
Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 1 



Specifying and Verifying 
Transactional Memory 
Victor Luchangco 
Oracle Labs 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 3 

Copyright © 2014 Oracle and/or its affiliates (“Oracle”). All rights 
are reserved by Oracle except as expressly stated as follows. 
Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted, provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To 
copy otherwise, or republish, to post on servers, or to redistribute 
to lists, requires prior specific written permission of Oracle. 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 4 

Transactional Memory 

! Designate sections of code to be executed as transactions 
–  committed transactions appear to take effect atomically 
–  aborted transactions are not observed by other transactions 

! Very active area of research 
–  TM implementations: hardware, software, hybrid 
–  specification and verification 
–  applications and user studies 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 5 

Why Specify and Verify? 

! Show that a TM implementation is correct. 
! Show that an application using TM is correct. 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 6 

Transactional Memory Specifications 

! Necessary for reasoning rigorously about TM 
–  especially important as TM is a foundation for concurrent programming 

! Variety of specifications 
–  different contexts: hardware/software, managed/unmanaged, etc. 
–  different uses: define allowed behavior, exposition, formal verification 

!  Interaction with other features 
–  nontransactional operations, exceptions 
–  condition synchronization 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 7 

Desiderata for Specifications 

! Precise, unambiguous 
! Complete 
! Easy to understand 
! Flexible for implementors 
! Composable 
! Theory for reasoning about systems and their behavior 
! Tools for formal verification 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 8 

TM Specification: A First Attempt 

! Committed transactions appear to execute atomically 
! Aborted transactions not observed by other transactions 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 9 

TM Specification: A First Attempt 

! Committed transactions appear to execute atomically. 
! Aborted transactions not observed by other transactions. 

! Guarantees for active and aborted transactions? 
! When do transactions commit or abort? 
!  “Execute atomically”? Ordering and consistency guarantees? 
! TM interface and well-formedness? 
! Nontransactional operations? 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 10 

Outline 

! Formal model for concurrent programs 
! Basic TM correctness properties (opacity, TMS1) 
! Verifying real TM algorithms (TMS2, NOrec) 
! Nontransactional operations (NTMS1) 
! Adding support for transactions in C++ 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 11 

Formal Model for 
Concurrent Programs 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 12 

Modeling Concurrent Programs 

! State-transition system 
–  label transitions with actions 
–  actions may be external (i.e., observable) or internal 
–  an execution is a sequence of steps/transitions 
–  a trace (aka history) is the sequence of external actions in an execution 
–  traces generated by system are observable behavior 

! Specification specifies properties that the traces must satisfy. 
–  traces that satisfy these properties are called legal histories 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 13 

Background: I/O Automata 

!  states (including one or more start states) 
! actions, either external (input/output) or internal 
!  transition relation: (state, action, state) 
!  fairness partition (elided) 

! executions: s0, a1, s1, a2, s2,… (s0 is start state) 
!  traces: projection of executions onto external actions 

–  visible behavior of automaton 
–  trace inclusion = implementation (not bisimulation) 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 14 

Background: Invariants 

! A state is reachable if it is in some execution. 
! An invariant is a property that is true of all reachable states. 

–  the most important tool in reasoning about concurrent programs 
–  often proved by induction on the length of executions 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 15 

Background: Trace Properties 

! A trace property is a set of sequences of events. 
! Automaton A satisfies trace property P if every trace of A is in P.  

