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Resilience?
• resilient computing: 

• „refers to the ability to provide and maintain an 
acceptable level of service in the face of faults 
and challenges to normal operation“ [Laprie]
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Motivation

• To decrease the cost of resilience, we are 
interested in approaches that can deal with 

• software bugs 

• hardware faults 

• operational issues
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Failure Atomicity

• Can we use transactional memory to ensure failure 
atomicity?
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Failure Atomicity!
• A method m of class C is failure atomic iff m 

guarantees that even in the face of failures: 

• no resource leaks

• all invariants hold

• m either succeeds or state is unchanged 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Example
• HashMultiMap (downloaded from web):

class HashMultiMap { 
  int nb_elements; 
  Bucket[] b; 
  // ... 
  void add(Object k, Object v) { 
    nb_elements++; 
    b[k.hashCode()%b.length]. 
      append(new Pair(k, v)); 
  } 
  int size() { 
    return nb_elements; 
  } 
}

k is null

NullPointer 
Exception

C. Fetzer, K.Högstedt, P. Felber, Automatic Detection and Masking of Non-Atomic 
Exception Handling, IEEE Transactions on Software Engineering, 2004. 6

Inconsistency: 
nb_elements incremented  
but element not inserted



• We can try to fix the code:
void add(Object k, Object v) { 
  if(k == null || v == null) 
    throw new Exception(...); 
  // Add element... 
  nb_elements++; 
}

Fixing Example

7

C. Fetzer, K.Högstedt, P. Felber, Automatic Detection and Masking of Non-Atomic 
Exception Handling, IEEE Transactions on Software Engineering, 2004.



• We can try to fix the code: 

• General approach:
• sort statements such that 

1. execute statements that could throw exceptions 
- they must not change state of data structure 

2. perform state changes with no-throw functions

Fixing Example
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void add(Object k, Object v) { 
  if(k == null || v == null) 
    throw new Exception(...); 
  // Add element... 
  nb_elements++; 
}



Alternative
• Ensuring failure atomicity 

manually could result in fragile 
code 

• Alternative: ensure failure 
atomicity using transactional 
memory

class HashMultiMap { 
  int nb_elements; 
  Bucket[] b; 
   
  @failureAtomic 
  void add(Object k, Object v) { 
    nb_elements++; 
    b[k.hashCode()%b.length]. 
      append(new Pair(k, v)); 
  } 
  int size() { 
    return nb_elements; 
  } 
}
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Problem 1
• Problem:

• exceptions might result in resource leaks & leaked 
information

• My take:

• compiler should only permit to throw exception objects within 
failure-atomic blocks that can be cloned. 
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add
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Composable Error Recovery with Transactional Memory (Torvald Riegel, Pascal Felber, Christof Fetzer), In Bulletin of the European 
Association for Theoretical Computer Science (BEATCS), volume 99, 2009.



Problem 2
• Problem:

• atomic block can only 
roll-back internal state

• My take:

• compiler should flag/
prevent external state 
changes in failure-atomic 
blocks. 
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class HashMultiMap { 
  int nb_elements; 
  Bucket[] b; 
   
  @failureAtomic 
  void add(Object k, Object v) { 
    nb_elements++; 
    tcp.send(); 
    b[k.hashCode()%b.length]. 
      append(new Pair(k, v)); 
  } 
  int size() { 
    return nb_elements; 
  } 
}

Composable Error Recovery with Transactional Memory (Torvald Riegel, Pascal Felber, Christof Fetzer), In Bulletin of the European 
Association for Theoretical Computer Science (BEATCS), volume 99, 2009.



Problem 3
• Problem: 

• difficult to get such extensions into C / C++. 

• Question: 

• does it makes sense to add atomic and failure-
atomic blocks in a still evolving language (like 
Rust from Mozilla)?
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Sadistic Homework

putLeft
(x)

putRight
(y)

Double-ended queue

No interference if 
ends “far enough” 

apart

based on a slide by Nir Shavit and Maurice Herlihy
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Sadistic Homework

putLeft
(x)

putRight
(y)

Double-ended queue

Interference OK if 
ends “close enough” 

together

based on a slide by Nir Shavit and Maurice Herlihy
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Sadistic Homework

getLeft
()

getRight
()

Double-ended queue

Make sure suspended 
dequeuers awake as 

needed

∅

based on a slide by Nir Shavit and Maurice Herlihy



Solution
• PODC 1996, Simple, Fast, and Practical Non-

Blocking and Blocking Concurrent Queue 
Algorithms︎.

Maged Michael Michael Scott
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Say, you are not a 
concurrency expert…

• If problem is too difficult to be 
solved, change the problem: 

• i.e., solve a variant of the 
problem! 

• Variant:

• Concurrent puts 

• Sequential gets

Captain Kirk
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Actor Approach
thread

rx

list

channel

tx1

thread
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Actor Model
threadlist

PutRight(value1)

thread

PutLeft(value2)
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Actor Approach

• actor: is a thread 
• waiting for messages 
• depending on what message type arrives, we add/remove 

elements from the list (for which we use a rust vector)  
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(rust code)



Atomic Block?

• Implicit atomic block between recv & send? 
• On abort:

• no state change & send error message
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Implicit Atomic Block?

