w

TECHNISCHE
UNIVERSITAT
DRESDEN

Using transactional
memory to build resilient
systems

Christof Fetzer
TU Dresden

Resilience”

* resilient computing:

e refers to the ability to provide and maintain an
acceptable level of service in the face of faults
and challenges to normal operation® [Laprie]

CENTER FOR

AAAAA CING
ELECTRONICS
DRESDEN

Motivation =

 Jo decrease the cost of resilience, we are
Interested in approaches that can deal with

e software bugs
* hardware faults

e operational issues

Fallure Atomicity

e Can we use transactional memory to ensure failure
atomicity”

Fallure Atomicity!

A method m of class C is failure atomic iff m
guarantees that even in the face of failures:

- no resource leaks
- all invariants hold

 m either succeeds or state is unchanged

Example

e HashMultiMap (downloaded from web):

class HashMultiMap {

Bucket[] b;
//

void add (Object k, Object v) { k'[s null
b[k.hashCode () %b.length]. NullPointer
append (new Pair(k, v)); Exception
int size() {
}
} Inconsistency:

nb elements incremented
but element not inserted

C. Fetzer, K.Hogstedt, P. Felber, Automatic Detection and Masking of Non—Atogic

Exception Handling, IEEE Transactions on Software Engineering, 2004. 0

FIXINg Example

 We can try to fix the code:

void add(Object k, Object v) {
if(k == null || v == null)
throw new Exception(...);
// Add element. ..

C. Fetzer, K.Hogstedt, P. Felber, Automatic Detection and Masking of Non-Atomic
Exception Handling, IEEE Transactions on Software Engineering, 2004.

FIXINg Example

 We can try to fix the code:

void add(Object k, Object v) {
if(k == null || v == null)
throw new Exceptlon()
// Add element.

}

* General approach:
e sort statements such that

1. execute statements that could throw exceptions
- they must not change state of data structure

2. perform state changes with no-throw functions

Alternative

* Ensuring failure atomicity class HashMultiMap {
manually could result in fragile Bucket[] b;
code @failureAtomic
void add (Object k, Object v) {
. : b[k.hashCod %b.1 th].
« Alternative: ensure failure L pend (aew avs (h oo ;
atomicity using transactional } e size() {
memory }
}
add
/)é Q
g / A
6@ NQ, o O% @/,‘j
O/. @ OO /%

Problem 1

Problem:

exceptions might result in resource leaks & leaked
information

My take:

e compiler should only permit to throw exception objects within
failure-atomic blocks that can be cloned.

0 Z 7
e (szx \jclone

Composable Error Recovery with Transactional Memory (Torvald Riegel, Pascal Felber, Christof Fetzer), In Bulletin of the European
Association for Theoretical Computer Science (BEATCS), volume 99, 20009. 10

Problem 2

Problem: class HashMultiMap {
Bucket[] b;
atomic block can only @failureAtomic
roll-back internal state vols agcionlect ks Object v) |

nb elements++;
tcp.send() ;
b[k.hashCode () $b.length].
My take: } append (new Pair(k, v));

int size() {
. return nb_elements;
e compiler should flag/ \ }

prevent external state

changes in failure-atomic

blocks.

Composable Error Recovery with Transactional Memory (Torvald Riegel, Pascal Felber, Christof Fetzer), In Bulletin of the European
Association for Theoretical Computer Science (BEATCS), volume 99, 20009. 11

Problem 3

* Problem:
o difficult to get such extensions into C / C++.
* Question:

e does it makes sense to add atomic and failure-
atomic blocks in a still evolving language (like
Rust from Mozilla)?

12

Sadistic Homework

% Double-ended queue %

No interference if
ends “far enough”
apart

based on a slide by Nir Shavit and Maurice Herlihy

Sadistic Homework

% Double-ended queue %

¥ . —
Interference OK if -

ends ‘“close enough”
together

0 0 0

based on a slide by Nir Shavit and Maurice Herlihy

Sadistic Homework

% Double-ended queue
O

-
-

-
Make sure suspended }

dequeuers awake as
heeded

based on a slide by Nir Shavit and Maurice Herlihy

Solution

« PODC 1996, Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue
Algorithms.

Maged Michael Michael Scott

16

Say, you are not a
concurrency expert...

* |f problem is too difficult to be
solved, change the problem:

e |.e., solve a variant of the
problem!