–  typically proved by induction on the length of an execution  
(of which the trace is a projection) 

–  proofs mostly ad hoc, with theorems specific to certain trace properties 

! May include traces that are “infeasible” 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 16 

Background: Automaton as Specification 

! An automaton generates a set of traces. 
–  can use this as a specification 
–  includes only feasible traces (they are generated by automaton) 
–  more detailed, more “boilerplate” 
–  intuitive properties may be obscured 

! Can embed in IOA: every step must preserve legal-history predicate 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 17 

Background: Simulation Proofs 

! Forward simulation f from C to A 
–  relation on states(C) × states(A) 
–  for every start state of C, there is a corresponding start state of A 
–  for every step (s,a,s’) of C and every state u of A corresponding to s, there 

is a state u’ of A corresponding to s’ such that there is a (possibly empty) 
sequence of steps from u to u’ that appears identical to the step of C. 

a 

a 

f f 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 18 

Background: Simulation Proofs 

! Many variants 
–  forward simulation, backward simulation, refinement, history mapping,… 

! Existence of simulation implies trace inclusion 
–  forward and backward simulations are complete 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 19 

Hierarchical, Reusable Proofs 

! High-level specification captures abstract requirements 
!  Intermediate specification for implementation approach 
! Model algorithms at multiple levels 

! Automata all the way down 
–  abstraction all the way up 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 20 

Basic TM Correctness 
Properties 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 21 

TM Interface  

!  invocations 
–  begint 
–  invt(op) 
–  committ 
–  cancelt 

! Assumes sequential specification of “object type” 
–  typically read/write memory (i.e., ops are read(x) or write(x,v)) 

! Only transactional operations 

!  responses 
–  beginOkt 
–  respt(r) 
–  commitOkt 
–  abortt 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 22 

TM Correctness Properties 

! Committed transactions appear to execute atomically. 
! Aborted transactions not observed by other transactions. 
! Traces are well-formed. 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 23 

TM Correctness Properties 

! Committed transactions appear to execute atomically 
! Aborted transactions not observed by other transactions 

! When do transactions commit or abort? 
! Guarantees for aborted transactions? active transactions? 
! Ordering and consistency guarantees? 
! Nontransactional operations? 
! … 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 24 

Well-formedness 

! Each transaction starts with begin invocation 
! Alternating invocation and matching response 

–  abort can match any invocation 

! No invocation after commit or abort response 

! These restrict clients of TM as well as the TM system. 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 25 

Serializability 

!  “Equivalent” to some serial execution of committed transactions 
–  ordering and consistency guarantees for committed transactions 

! No guarantees for active and aborted transactions 
! No nontransactional operations 

! Define correct serial execution (only committed transactions) 
! Define equivalence  



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 26 

Opacity 

! Active/aborted transactions “consistent” with committed transactions 
! Appropriate when transactions cannot be sandboxed 

–  otherwise transactions may cause unrecoverable run-time errors 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 27 

Opacity 

! Active/aborted transactions “consistent” with committed transactions 
! Appropriate when transactions cannot be sandboxed 

–  otherwise transactions may cause unrecoverable run-time errors 

! Specified as predicate on histories 
–  originally not prefix-closed 
–  all prefixes must satisfy “final-state opacity” 

! Stronger than necessary to avoid run-time errors 
–  virtual world consistency (VWC), TMS1 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 28 

Opacity as an Automaton 

! State variables:  
–  extOrder 

–  for each transaction t: statust, opst, pendingOpt 
–  updated in obvious way 

! Well-formedness 
! Responses have (final-state) opacity as postcondition 
! Equivalent version with validation preconditions 

–  validCommit, validFail, validResp 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 29 

TMS1 

! Active/aborted transactions only need to be consistent with some 
possible serial execution of transactions 

–  must include all prior committed transactions 
–  must not include any prior aborted transactions 

! Specified as I/O automaton 
–  validation conditions (validCommit, validFail, validResp) 

! Proved that opacity automaton implements TMS1 
–  verified in formal framework using PVS 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 30 

Formal Framework for 
Specifying and Verifying 
Transactional Memory 
Algorithms 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 31 

A framework for verifying TM 
!  I/O automata and simulation techniques 
! PVS verification system 
! Framework comprises: 

–  formalize automata/simulation theory 
–  specifications of TMS1, Opacity, TMS2 (several variants) 
–  proof that Opacity implements TMS1 
–  proof that TMS2 implements Opacity (for read-write memory) 
–  proofs of equivalence of various TMS2 variants 
–  formalization of NOrec algorithm 
–  proof that NOrec implements TMS2 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 32 

