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OmpSs and Nanos 

• OmpSs– Task based programming model (OpenMP derivative) 

• Task - Once started can execute to completion independent of other tasks 

• Programmer supplies directionality annotations on tasks arguments 

• Nanos – Runtime supporting OmpSs 

• Dataflow-based  - if a task is “ready”, it will be scheduled to a processing element 

• Constructs dataflow graph dynamically from task dependencies 
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Our Fault Model From Hardware Failure Taxonomy (by Symptom) 

• Undetected 

• Benign (masked faults) 

• Silent Data Corruption  

• Hardware Detected 

• Hardware Corrected  

• Hardware Uncorrected 

• Detected Uncorrected Error (DUE) 
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Potential and Advantages of OmpSs and Nanos for resilience 

• All task inputs and outputs known 

• It is relatively easy and efficient to checkpoint the inouts of tasks 

• facilitates recovery 

• It is relatively easy to replicate tasks and to check the outputs of 

the replicated tasks  

• facilitates fault detection 

• Nanos tasks executed asynchronously and parallel 

• Inherently easy to implement asynchronous and parallel fault 

tolerance features 

• Tasks deferred only because of  their dependencies 

• Any redundancy (checkpointing, reissuing) defers only part of 

execution dependent on it 

• Thus, more efficient than mechanisms subject to fork/join 

parallelism and than synchronous approaches 
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Advantages of OmpSs and Nanos for resilience (Cont.) 

• Efficient incremental checkpointing schemes easily employed  

• since we only need to checkpoint the inputs of a task   

 

• All dependencies among tasks are known, which  

• facilitates the development of runtime heuristics which can 

determine which tasks are more reliability-critical 

• facilitates partial redundancy 

• Both programmer specified & automated and adaptive 

 

• The only state that propagates out of the task is through the outputs 

and inouts: 

• straightforward to limit error propagation, and to determine the source 
of an error 
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Checkpoint Restart Implementation 
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Task instance 

Inputs, inouts, outputs 
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Inputs, inouts, outputs 

Checkpoint inputs, inouts 

Regular version 
 
-Satisfy dependences and wait 
for resources availability 
- Run* 

Checkpoint Restart version 
 
- Satisfy dependences and wait for resources  
  availability 
- Checkpoint inputs, inouts to checkpoint structure 
- do { 
         if(fail) Restore checkpoint structure 
         Run*; 
  } while (Non-deterministic fail) 

*Instance of task is run in parallel within the rest of the task instances  
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Experimental Setup and Benchmarks 

• Experiments run in MareNostrum III (Sandy Bridge) 

• Benchmarks 

• Cholesky 

• Matrix size 16384x16384 and block size 

512x512 

• Sparse LU 

• Matrix size 6400x6400, block size 100x100 

• Fast Fourier Transform 

• Array size 16384x16384, block size 128 
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Checkpoint Restart: Cholesky Scalability 
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Checkpoint Restart Implementation: Singleton backups 

Program 
 statements 
   ….. 
 pragma 
    ….. 
 statements 

Checkpoint Restart version 
 

- Satisfied dependences and wait  
  for resources availability 
- Checkpoint inputs, inouts  
  to checkpoint structure 
- do { 
         if(fail) Restore checkpoint structure 
         Run* 
  } while (Non-deterministic fail) 
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CR version and singleton backups 
-Satisfy dependences and wait for resources  
  availability 
-Checkpoint inputs, inouts  
  using the concurrent backup handler 
-do { 
     if(fail) Restore checkpoint using the handler 
     Run* 
  } while (Non-deterministic fail) 
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Handler 

Smart 
Container 

 

Insert 

Retrieve 

*Instance of task is run in parallel within the rest of the task instances 

• Concurrent HashMap 
• Single Copies 
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Singleton Mechanism Results 

SparseLU  Cholesky FFT 
Gain in X in 

memory usage 
31x 32x 2x 

SparseLU  Cholesky FFT 

Checkpoint/Restart: 

Checkpoint 

Overhead to Fault-

free Exe.Time 

2% 6% 9% 

Singleton: 

Checkpoint 

Overhead to Fault-

free Exe.Time 

0.2% 1% 7% 
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Task Redundancy: Current Implementation 
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Task instance 
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Regular version 
 

-Satisfy dependences and wait for  
 resources availability 
- Run* 

*Instance of task is run in parallel within the rest of the task instances  
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TR version 
 

- Satisfy dependences and wait for resources  
  availability 
- Checkpoint inputs, inouts  
  using the concurrent backup handler 
- Run* and Run parallel duplicated-run; 
- If(different results)  
     Restore checkpoint using the handler 
     Rerun one instance 
} 
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Task Redundancy: SparseLU Scalability 
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Partial Redundancy 

• Partial task replication in Nanos Runtime 

•  Automated replication 

•  User-specified replication 

•  Comparison to random task selection 
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Automated Partial Redundancy 

• Simple Runtime Heuristic: 

• Only replicate reliability-critical tasks 

• Select t for replication if risk(t) > global task risk 

• Global task risk = 0.7*global task risk + 0.3*risk(t) 

• risk(t) = (i + o)^2 + s 

• i: # inputs of the task t 

• o: # outputs of the task t 

• s: # successors of the task t 
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Rationale for Risk Definition 

 

• To capture the memory space used by the tasks 

as well as dependency among tasks 

• Number of inputs/outputs is good hint for memory 

space usage 

• The more a task has successors, the more the 

severe effect of not protecting the task in terms of 

error propagation to the successors 
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User-specified Selective Task Replication 

• User specifies which tasks to protect for runtime 

• FTT (early tasks) 

• As being a iterative refinement algorithm, early 

stages likely to be more reliability-critical 

• Cholesky (diagonal tasks) 

• As these blocks are utilized during all subsequent 

phases of the algorithm, directly or indirectly 

• SparseLU (no clear distinction between tasks but can 

protect early tasks processing diagonal elements) 
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Selective Task Replication Results: FFT 
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Selective Task Replication Results: Cholesky 



24 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013 

Conclusions 

• OmpSs and Nanos can be leveraged to develop 

efficient fault-tolerance mechanisms 

• Current results seem promising 

• Scalable 

• Low overhead for checkpointing 

• Parallel and asynchronous 


