
 Using transactional
memory to build resilient

systems
Christof Fetzer

TU Dresden

1

Resilience?
• resilient computing:

• „refers to the ability to provide and maintain an
acceptable level of service in the face of faults
and challenges to normal operation“ [Laprie]

2

Motivation

• To decrease the cost of resilience, we are
interested in approaches that can deal with

• software bugs

• hardware faults

• operational issues

3

Failure Atomicity

• Can we use transactional memory to ensure failure
atomicity?

4

Failure Atomicity!
• A method m of class C is failure atomic iff m

guarantees that even in the face of failures:

• no resource leaks

• all invariants hold

• m either succeeds or state is unchanged 

5

70

Example
• HashMultiMap (downloaded from web):

class HashMultiMap {
 int nb_elements;
 Bucket[] b;
 // ...
 void add(Object k, Object v) {
 nb_elements++;
 b[k.hashCode()%b.length].
 append(new Pair(k, v));
 }
 int size() {
 return nb_elements;
 }
}

k is null

NullPointer
Exception

C. Fetzer, K.Högstedt, P. Felber, Automatic Detection and Masking of Non-Atomic
Exception Handling, IEEE Transactions on Software Engineering, 2004. 6

Inconsistency:
nb_elements incremented
but element not inserted

• We can try to fix the code:
void add(Object k, Object v) {
 if(k == null || v == null)
 throw new Exception(...);
 // Add element...
 nb_elements++;
}

Fixing Example

7

C. Fetzer, K.Högstedt, P. Felber, Automatic Detection and Masking of Non-Atomic
Exception Handling, IEEE Transactions on Software Engineering, 2004.

• We can try to fix the code:

• General approach:
• sort statements such that

1. execute statements that could throw exceptions
- they must not change state of data structure

2. perform state changes with no-throw functions

Fixing Example

8

void add(Object k, Object v) {
 if(k == null || v == null)
 throw new Exception(...);
 // Add element...
 nb_elements++;
}

Alternative
• Ensuring failure atomicity

manually could result in fragile
code

• Alternative: ensure failure
atomicity using transactional
memory

class HashMultiMap {
 int nb_elements;
 Bucket[] b;

 @failureAtomic
 void add(Object k, Object v) {
 nb_elements++;
 b[k.hashCode()%b.length].
 append(new Pair(k, v));
 }
 int size() {
 return nb_elements;
 }
}

9

add

„checkpoint“

nb_elements++

exception

rollback

rethrow

Problem 1
• Problem:

• exceptions might result in resource leaks & leaked
information

• My take:

• compiler should only permit to throw exception objects within
failure-atomic blocks that can be cloned.

10

add
„checkpoint“

nb_elements++

exception

rollback

rethrow
clone

Composable Error Recovery with Transactional Memory (Torvald Riegel, Pascal Felber, Christof Fetzer), In Bulletin of the European
Association for Theoretical Computer Science (BEATCS), volume 99, 2009.

Problem 2
• Problem:

• atomic block can only
roll-back internal state

• My take:

• compiler should flag/
prevent external state
changes in failure-atomic
blocks.

11

class HashMultiMap {
 int nb_elements;
 Bucket[] b;

 @failureAtomic
 void add(Object k, Object v) {
 nb_elements++;
 tcp.send();
 b[k.hashCode()%b.length].
 append(new Pair(k, v));
 }
 int size() {
 return nb_elements;
 }
}

Composable Error Recovery with Transactional Memory (Torvald Riegel, Pascal Felber, Christof Fetzer), In Bulletin of the European
Association for Theoretical Computer Science (BEATCS), volume 99, 2009.

Problem 3
• Problem:

• difficult to get such extensions into C / C++.

• Question:

• does it makes sense to add atomic and failure-
atomic blocks in a still evolving language (like
Rust from Mozilla)?

12

13

Sadistic Homework

putLeft
(x)

putRight
(y)

Double-ended queue

No interference if
ends “far enough”

apart

based on a slide by Nir Shavit and Maurice Herlihy

14

Sadistic Homework

putLeft
(x)

putRight
(y)

Double-ended queue

Interference OK if
ends “close enough”

together

based on a slide by Nir Shavit and Maurice Herlihy

15

Sadistic Homework

getLeft
()

getRight
()

Double-ended queue

Make sure suspended
dequeuers awake as

needed

∅

based on a slide by Nir Shavit and Maurice Herlihy

Solution
• PODC 1996, Simple, Fast, and Practical Non-

Blocking and Blocking Concurrent Queue
Algorithms︎.

