
Torvald Riegel | HTDC 20141

Transactional Memory for C++:

Standardization efforts and

commercial implementations

Torvald Riegel
Red Hat
15/01/19

Torvald Riegel2

Transactional memory for C++

● Lots of large C++ code bases
● For commercial software to evaluate/adopt TM...

● Standardization
● Commercial implementations

● This talk:
● ISO C++ standardization efforts around TM
● TM support in the GNU Compiler Collection

Torvald Riegel3

ISO C++

● ISO C++ committee (JTC1/SC22/WG21)
● 100+ people attending 2-3 6-day meetings per year
● Study groups on various subtopics
● Produce drafts that are voted on by ISO National Bodies

● C++14 has been published recently
● Only three years since previous release (C++11)! ;-)

● Technical specifications
● Outlooks on features that may become part of the standard

in the future

Torvald Riegel4

ISO C++ Study group 5 (SG5)

● Focus: TM
● Language features
● Integration with C++ Standard Library

● SG5 members: Mix of industry and academia
● Current goal: Produce a Technical Specification (TS)
● Current state:

● Draft TS out for initial ballot and comments (N4302)
● Considered experimental – aim is to get feedback
● When no consensus on one way to do something, provide

different ways
● Research on TM is biggest source of input for SG5

Torvald Riegel5

C++ TM TS: Transactions as a language construct

● Four ways to demarcate a transaction(-like code region):
atomic_commit { /*...*/ }
atomic_noexcept { /*...*/ }
atomic_cancel { /*...*/ }
synchronized { /*...*/ }

● If no nested non-transactional synchronization and no
exceptions, all have the same semantics:

● As if a single recursive global lock is acquired before and
released after the compound statement

● Default C++ data-race-freedom requirement on programs
makes such transactions strongly atomic

Torvald Riegel6

C++ TM TS: Checking atomicity at compile time

● synchronized {} allows non-transactional
synchronization in the compound statement

● atomic_* {} disallow this, require transaction-safe code
● In all code that may be executed from atomic_* {}

● Transaction safety is part of type system
● Functions can be declared transaction_safe (e.g., many

standard library functions, memory allocation, ...)
● Most kinds of non-transactional synchronization are currently

not considered transaction-safe
● Compiler checks that transaction-safe code is indeed that

● Results: atomic_* {} is an atomic transaction:
No deadlock, …

● Both synchronized {} and atomic_* {} are useful

Torvald Riegel7

C++ TM TS: Failure atomicity

● atomic_* {} differ in behavior when exceptions thrown
across transaction boundaries (i.e., escape)

● atomic_commit {} behaves like sequential or lock code
● atomic_noexcept {} terminates program
● atomic_cancel {} rolls back transaction. But:

● Only a few exception types allowed
● Safely copying data out of a to-be-rolled-back transaction is

difficult
● Depends on program semantics
● Needs at least additional code annotations

● Programmer must make exceptions logically self-contained
● Constrains implementations

Torvald Riegel8

C++ TM TS: Outlook

● Open questions:
● Make empty transactions no-ops (e.g., allow compiler to

remove them)?
● Allow locks in atomic transactions?
● Allow atomic<T> operations in atomic transactions?
● Low-level escape mechanism for non-transactional code in

transactions?

● Next steps for SG5:
● Address ISO feedback and publish TS
● Get feedback through implementations of TS
● Adapt TS
● Repeat

Torvald Riegel9

GNU Compiler Collection (GCC)

● Most widely used open-source C/C++ compiler
● System compiler for all of the major Linux distributions
● Support for and used by many embedded systems

● Versions:
● GCC 4.9 is the last stable release
● GCC 5 is what will become the next stable release

● In stabilization mode currently (no new big features allowed)
● What this talk refers to

Torvald Riegel10

TM support in GCC’s C/C++ compiler

● Initial support built as part of the Velox project
● Implements basically an older version of the spec

● __transaction_atomic {}, __transaction_relaxed {}
● Very similar to atomic_commit {}, synchronized {}

● Don’t support the newer exception constructs and semantics
(but have something for noexcept)

● Don’t support the newer transaction_safe type annotation,
but...

● Attributes for functions: transaction_safe,
transaction_unsafe, transaction_pure,
transaction_wrap

Torvald Riegel11

TM support in GCC: Recent changes

● After Velox: new features and general maintenance
● Compiler generates instrumented and uninstrumented

code paths for each transaction
● Instrumented for STM – uninstrumented for HTM

● Rewrote most of GCC’s TM Runtime library (libitm)
● Portable C++11 code base (x86, x86_64, powerpc, arm,

aarch64, ...)
● Several TM algorithms:

● Serial, single-lock write-through, ...
● Multiple-lock write-through with global timebase (ie, LSA)
● HTM with serial as fallback

● HTM support on x86_64, powerpc, s390

Torvald Riegel12

TM support in GCC: Outlook

● Once C++ TM Technical Specification is about to be
published, implementing it will make sense

● Lots of overlap with what’s already implemented
● Exception handling, transaction safety rules, and deciding

how to ship transactional clones of functions are probably the
biggest tasks

● Working with one of Paolo’s students on integrating their
HTM auto-tuning

● Working with MIT on getting their HyTM as a contribution to
GCC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