PVS verification system 

! Typed higher-order logic 
! Rewriting-based theorem prover 

–  proof obligations: lemmas, type-correctness conditions (TCCs) 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 33 

Automata in PVS 
Automata[State, Action: TYPE+, 
                start: nonempty_pred[State], 
                trans: pred[[State,Action,State]]]: THEORY BEGIN 

FiniteStepSeq: TYPE =  
    [# actions: finseq[Action],  
        states: { ss: nonempty_finseq[State] | length(ss) = length(actions) + 1 } #] 

s, s0, s1: VAR State 
a: VAR Action 
stepseq: VAR FiniteStepSeq 

length(stepseq): nat = stepseq`actions`length 

steps(stepseq): finseq[Step] =  
  (# length := length(stepseq`actions), 
      seq := LAMBDA (n: below[length(stepseq`actions)]):  
                   (stepseq`states(n), stepseq`actions(n), stepseq`states(n+1)) #) 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 34 

finiteExecFrag(stepseq): bool =  
  FORALL (n: below[length(stepseq)]): trans(steps(stepseq)(n)) 

finiteExecution(stepseq): bool =  
  finiteExecFrag(stepseq) AND start(first(stepseq)) 

reachable(s: State): INDUCTIVE bool =  
  start(s) OR (EXISTS s0: State, a:Action): reachable(s0) AND trans(s0,a,s)) 

invariant(p: pred[State]): bool = 
  FORALL (s State): reachable(s) IMPLIES p(s) 

invariantInduction: LEMMA 
  FORALL (p: pred[State]): 
      (FORALL s: start(s) IMPLIES p(s)) AND 
      (FORALL s0: State, a: Action, s1: State: 
         reachable(s0) AND reachable(s1) AND p(s0) AND trans(s0,a,s1) IMPLIES p(s1)) 
    IMPLIES invariant(p) 

END Automata 

Automata in PVS 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 35 

TMS2: “Write-latest” 

! beginIdxt: “timestamp” of state at beginning of txn t 
! mem: sequence of memory states 
! wrSett: write set of t 
!  rdSett: read set of t 
! pct: bookkeeping 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 36 

TMS2[Txn, Loc, Val: TYPE+, validInit: nonempty_pred[[Loc -> Val]]]: THEORY BEGIN 

ActionType: DATATYPE ... 
Action: TYPE+ = [# txn: Txn, acttype: ActionType #] 
State: TYPE = 
  [# pc: [Txn -> PCValue], 
     beginIdx: [Txn -> nat], 
     mem: nonempty_finseq[RWState], 
     wrSet: [Txn -> PartialFunction[Loc,Val]], 
     rdSet: [Txn -> PartialFunction[Loc,Val]] #] 

start(s): bool =  
     s`mem`length = 1 AND  
     validInit(last(s`mem)) AND 
     (FORALL t:  s`pc(t) = notStarted AND 
                         s`rdSet(t) = emptyMap AND 
                         s`wrSet(t) = emptyMap) 

precondition(a)(s): bool = … 
effect(a,s): State = ... 
trans(s0,a,s1): bool = precondition(a)(s0) AND s1 = effect(a,s0) 
IMPORTING Automata[State, Action, start, trans] 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 37 

ActionType: DATATYPE WITH SUBTYPES external, internal 
BEGIN 
  beginTxn: beginTxn?                               : external 
  beginOk: beginOk?                                  : external 
  inv(i: Invocation): inv?                              : external 
  resp(r: Response): resp?                         : external 
  commit: commit?                                      : external 
  commitOk: commitOk?                             : external 
  cancel: cancel?                                         : external 
  abort: abort?                                             : external 
  doReadWritten(l: Loc): doReadWritten?                     : internal 
  doReadUnwritten(l: Loc, n: nat): doReadUnwritten?  : internal 
  doWrite(l:Loc, v: Val): doWrite?                                  : internal 
  doCommitReadOnly: doCommitReadOnly?               : internal 
  doCommitWriter: doCommitWriter?                            : internal 
END ActionType 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 38 