• PutLeft/PutRight: does not return a value 

• no possibility to indicate error!
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Observation 1
• No conflict detection needed

• Rust is a data race-free language 

• Simple all-or-nothing semantics is insufficient: 

• we need to have „all“ semantics! 

• On nothing: 

• there is no good alternative except to panic! 

• panic! propagates via channels. 
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Observation 2

• high likelihood that transparent retry will mask 

• transient hardware faults and  

• (certain) transient software bugs 
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Masking Transient Hardware 
Faults

• Transient hardware faults are expected to go up 

• with decreasing feature sizes 

• Safety critical systems (e.g., automotive): 

• need to detect transient HW faults (e.g., 99%), and  

• and to mask transient HW faults

re
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retry block (rb) rbrb rb

rollback
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retry



Observation 3

• Retry blocks:

• flexibility to choose the size 

• one needs to commit before externalizing state 

• Transient software bugs:  

• success of retry most likely proportional to transaction size

re
cv
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nd

se
nd

re
cv
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Detection: Lock Step Cores

• Lock-step cores:

• check that external behavior  
is the same 

• Problems: 

• cores are non-deterministic behavior 

• 100% cycle overhead 
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FaultTM

• Compare writesets instead of result of individual instructions
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Transactional Memory for Reliability 7

Fig. 3. Basic design of FaulTM [31].

Since there is no replication, the scheme has virtually no area/energy overheads
in the error-free execution. It has, however, limited error coverage since it cannot
detect silent data corruptions (SDC) and, further, exceptions can be raised after the
commit of the transaction. Both SymptomTM and [10] are build on top of a HTM
that features lazy conflict detection and lazy data versioning.

Some symptoms can be observed very efficiently (e.g., catching exceptions) and
symptom-based error detection can be easily combined with other error detection
mechanisms. Some other symptoms such as mispredictions in the high confidence
branches can also be used as symptoms of faults. However, they may cause false pos-
itive impact (i.e. a misprediction which are not due to a fault) unlike fatal traps, thus,
they are not convenient to be used for permanent fault detection. Similarly, those
symptoms (e.g., infinite loops due to a corruption of the stop condition) may re-
quire an instrumentation of the code or support by the operating system (e.g, adding
timeouts).

3.2 Redundancy Based Error Detection and Recovery with TM

FaulTM [31, 32] and Log-Based Redundant Architecture (LBRA) [25] propose uti-
lizing redundant transactions for error detection and leveraging the abort mechanism
of transactional memory for error recovery in order to provide high reliability for
mission-critical systems.

The FaulTM approach is built on top of a HTM that features lazy conflict detec-
tion and lazy data versioning (See figure 3.1 for the basic design of SymptomTM).
At the beginning of the execution, FaulTM creates a backup thread which executes

Yalcin, G., Unsal, O., Cristal, A.: FaulTM: Fault-Tolerance Using Hardware Transactional Memory. In: Design, Automation 
and Test in Europe DATE (2012)



Software Implemented Fault 
Tolerance (SWIFT)

• Approach:  

• use time redundancy instead of space redundancy 

• execute each instruction twice in sequence and check 
that results are the same 

• Notes: 

• tries to exploit instruction level parallelism of modern 
CPUs  

• Example: Haswell has 8x parallel execution ports 

[Reis, G.A. et al, „SWIFT: software implemented fault tolerance“,  CGO2005] 30



SWIFT Overhead
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Swift Issues
• Large window of vulnerability!

• time of check to time of use issues 

• Haswell: 192-entry reorder window 

• Persistent faults! 

• time redundancy: false negatives possible 

• Memory really a solved problem?

• what about memory overwrites? 
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AN Encoding
• AN code: all variables represented as multiples of some A 

• Advantages: 

• deals with non-determinism (like SWIFT) 

• but no problems with out of order processing 

• Disadvantages: 

• overhead 

• recovery from intermittent/persistent failures 

33Wamhoff, J.T.,et al: Transactional encoding for tolerating transient hardware errors. SSS ’13.



Delta Encoding

• Combination of AN-encoding and duplicate execution (similar to SWIFT) 

• High detection coverage for transient, intermittent and permanent faults 
(99.997%). 

• Acceptable slow down: 1xx %overhead
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34(currently under submission)
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Masking Hardware Faults

• Idea: (not yet implemented) 

• handle transient faults via retry 

• try to mask „persistent disagreements“ via SW 
retry 
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Questions
• Deterministic SW bugs:

• can they be handled in a similar way as 
persistent hardware bugs?  

• Deterministic SW bugs:  

• how to detect these?
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Observation 1’
• Objective: Horizontal Scalability

• any remote call can fail! 

• Objective: Robustness

• e.g., wrong arguments should never result in a panic! 

• use graceful degradation (i.e., drop request) and let client 
know 

• Problem: 

• most cases we will not be able to wrap request in a transaction. 
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Summary
• Approach: 

• masking transient failures using transactional memory 

• we do not need conflict detection from TM 

• depending on expected detection and masking coverage 

• will use different detection mechanisms 

• deal with „persistent disagreements“ using a SW retry 

• A few open problems left..
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