- Variant:
e Concurrent puts

e Sequential gets

Captain Kirk

17

Actor Approach

list thread
NS

channel

T

H X1 X2 i
thread thread

Actor Model

thread

I

Putnght(vaIue1) PutLeft(vaIue2)
t><1

thread thread

Actor Approach

let t = Thread: :spawn(move || {
let mut list : Vec<uint> = Vec::new();
loop {
let m = rx.recv(Q);
match m {
Msg: :GetLeft(tx) => tx.send(list.remove(0)),
Msg: :GetRight(tx)=> tx.send(list.pop()),
Msg: :PutLeft(v) => list.insert(Qu, v),
Msg: :PutRight(v) => list.push(v),
Msg::Terminate => return,
};
%

K (rust code)

e actor: is a thread
e waiting for messages

» depending on what message type arrives, we add/remove

elements from the list (for which we use a rust vector)
20

Atomic Block"?

let t = Thread: :spawn(move || {
let mut list : Vec<uint> = Vec::new();
loop {
let m = rx.recv(Q);

match m { ”““*mmwﬁm~§ﬁ%
Msg: :GetLeft(tx) => t¥¥send(list.remove(0)),

Msg: :GetRight(tx)=> tx.send(list.pop()),
Msg: :PutLeft(v) => list.insert(Ou, v),
Msg: :PutRight(v) => list.push(v),
Msg::Terminate => return,
s
}
};

e Implicit atomic block between recv & send?
 On abort:

* Nno state change & send error message
21

Implicit Atomic Block?

let t = Thread: :spawn(move || {
let mut list : Vec<uint> = Vec: :new();

loop {
let m = rx.recv(); _.
match m { e
Msg: :GetLeft(Tsend(list.remove(0)),
Msg: :GetRight(tx)=> tx.send(list=pan()),
Msg: :PutLeft(v) =list.insert(Qu, v),
Msg: :PutRight(v) => list.push(v),
Msg::Terminate => return,
};
}
});

e PutLeft/PutRight: does not return a value

* NO possibility to indicate error!

22

Observation 1

 No conflict detection needed
* Rust is a data race-free language

« Simple all-or-nothing semantics is insufficient:
* we need to have ,all” semantics!

e On nothing:
e there is no good alternative except to panic!

e panic! propagates via channels.

23

Observation 2

* high likelihood that transparent retry will mask
* transient hardware faults and

e (certain) transient software bugs

24

Masking Transient Hardware
Faults

> [®) - ’
O C C O
= % % O retry
retry block (rb) ro ro rb
rollback

* Transient hardware faults are expected to go up

» with decreasing feature sizes

« Safety critical systems (e.g., automotive):

* need to detect transient HW faults (e.g., 99%), and
e and to mask transient HW faults

25

recv

Observation 3

O O
- -
O O
w n

recv

ro

rolrblirbilrbllrbilrb |rb | rb ||rb

rollback

* Retry blocks:

« flexibility to choose the size

e one needs to commit before externalizing state

* Transient software bugs:

e success of retry most likely proportional to transaction size

26

Detection: Lock Step Cores

- Lock-step cores:

e check that external behavior
IS the same

 Problems:

data

core

>
D>

address [

buffer

>

ok/error

checker
core

data

>

address

compare

e cores are non-deterministic behavior

* 100% cycle overheaa

27

100

75
Lo
o
&
>
@
0

S 50
>
o
)
o
@
BN

25

0

Lock Step Cores

no protection

lock step

25

50

% of resilient code
28

75

100

Faq\t

StartApplication

time

Aowe|\ paleys

\ 4

<

i

p

(regiiecr | I
B [RegFile]
g [Feadset]

f=lﬁ backup 2 ~
trean [
|

¥ [RegFite]
B [readset] readset| |
| |
. g [writeset
l i,
[FeaMeCP |y (rageie Regria] W [FeafieCP
N [readset] readset|
|

= i ! | 1
sompare res i '

<

™

create

B [regfitecP |
RegFile | I
readset]

EndApplication

origins:l thread

lOriginaI reliTX

backup thread

Backup reliTX

 Compare writesets instead of result of individual instructions

Yalcin, G., Unsal, O., Cristal, A.: FaulTM: Fault-Tolerance Using Hardware Transactional Memory. In: Design, Automation

and Test in Europe DATE (2012)

29

Software Implemented Fault
Tolerance (SWIFT)

 Approach:
* use time redundancy instead of space redundancy

e execute each instruction twice in sequence and check
that results are the same

e Notes:

* tries to exploit instruction level parallelism of modern
CPUs

 Example: Haswell has 8x parallel execution ports

[Reis, G.A. et al, ,SWIFT: software implemented fault tolerance®, CG0O2005] 30

SWIFT Overheao

100

75
Q
Q
'©
>
©
o

o 50
>
(&)
D
o
@)
32

25

no protection lock step SWIFT
(40% overhead)
0
0 25 50 75 100

% of resilient code 3

Swift Issues

- Large window of vulnerability!
* time of check to time of use issues
 Haswell: 192-entry reorder window
* Persistent faults!
e time redundancy: false negatives possible
- Memory really a solved problem?

e what about memory overwrites?

32

AN Encoding

AN code: all variables represented as multiples of some A
e Advantages:

e deals with non-determinism (like SWIFT)

e but no problems with out of order processing
 Disadvantages:

e overheaad

e recovery from intermittent/persistent failures

Wamhoff, J.T.,et al: Transactional encoding for tolerating transient hardware errors. SSS '13.

33

Delta Encoding
original program \/\’ e

A1-encoded execution

\/\. duplicate & thread
AN-encode

original execution A2-encoded execution

accu accu check —»abort

f CPU RAM f

 Combination of AN-encoding and duplicate execution (similar to SWIFT)

» High detection coverage for transient, intermittent and permanent faults
(99.997%).

* Acceptable slow down: 1xx %overhead

(currently under submission) 34

100

o 75

5

=

>

©

®

S 50

>

(@]

-

o

@)

> og
0

Delta-Encoding

no protection

lock step SWIFT Delta-Encoding
(40% overhead) (120% overhead)

25

50 75 100

% of resilient code

35

Masking Hardware Faults

©
2 o
- O T
D o O O
O O o O
O © - ©
retry block| [retry block| | swretry
x ” fx ” alternative ”
code path

e Idea: (not yet implemented)
* handle transient faults via retry

e try to mask ,persistent disagreements” via SW
retry

36

Questions

-+ Deterministic SW bugs:

e can they be handled in a similar way as
persistent hardware bugs?

 Deterministic SW bugs:

e how to detect these?

37

Observation 1’

- Obijective: Horizontal Scalability
e any remote call can fail!
- Objective: Robustness
* e.g., wrong arguments should never result in a panic!

* use graceful degradation (i.e., drop request) and let client
Know

* Problem:

* most cases we will not be able to wrap request in a transaction.

38

summary

 Approach:
e masking transient failures using transactional memory
e we do not need contlict detection from TM
e depending on expected detection and masking coverage
* will use different detection mechanisms
» deal with ,persistent disagreements” using a SW retry

A few open problems left..

39

References

Fetzer, C., Felber, P.: Transactional memory for dependable embedded systems. In: 7th Workshop on
Hot Topics in System Dependability (HotDep). pp. 223-227. IEEE (2011)

Riegel, T., Felber, P., Fetzer, C.: Composable error recovery with transactional memory. Bulletin of the
European Association for Theoretical Computer Science (BEATCS) 99, (2009)

Wamhoff, J.T., Schwalbe, M., Fageh, R., Fetzer, C., Felber, P.: Transactional encoding for tolerating
transient hardware errors. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M.,
Yamashita, M. (eds.) Stabilization, Safety, and Security of Distributed Systems: 15th International
Symposium, SSS ’13, vol. 8255, pp. 1-16. Springer International Publishing (November 2013)

Yalcin, G., Unsal, O., Cristal, A.: FaulTM: Fault-Tolerance Using Hardware Transactional Memory. In:
Design, Automation and Test in Europe DATE (2012)

Yalcin, G., Unsal, O., Cristal, A.: Fault Tolerance for Multi-Threaded Applications by Leveraging
Hardware Transactional Memory. In: International Conference on Comput- ing Frontiers (2013)

Yalcin, G., Unsal, O., Cristal, A., Hur, |., Valero, M.: FaulTM: Fault-Tolerance Using Hardware
Transactional Memory. In: Workshop on Parallel Execution of Sequential Pro- grams on Multi-Core
Architecture PESPMA (2010)

Gulay Yalcin and Osman S. Unsal, Transactional Memory for Reliability, .

Pictures

 https://philosophadam.wordpress.com/2014/10/01/
finding-the-calm-within-the-storm-shame-resilience-
in-practice/

» http://trekcore.com/specials/rare/Massive Kirk.jpg