precondition(a)(s): bool = LET t = a`txn IN  
  CASES a`acttype OF 
    beginTxn: s`pc(t) = notStarted, 
    beginOk: s`pc(t) = beginPending, 
    inv(i): s`pc(t) = ready, 
    resp(r):       (readResp?(s`pc(t)) AND r = readOk(v(s`pc(t)))) 
                OR (writeRespOk?(s`pc(t)) AND r = writeOk), 
    commit: s`pc(t) = ready, 
    commitOk: s`pc(t) = commitRespOk, 
    cancel: s`pc(t) = ready, 
    abort: s`pc(t) = beginPending OR 
              reading?(s`pc(t)) OR 
              writing?(s`pc(t)) OR 
              s`pc(t) = doCommit OR 
              s`pc(t) = cancelPending, 
    doReadWritten(l): s`pc(t) = reading(l) AND dom(s`wrSet(t))(l), 
    doReadUnwritten(l,n): s`pc(t) = reading(l) AND  
                                        NOT dom(s`wrSet(t))(l) AND 
                                        validIndex(s,t,n), 
    doWrite(l,v): s`pc(t) = writing(l,v), 
    doCommitReadOnly:    s`pc(t) = doCommit AND dom(s`wrSet(t)) = emptyset, 
    doCommitWriter: s`pc(t) = doCommit AND 
                                dom(s`wrSet(t)) /= emptyset AND 
                                readCons(last(s`mem),s`rdSet(t)) 
  ENDCASES 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 39 

effect(a,s): State =  
  IF precondition(a)(s) THEN LET t = a`txn IN  
    CASES a`acttype OF 
      beginTxn: s WITH [`pc(t) := beginPending,`beginIdx(t) := s`mem`length-1], 
      beginOk: s WITH [`pc(t) := ready], 
      inv(i): s WITH [`pc(t) := IF read?(i) THEN reading(l(i)) ELSE writing(l(i),v(i)) ENDIF], 
      resp(r): s WITH [`pc(t) := ready], 
      commit: s WITH [`pc(t) := doCommit], 
      commitOk: s WITH [`pc(t) := committed], 
      cancel: s WITH [`pc(t) := cancelPending], 
      abort: s WITH [`pc(t) := aborted], 
      doReadWritten(l): s WITH [`pc(t) := readResp(down(s`wrSet(t)(l)))], 
      doReadUnwritten(l,n): (s WITH [`pc(t) := readResp(v), `rdSet(t)(l) := up(v)] 
                                             WHERE v = s`mem(n)(l)), 
      doWrite(l,v): s WITH [`pc(t) := writeRespOk, `wrSet(t)(l) := up(v)], 
      doCommitReadOnly: s WITH [`pc(t) := commitRespOk], 
      doCommitWriter: s WITH [`pc(t) := commitRespOk, 
                                                `mem := s`mem o oride(last(s`mem), s`wrSet(t))] 
    ENDCASES 
  ELSE 
    arbitraryState 
  ENDIF 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 40 

TMS2 variants 
! TxnOrdTMS2 

–  keeps track of order of committing writing transactions 
–  history mapping from TMS2 

! TxnOrdTMS2WithFailures 
–  allows aborted transactions in order above 

! ReservationTMS2 
–  writers “reserve place” in order, but they may abort 
–  requires backward simulation to TxnOrdTMS2WithFailures 

! TxnOrdTMS2Augmented 
–  maintains history variables useful to prove opacity 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 41 

TMS2 

TxnOrdTMS2Augmented 

TxnOrdTMS2WithFailures 

TxnOrdTMS2 

ReservationTMS2 

Proofs in framework 

history mapping 

backward simulation 
refinement 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 42 

TxnOrdTMS2Augmented 

TxnOrdTMS2 

Proofs in framework 

history mapping 
forward simulation 

Opacity 

TMS1 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 43 

NOrec algorithm [Dalessandro et al.] 