Maged Michael Michael Scott
16

Say, you are not a
concurrency expert…

• If problem is too difficult to be
solved, change the problem:

• i.e., solve a variant of the
problem!

• Variant:

• Concurrent puts

• Sequential gets

Captain Kirk
17

Actor Approach
thread

rx

list

channel

tx1

thread
18

thread

tx2

Actor Model
threadlist

PutRight(value1)

thread

PutLeft(value2)

19

rx

tx1 tx2

thread

Actor Approach

• actor: is a thread
• waiting for messages
• depending on what message type arrives, we add/remove

elements from the list (for which we use a rust vector)
20

(rust code)

Atomic Block?

• Implicit atomic block between recv & send?
• On abort:

• no state change & send error message
21

Implicit Atomic Block?

• PutLeft/PutRight: does not return a value

• no possibility to indicate error!
22

Observation 1
• No conflict detection needed

• Rust is a data race-free language

• Simple all-or-nothing semantics is insufficient:

• we need to have „all“ semantics!

• On nothing:

• there is no good alternative except to panic!

• panic! propagates via channels.

23

Observation 2

• high likelihood that transparent retry will mask

• transient hardware faults and

• (certain) transient software bugs

24

Masking Transient Hardware
Faults

• Transient hardware faults are expected to go up

• with decreasing feature sizes

• Safety critical systems (e.g., automotive):

• need to detect transient HW faults (e.g., 99%), and

• and to mask transient HW faults

re
cv

se
nd

se
nd

re
cv

retry block (rb) rbrb rb

rollback

25

retry

Observation 3

• Retry blocks:

• flexibility to choose the size

• one needs to commit before externalizing state

• Transient software bugs:

• success of retry most likely proportional to transaction size

re
cv

se
nd

se
nd

re
cv

26

rb rb rb rb rb rb rb rb rb rb
rollback

Detection: Lock Step Cores

• Lock-step cores:

• check that external behavior  
is the same

• Problems:

• cores are non-deterministic behavior

• 100% cycle overhead

core

checker
core

bu
ffe

r

data

address

compare

ok/error

data

address

27

Lock Step Cores
%

 C
PU

 c
yc

le
s

av
ai

lb
le

0

25

50

75

100

% of resilient code

0 25 50 75 100

no protection lock step

28

FaultTM

• Compare writesets instead of result of individual instructions

29

Transactional Memory for Reliability 7

Fig. 3. Basic design of FaulTM [31].

Since there is no replication, the scheme has virtually no area/energy overheads
in the error-free execution. It has, however, limited error coverage since it cannot
detect silent data corruptions (SDC) and, further, exceptions can be raised after the
commit of the transaction. Both SymptomTM and [10] are build on top of a HTM
that features lazy conflict detection and lazy data versioning.

Some symptoms can be observed very efficiently (e.g., catching exceptions) and
symptom-based error detection can be easily combined with other error detection
mechanisms. Some other symptoms such as mispredictions in the high confidence
branches can also be used as symptoms of faults. However, they may cause false pos-
itive impact (i.e. a misprediction which are not due to a fault) unlike fatal traps, thus,
they are not convenient to be used for permanent fault detection. Similarly, those
symptoms (e.g., infinite loops due to a corruption of the stop condition) may re-
quire an instrumentation of the code or support by the operating system (e.g, adding
timeouts).

3.2 Redundancy Based Error Detection and Recovery with TM

FaulTM [31, 32] and Log-Based Redundant Architecture (LBRA) [25] propose uti-
lizing redundant transactions for error detection and leveraging the abort mechanism
of transactional memory for error recovery in order to provide high reliability for
mission-critical systems.

The FaulTM approach is built on top of a HTM that features lazy conflict detec-
tion and lazy data versioning (See figure 3.1 for the basic design of SymptomTM).
At the beginning of the execution, FaulTM creates a backup thread which executes

Yalcin, G., Unsal, O., Cristal, A.: FaulTM: Fault-Tolerance Using Hardware Transactional Memory. In: Design, Automation
and Test in Europe DATE (2012)

Software Implemented Fault
Tolerance (SWIFT)

• Approach:

• use time redundancy instead of space redundancy

• execute each instruction twice in sequence and check
that results are the same

• Notes:

• tries to exploit instruction level parallelism of modern
CPUs

• Example: Haswell has 8x parallel execution ports

[Reis, G.A. et al, „SWIFT: software implemented fault tolerance“, CGO2005] 30

SWIFT Overhead

(40% overhead)

%
 C

PU
 c

yc
le

s
av

ai
lb

le

0

25

50

75

100

% of resilient code

0 25 50 75 100

no protection lock step SWIFT

31

Swift Issues
• Large window of vulnerability!

