transaction-unsafe code, or 
–  declaration is explicitly annotated as transaction_unsafe. 

! Assumption of transaction-safety checked at link time. 
! Calls to virtual functions or through function pointers 

–  safe only if declared transaction_safe.  

! Some standard library functions are transaction-safe. 
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Exceptions 

! What happens if an exception is thrown out of an atomic transaction? 
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Transaction example 

void Account::deposit(double amount) {	
  atomic { 	
    this->balance += amount;	
    this->deposit_log.push_back(amount);	
  }	
}	

void transfer(Account &from, Account &to, double amount) {	
  atomic {	
    from.deposit(-amount);	
    to.deposit(amount);	
  }	
}	

NB: not final form 
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Exceptions 

! What happens if an exception is thrown out of an atomic transaction? 
–  commit: transaction’s effects made visible 

!  simple to specify 
!  programmer must provide exception-safety 

–  cancel: transaction’s effects discarded (but throws exception) 
!  provides strong exception-safety 
!  exception “leaks” information 

–  terminate 
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Exceptions 

! Specify how to handle exceptions with additional keyword: 
–  noexcept	
–  commit_except	
–  cancel_except	
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Exceptions 
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Exceptions 

! Augment atomic keyword: 
–  atomic_noexcept	
–  atomic_commit	
–  atomic_cancel	
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Canceling a transaction on exception 

! Exception: “cannot complete operation” 
! Transaction: “complete operation, or do nothing” 

–  exception indicates if and why operation is not done (e.g., bad_alloc) 

! Exception “leaks” information about transaction 
–  no problem for scalar types 
–  what about pointers to objects constructed/modified by transaction? 
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Transaction example revisited 

void Account::deposit(double amount) {	
  atomic_cancel { 	
    this->balance += amount;	
    this->deposit_log.push_back(amount);	
  }	
}	

void transfer(Account &from, Account &to, double amount) {	
  atomic_cancel {	
    from.deposit(-amount);	
    to.deposit(amount);	
  }	
}	
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Exceptions: Summary 

! Atomic blocks must specify how to handle exceptions 
–  atomic_noexcept 
–  atomic_commit 
–  atomic_cancel (works for only “transaction-safe” exceptions) 

! Synchronized blocks always commit on exception 
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Conclusion 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 99 

Summary 

! Precise specifications for transactional memory 
–  formal framework for reasoning about TM 

! Different specifications appropriate for different contexts 
! TM must be integrated with other parts of the system 
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The Future of Transactional Memory 

!  Improving transactional memory implementations 
–  integrate with other parts of the system 

! Using transactional memory effectively 
–  education 
–  linguistic support 

! Reasoning about transactional memory 
–  precise specifications 
–  formal framework 
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