! Simple deferred-update alg: “no ownership records” 
–  write shared memory on commit 
–  maintain private read and write sets 
–  reads are invisible 

! Sequence lock to protect writeback 
–  serializes commit of writing transactions 
–  readers check that lock is not held 

! Value (re)validation when sequence lock changes  
! Low overhead 

–  good when conflicts are rare 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 44 

NOrec automata 

Automaton Action 
types 

Possible pc 
values 

NOrecAtomicCommitValidate 15 13 
NOrecDerived 19 13 
NOrec 21 15 
NOrecPaperPseudocode 45 35 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 45 

Verifying Transactional Memory 

! Formal framework in PVS 
–  typed higher order logic 
–  rewriting-based theorem prover 

!  Includes libraries for I/O automata, TM specs, etc. 
–  also library for sequences 

! Formally verified proofs of TM algorithm and specifications 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 46 

NOrec 

! Simple deferred-update algorithm: “no ownership records” 
–  reads are invisible 

! Sequence lock to protect writeback 
–  serializes commit of writing transactions 
–  readers check that lock is not held 

! Value (re)validation when sequence lock changes  
! Low overhead 

–  good when conflicts are rare 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 47 

Hierarchy of NOrec Automata 

! Verify that each implements the preceding one 

Automaton Action 
types 

Possible pc 
values 

NOrecAtomicCommitValidate 15 13 
NOrecDerived 19 13 
NOrec 21 15 
NOrecPaperPseudocode 45 35 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 48 

TMS2: A Common Implementation Approach 

! State variables 
–  mem: sequence of memory states 
–  beginIdxt: “timestamp” of state at beginning of transactiont 
–  wrSett: write set of t 
–  rdSett: read set of t 
–  pct: bookkeeping 

!  Implements TMS1 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 49 

TMS2: A Common Implementation Approach 

! Assumes read/write memory 
! Deferred update 

–  write shared memory on commit 
–  maintain private read and write sets 

! Can read in the past, but always write the current value 
–  new reads extend and validate read set 
–  writing transactions validate read set during commit 
–  no validation needed to commit read-only transactions 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 50 

TMS2: A Common Implementation Approach 

! State variables 
–  mem: sequence of memory states 
–  beginIdxt: “timestamp” of state at beginning of transactiont 
–  wrSett: write set of t 
–  rdSett: read set of t 
–  pct: bookkeeping 

!  Implements TMS1 (for read/write memory) 
! Several variants: ReservationTMS2, … 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 51 

Proofs Verified in Framework 
TMS2 

NOrecPaperPseudocode 

NOrecAtomicCommitValidate 

NOrecDerived 

NOrec refinement 
forward simulation 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 52 

Proofs Verified in Framework 

TMS2 

TxnOrdTMS2Augmented 

TxnOrdTMS2WithFailures 

TxnOrdTMS2 

ReservationTMS2 

history mapping 

backward simulation 
refinement 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 53 

Proofs Verified in Framework 

TxnOrdTMS2Augmented 

TxnOrdTMS2 

history mapping 
forward simulation 

Opacity 

TMS1 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 54 

Nontransactional 
Operations 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 55 

Why Nontransactional Operations? 

! Real systems provide a variety of synchronization mechanisms. 
! Different mechanisms are better for some tasks. 
! Transactional access must be mediated, incurring overhead. 
! Programs that use TM may need legacy libraries. 