• time of check to time of use issues

• Haswell: 192-entry reorder window

• Persistent faults!

• time redundancy: false negatives possible

• Memory really a solved problem?

• what about memory overwrites?

32

AN Encoding
• AN code: all variables represented as multiples of some A

• Advantages:

• deals with non-determinism (like SWIFT)

• but no problems with out of order processing

• Disadvantages:

• overhead

• recovery from intermittent/persistent failures

33Wamhoff, J.T.,et al: Transactional encoding for tolerating transient hardware errors. SSS ’13.

Delta Encoding

• Combination of AN-encoding and duplicate execution (similar to SWIFT)

• High detection coverage for transient, intermittent and permanent faults
(99.997%).

• Acceptable slow down: 1xx %overhead

original program

Δ­encoded program

duplicate &
AN­encode

accu accu check

CPU RAM

crash

original execution

A1­encoded execution

A2­encoded execution

abort

same
thread

34(currently under submission)

Delta-Encoding
%

 C
PU

 c
yc

le
s

av
ai

lb
le

0

25

50

75

100

% of resilient code

0 25 50 75 100

no protection lock step SWIFT Delta-Encoding

(120% overhead)(40% overhead)

35

Masking Hardware Faults

• Idea: (not yet implemented)

• handle transient faults via retry

• try to mask „persistent disagreements“ via SW
retry

retry block
ab

or
t

de
te

ct
ed

retry block

de
te

ct
ed

sw retry

tx tx alternative
code path

ab
or

t

36

Questions
• Deterministic SW bugs:

• can they be handled in a similar way as
persistent hardware bugs?

• Deterministic SW bugs:

• how to detect these?

37

Observation 1’
• Objective: Horizontal Scalability

• any remote call can fail!

• Objective: Robustness

• e.g., wrong arguments should never result in a panic!

• use graceful degradation (i.e., drop request) and let client
know

• Problem:

• most cases we will not be able to wrap request in a transaction.

38

Summary
• Approach:

• masking transient failures using transactional memory

• we do not need conflict detection from TM

• depending on expected detection and masking coverage

• will use different detection mechanisms

• deal with „persistent disagreements“ using a SW retry

• A few open problems left..

39

References
• Fetzer, C., Felber, P.: Transactional memory for dependable embedded systems. In: 7th Workshop on

Hot Topics in System Dependability (HotDep). pp. 223–227. IEEE (2011)

• Riegel, T., Felber, P., Fetzer, C.: Composable error recovery with transactional memory. Bulletin of the
European Association for Theoretical Computer Science (BEATCS) 99, (2009)

• Wamhoff, J.T., Schwalbe, M., Faqeh, R., Fetzer, C., Felber, P.: Transactional encoding for tolerating
transient hardware errors. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M.,
Yamashita, M. (eds.) Stabilization, Safety, and Security of Distributed Systems: 15th International
Symposium, SSS ’13, vol. 8255, pp. 1–16. Springer International Publishing (November 2013)

• Yalcin, G., Unsal, O., Cristal, A.: FaulTM: Fault-Tolerance Using Hardware Transactional Memory. In:
Design, Automation and Test in Europe DATE (2012)

• Yalcin, G., Unsal, O., Cristal, A.: Fault Tolerance for Multi-Threaded Applications by Leveraging
Hardware Transactional Memory. In: International Conference on Comput- ing Frontiers (2013)

• Yalcin, G., Unsal, O., Cristal, A., Hur, I., Valero, M.: FaulTM: Fault-Tolerance Using Hardware
Transactional Memory. In: Workshop on Parallel Execution of Sequential Pro- grams on Multi-Core
Architecture PESPMA (2010)

• Gulay Yalcin and Osman S. Unsal, Transactional Memory for Reliability, .

Pictures

• https://philosophadam.wordpress.com/2014/10/01/
finding-the-calm-within-the-storm-shame-resilience-
in-practice/

• http://trekcore.com/specials/rare/Massive_Kirk.jpg

