4 redhat

Transactional Memory for C++:
Standardization efforts and

commercial implementations

Torvald Riegel
Red Hat
15/01/19



Transactional memory for C++

Lots of large C++ code bases

For commercial software to evaluate/adopt TM...
Standardization
Commercial implementations

This talk:
ISO C++ standardization efforts around TM
TM support in the GNU Compiler Collection

Torvald Riegel



ISO C++

ISO C++ committee (JTC1/SC22/WG21)
100+ people attending 2-3 6-day meetings per year
Study groups on various subtopics
Produce drafts that are voted on by ISO National Bodies

C++14 has been published recently
Only three years since previous release (C++11)! ;-)

Technical specifications

Outlooks on features that may become part of the standard
In the future

Torvald Riegel



ISO C++ Study group 5 (SG5)

Focus: TM
Language features
Integration with C++ Standard Library

SG5 members: Mix of industry and academia
Current goal: Produce a Technical Specification (TS)

Current state:
Draft TS out for initial ballot and comments (N4302)
Considered experimental — aim is to get feedback
When no consensus on one way to do something, provide
different ways

Research on TM is biggest source of input for SG5

4 Torvald Riegel



C++ TM TS: Transactions as a language construct

Four ways to demarcate a transaction(-like code region):
atomic_commit { /*...*/ }

atomic_noexcept { /*...*/ }

atomic_cancel { /*...*/ }

synchronized { /*...*/ }

If no nested non-transactional synchronization and no
exceptions, all have the same semantics:

As Iif a single recursive global lock is acquired before and
released after the compound statement

Default C++ data-race-freedom requirement on programs
makes such transactions strongly atomic

Torvald Riegel



C++ TM TS: Checking atomicity at compile time

synchronized {} allows non-transactional
synchronization in the compound statement

atomic_* {} disallow this, require transaction-safe code
In all code that may be executed from atomic_* {}

Transaction safety is part of type system

Functions can be declared transaction_safe (e.g., many
standard library functions, memory allocation, ...)

Most kinds of non-transactional synchronization are currently
not considered transaction-safe

Compiler checks that transaction-safe code is indeed that

Results: atomic_* {} Is an atomic transaction:
No deadlock, ...

Both synchronized {} and atomic_* {} are useful

6 Torvald Riegel ‘




C++ TM TS: Failure atomicity

atomic_* {} differ in behavior when exceptions thrown
across transaction boundaries (i.e., escape)

atomic_commit {3} behaves like sequential or lock code
atomic_noexcept {} terminates program

atomic_cancel {} rolls back transaction. But:

Only a few exception types allowed

Safely copying data out of a to-be-rolled-back transaction is
difficult

Depends on program semantics
Needs at least additional code annotations

Programmer must make exceptions logically self-contained
Constrains implementations

Torvald Riegel



C++ TM TS: Outlook

Open questions:

Make empty transactions no-ops (e.g., allow compiler to
remove them)?

Allow locks in atomic transactions?
Allow atomic<T> operations in atomic transactions?

Low-level escape mechanism for non-transactional code in
transactions?

Next steps for SG5:
Address ISO feedback and publish TS
Get feedback through implementations of TS

Adapt TS
Repeat

8 Torvald Riegel




GNU Compiler Collection (GCC)

Most widely used open-source C/C++ compiler
System compiler for all of the major Linux distributions
Support for and used by many embedded systems

Versions:
GCC 4.9 is the last stable release

GCC 5 is what will become the next stable release
In stabilization mode currently (no new big features allowed)
What this talk refers to

Torvald Riegel




TM support in GCC’s C/C++ compiler

10

Initial support built as part of the Velox project

Implements basically an older version of the spec
__transaction_atomic {}, __ transaction_relaxed {}
Very similar to atomic_commit {3}, synchronized {}

Don’t support the newer exception constructs and semantics
(but have something for noexcept)

Don’t support the newer transaction_safe type annotation,
but...

Attributes for functions: transaction_safe,

transaction_unsafe, transaction_pure,
transaction_wrap

Torvald Riegel



TM support in GCC: Recent changes

After Velox: new features and general maintenance
Compiler generates instrumented and uninstrumented
code paths for each transaction

Instrumented for STM — uninstrumented for HTM

Rewrote most of GCC’s TM Runtime library (libitm)

Portable C++11 code base (x86, x86_64, powerpc, arm,
aarché4, ...)

Several TM algorithms:
Serial, single-lock write-through, ...

Multiple-lock write-through with global timebase (ie, LSA)
HTM with serial as fallback

HTM support on x86 64, powerpc, s390

11 Torvald Riegel




TM support in GCC: Outlook

Once C++ TM Technical Specification is about to be
published, implementing it will make sense

Lots of overlap with what's already implemented

Exception handling, transaction safety rules, and deciding

how to ship transactional clones of functions are probably the
biggest tasks

Working with one of Paolo’s students on integrating their
HTM auto-tuning

Working with MIT on getting their HyTM as a contribution to
GCC

12 Torvald Riegel




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