–  technical, legal, business issues 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 56 

TM Interface with Nontransactional Operations 

!  input (invocations) 
–  begint 
–  tInvt(op) 
–  committ 
–  cancelt 
–  nInvn(op) 

! well-formedness for data-race free programs and correct TMs 

! output (responses) 
–  beginOkt 
–  tRespt(r) 
–  commitOkt 
–  abortt 
–  nRespn(r) 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 57 

Extending TMS1 with Nontransactional 
Operations 

! Validity conditions 
–  adjust transaction validity conditions to handle nontransactional operations 
–  new validity condition for nontransactional operations 

! Handle data races 
–  correct TM may exhibit arbitrary behavior if program is racy 
–  non-racy programs may cause races if TM gives incorrect results 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 58 

Defining data races 

! Conflict relation: symmetric binary relation specified by object type 
! Transactions never race with each other. 
! Nontransactional operations race iff they conflict and overlap. 
! Nontransactional operation races with a transaction iff  

–  they overlap and 
–  any operation invoked by the transaction conflicts with the 

nontransactional operation. 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 59 

NTMS1 Internals 

! State variables 
–  status[x] 
–  ops[x] 
–  opInv[x] 
–  invokedCommit[x] 
–  extOrder 

–  tmHavoc 

!  set if a race is detected (new internal action: observeRace) 
!  every output action is enabled when tmHavoc is set 

!  Validity preconditions 
!  validCommit 
!  validFail 
!  tValidResp 
!  nValidResp 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 60 

Data-race-free Clients 

! Add cHavoc flag 
–  set when violation of TM correctness is detected 
–  internal action: observeIncorrectTM 
–  every output action is enabled when cHavoc is set 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 61 

Data-race-free Clients 

! Add cHavoc flag 
–  set when violation of TM correctness is detected 
–  internal action: observeIncorrectTM 
–  every output action is enabled when cHavoc is set 

TM clients specify required correctness condition 
(may be weaker than actual TM guarantee) 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 62 

NTMS1 with Data-race-free Clients 

! Proved that this is equivalent to same clients with strongly atomic TM 
–  nontransactional operations equivalent to committed “mini-transaction” 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 63 

NTMS1 with Data-race-free Clients 

! Proved that this is equivalent to same clients with strongly atomic TM 
–  nontransactional operations equivalent to committed “mini-transaction” 

! No dependency on conflict relation! 
–  change in conflict relation shifts burden between clients and TM 
–  empty conflict relation = strongly atomic TM 
–  total conflict relation = completely synchronized shared memory access 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 64 

Privatization-safety 

! A shared memory location that is made private by a transaction can be 
accessed without instrumentation after transaction commits. 

! NTMS1 does not guarantee privatization-safety. 
! No precise definition of privatization-safety exists. 
! Privatization-safety can’t be specified without changing interface! 

–  it restricts internal TM details 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 65 

Support for Transactions in 
C++ 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 66 

Transactional Memory for C++ 

! Developed by SG5 
–  evolved from Draft Specification for Transactional Constructs in C++ 

(written by industry group) 
!  Intended to provide pragmatic basic set of features 

–  omits/simplifies several controversial/complicated features of Draft Spec  

Disclaimer:  Opinions/interpretations are my own.   
They do not represent the position of my employer,  

and may differ from others in SG5. 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 67 

Atomicity and its discontents 

! Transaction is indivisible (appears to occur at a single point) 
–  within transaction: no outside interference 
–  outside transaction: no partial effects/intermediate states observed 
–  transaction either completes or has no effect 

! Races 
! Transaction-unsafe code 
! Exceptions 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 68 

Races 

! Accesses within transactions do not race with each other . 
! Transactional accesses may race with nontransactional accesses. 

–  require additional synchronization to avoid data races 

! Racy programs have undefined behavior. 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 69 

Races 

! Accesses within transactions do not race with each other . 
! Transactional accesses may race with nontransactional accesses. 

–  require additional synchronization to avoid data races 

! Racy programs have undefined behavior. 

Why is there a data race if transactions are atomic? 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 70 

Transaction-unsafe code 

! Some operations are difficult, expensive or impossible to execute 
atomically. 

–  I/O 
–  access to volatiles, atomic variables 
–  asm 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 71 

Transaction-unsafe code 

! Some operations are difficult, expensive or impossible to execute 
atomically. 

–  I/O 
–  access to volatiles, atomic variables 
–  asm 

Implementation approaches: 
 - implicit global lock 
 - speculative execution 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 72 

Transaction-unsafe code 

! Some operations are difficult, expensive or impossible to execute 
atomically. 

–  I/O 
–  access to volatiles, atomic variables 
–  asm 

! Two approaches 
–  forbid transaction-unsafe code within transaction 
–  allow transaction-unsafe code, relax atomicity guarantee 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 73 

Two kinds of transactions 

! Atomic transactions 
–  will appear atomic (guaranteed at translation time) 
–  must not contain transaction-unsafe code 

! Relaxed transactions 
–  as if taking global mutex + no atomic transaction takes effect concurrently 
–  any code permitted 
–  not guaranteed to appear atomic (hence “relaxed”) 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 74 

Two kinds of transactions 

! Atomic transactions 
–  will appear atomic (guaranteed at translation time) 
–  must not contain transaction-unsafe code 

! Relaxed transactions 
–  as if taking global mutex + no atomic transaction takes effect concurrently 
–  any code permitted 
–  not guaranteed to appear atomic (hence “relaxed”) 

No data races between transactional accesses 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 75 

Two kinds of transactions 

! Atomic transactions 
–  will appear atomic (guaranteed at translation time) 
–  must not contain transaction-unsafe code 

! Relaxed transactions 
–  as if taking global mutex + no atomic transaction takes effect concurrently 
–  any code permitted 
–  not guaranteed to appear atomic (hence “relaxed”) 

No data races between transactional accesses 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 76 

Two kinds of transactions 

! Atomic blocks 
–  will appear atomic (guaranteed at translation time) 
–  must not contain transaction-unsafe code 

! Synchronized blocks 
–  as if taking global mutex + no atomic transaction takes effect concurrently 
–  any code permitted 
–  not guaranteed to appear atomic 

No data races between accesses in atomic and synchronized blocks. 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 77 

Synchronized blocks 

! Allows transaction-unsafe code 
! Some uses:  

–  logging, error reporting 
–  accessing mutex-protected resources 
–  use of shared_ptr (which uses atomics) 
–  “pure” functions that use helper threads 

! Provides alternative to mutexes in many cases 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 78 

Synchronized block example 

int i = 0;	

void f() {	
  synchronized {	
    if (unlikely_condition)	
      std::cerr << “oops” << std::endl;	
    ++i;	
  }	
} 	



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 79 

Challenges for atomic blocks 

! Checking for transaction-unsafe code 
–  how to check function calls 

! Handling escaping exceptions 
–  commit or cancel? 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 80 

Guaranteeing atomicity: transaction-safe code 

! Some code is difficult, expensive, or impossible to execute atomically. 
–  I/O, atomics, volatile, asm 

! Such transaction-unsafe code is forbidden within atomic blocks. 
–  guarantees atomicity, checked at translation time 
–  easy for lexically enclosed code 
–  what about function calls? 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 81 

Transaction-safety for function calls 

! Named functions 
–  easy if definition is available 
–  annotate declaration 
–  otherwise, assume safe: check at link time (name mangling) 

! Virtual functions 
–  annotate declaration 

! Function pointers 
–  annotate declaration + extend type system 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 82 

Transaction-safety for named functions 

void f1() transaction_safe;	
void f2();	

void g() {	
  atomic {	
    f1();  // ok	
    f2();  // ok iff defn of “f2” has no unsafe code	
  }	
}	

NB: not final form 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 83 

Transaction-safety for named functions 

void f1() transaction_safe;  // header file	

void f1() {	
  volatile v = 0;  // error: unsafe code	
}	

void f2() {	
  volatile v = 0;  // mangled name of “f2” prevents	
}                  // use inside transactions	



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 84 

Transaction-safety for virtual functions 

struct S {	
  virtual void f() transaction_safe;	
};	

struct D : S {	
  void f() {        // implicitly declared transaction-safe	
    volatile v = 0; // error	
  }	
};	



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 85 

Transaction-safety for function pointers 

void f() transaction_safe;	
void g();	
void (*pf1)() = &f;                  // ok	
void (*pf2)() transaction_safe = &f; // ok	
void (*pg)() transaction_safe = &g;  // ok iff defn of g is safe	

void h() {	
  atomic {	
    (*pf1)();   // error 	
    (*pf2)();   // ok	
  }	
}	

NB: not final form 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 86 

Explicitly transaction-unsafe functions 

! May explicitly declare functions transaction_unsafe 
–  documents intention  
–  reduces code bloat (i.e., generating superfluous “safe” variant) 

void f() transaction_unsafe;	



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 87 

Transaction-safety of standard library 

! memcpy, memset, etc. 
! malloc and free	
! new and delete	
! abort	

!  containers (e.g., vector, string) 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 88 

Transaction-safety for function calls: Summary 

! Calls to named functions are considered safe unless 
–  definition is available and contains transaction-unsafe code, or 
–  declaration is explicitly annotated as transaction_unsafe. 

! Assumption of transaction-safety checked at link time. 
! Calls to virtual functions or through function pointers 

–  safe only if declared transaction_safe.  

! Some standard library functions are transaction-safe. 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 89 

Exceptions 

! What happens if an exception is thrown out of an atomic transaction? 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 90 

Transaction example 

void Account::deposit(double amount) {	
  atomic { 	
    this->balance += amount;	
    this->deposit_log.push_back(amount);	
  }	
}	

void transfer(Account &from, Account &to, double amount) {	
  atomic {	
    from.deposit(-amount);	
    to.deposit(amount);	
  }	
}	

NB: not final form 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 91 

Exceptions 

! What happens if an exception is thrown out of an atomic transaction? 
–  commit: transaction’s effects made visible 

!  simple to specify 
!  programmer must provide exception-safety 

–  cancel: transaction’s effects discarded (but throws exception) 
!  provides strong exception-safety 
!  exception “leaks” information 

–  terminate 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 92 

Exceptions 

! Specify how to handle exceptions with additional keyword: 
–  noexcept	
–  commit_except	
–  cancel_except	



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 93 

Exceptions 

! Specify how to handle exceptions with additional keyword: 
–  noexcept	
–  commit_except	
–  cancel_except	



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 94 

Exceptions 

! Augment atomic keyword: 
–  atomic_noexcept	
–  atomic_commit	
–  atomic_cancel	



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 95 

Canceling a transaction on exception 

! Exception: “cannot complete operation” 
! Transaction: “complete operation, or do nothing” 

–  exception indicates if and why operation is not done (e.g., bad_alloc) 

! Exception “leaks” information about transaction 
–  no problem for scalar types 
–  what about pointers to objects constructed/modified by transaction? 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 96 

Transaction example revisited 

void Account::deposit(double amount) {	
  atomic_cancel { 	
    this->balance += amount;	
    this->deposit_log.push_back(amount);	
  }	
}	

void transfer(Account &from, Account &to, double amount) {	
  atomic_cancel {	
    from.deposit(-amount);	
    to.deposit(amount);	
  }	
}	



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 97 

Exceptions: Summary 

! Atomic blocks must specify how to handle exceptions 
–  atomic_noexcept 
–  atomic_commit 
–  atomic_cancel (works for only “transaction-safe” exceptions) 

! Synchronized blocks always commit on exception 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 98 

Conclusion 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 99 

Summary 

! Precise specifications for transactional memory 
–  formal framework for reasoning about TM 

! Different specifications appropriate for different contexts 
! TM must be integrated with other parts of the system 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 100 

The Future of Transactional Memory 

!  Improving transactional memory implementations 
–  integrate with other parts of the system 

! Using transactional memory effectively 
–  education 
–  linguistic support 

! Reasoning about transactional memory 
–  precise specifications 
–  formal framework 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 101 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 102 


