Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

everaging a Task-based Asynchronous
Dataflow Substrate for Efficient and

Scalable Resiliency

Omer Subasi, Javier Arias, Jesus Labarta,
Osman Unsal and Adrian Cristal

Barcelona Supercomputing Center

® Background

® OmpSs and Nanos

® Target fault models
® Advantage of our substrate for resilience
® Our proposed solutions

® Checkpoint restart (detected uncorrected errors
(DUE))

® Task redundancy (silent data corruption (SDC +
DUE))

® Partial redundancy (SDC + DUE)

: ’3516 s? o Wi
e | ¥ |

- — =S 8 = g
LT e pem e

gy @ gmr——ree
T /U141 \ it e

® OmpSs- Task based programming model (OpenMP derivative)

® Task - Once started can execute to completion independent of other tasks

® Programmer supplies directionality annotations on tasks arguments

® Nanos — Runtime supporting OmpSs

® Dataflow-based - if a task is “ready”, it will be scheduled to a processing element

® Constructs dataflow graph dynamically from task dependencies

Dependency graph

e | e
@/)
_ _Lf _

<

®/
Svadst

A _._._._._._._._.“sk._
N\

™,

. = — \;_ HH”""\
lr’"\.’ | _ Task pool
I_a\ S T g * Ty S - __;:.f" of e ..
E @ ‘ e - "

Scheduling queue

“_\-_\-_
-
—

® Undetected

® Benign (masked faults)

® Silent Data Corruption
® Hardware Detected

® Hardware Corrected
® Hardware Uncorrected
® Detected Uncorrected Error (DUE)

® Background

® OmpSs and Nanos

® Target fault models
® Advantage of our substrate for resilience
® Our proposed solutions

® Checkpoint restart (detected uncorrected errors
(DUE))

® Task redundancy (silent data corruption (SDC +
DUE))

® Partial redundancy (SDC + DUE)

® All task inputs and outputs known

® 1t is relatively easy and efficient to checkpoint the inouts of tasks

® facilitates recovery

® It is relatively easy to replicate tasks and to check the outputs of
the replicated tasks

® facilitates fault detection
® Nanos tasks executed asynchronously and parallel

® Inherently easy to implement asynchronous and parallel fault
tolerance features

® Tasks deferred only because of their dependencies

® Any redundancy (checkpointing, reissuing) defers only part of
execution dependent on it

® Thus, more efficient than mechanisms subject to fork/join
parallelism and than synchronous approaches

® Efficient incremental checkpointing schemes easily employed

® since we only need to checkpoint the inputs of a task

® All dependencies among tasks are known, which

® facilitates the development of runtime heuristics which can
determine which tasks are more reliability-critical

® facilitates partial redundancy

® Both programmer specified & automated and adaptive

® The only state that propagates out of the task is through the outputs
and inouts:

® straightforward to limit error propagation, and to determine the source
of an error

® Background

® OmpSs and Nanos

® Target fault models
® Advantage of our substrate for resilience
® Our proposed solutions

® Checkpoint restart (detected uncorrected errors
(DUE))

® Task redundancy (silent data corruption (SDC +
DUE))

® Partial redundancy (SDC + DUE)

: ’?-C.‘s' ‘3:3 3
b hdudish iy

V V ‘A ..I l ;

>) iy ";{i : siﬂe_a:ruen
% : ‘v ‘ ‘4‘ "’"‘_ — -‘-—LP‘\. L

L Sl Y| Y] Hemmet O

P Regular version Checkpoint Restart version
pragrra -Satisfy dependences and wait - Satisfy dependences and wait for resources
statements for resources availability availability
- Run* - Checkpoint inputs, inouts to checkpoint structure
-do {
if(fail) Restore checkpoint structure
Run*;

} while (Non-deterministic fail)

/ Task instance \
Inputs, inouts, outputs

~

Execution

’
v
’
’

Task instance

Inputs, inouts, outputs

c
o
=
>
0
x
Ll

CheCpr|nt |npUt81 InOUtS Restore

statements statements

Execution

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
N

*Instance of task is run in parallel within the rest of the task instances

® Benchmarks
® Cholesky

® Matrix size 16384x16384 and block size
512x512

® Sparse LU

® Matrix size 6400x6400, block size 100x100
® Fast Fourier Transform

® Array size 16384x16384, block size 128

Time (seconds)

300

Scalability of Checkoint Restart

Cholesky Benchmark

250

200

150 -

100 -

50 -

4

Threads

16

| Original

B REae =0%
FRale =5%

mRate=10%

W Rate =20%

~ Rate = 40%

Checkpoint Restart version CR version and singleton backups

et _ satisfied dependences and wait -Sat|§fy q?pendences and wait for resources
availability

preeT2 for resources availability Checkpoint inputs, inouts

sy - Checkpoint inputs, inouts ,
P . P using the concurrent backup handler
to checkpoint structure

-do {
- do { e . .
if(fail) Restore checkpoint structure :Lfs!) Restore checkpoint using the handler
Run*

} while (Non-deterministic fail) } while (Non-deterministic fail)

Handler

Insert

Smart
Container

' / Task instance \

Execution
Execution

Inputs, inouts, outputs

Retrieve

Restore

C
0
)

)

O

()]

x
L

Checkpoint inputs, inouts

statements

e Concurrent HashMap
* Single Copies

Execution

*Instance of task is run in parallel within the rest of the task instances

| sparselU] Cholesky

Checkpoint/Restart: 20/, 6% 004
Checkpoint

Overhead to Fault-
free Exe.Time

Singleton: 0.2% 1% 7%
Checkpoint

Overhead to Fault-
free Exe.Time

_ SparseLy Cholesky _

Gain in X In
memory usage

® Background

® OmpSs and Nanos

® Target fault models
® Advantage of our substrate for resilience
® Our proposed solutions

® Checkpoint restart (detected uncorrected errors
(DUE))

® Task redundancy (silent data corruption (SDC +
DUE))

® Partial redundancy (SDC + DUE)

: é 51;' 33 3
P i bl ol

* _'\ ’
I Ly

q mmmpe e m—
' ‘ P T T

- P e
| T : |_

Regular version TR version
Program c c
e -Satisfy dependences and wait for - Satisfy dependences and wait for resources '% '%
r resources availability availability o =
AP - Run* - Checkpoint inputs, inouts i i

using the concurrent backup handler
- Run* and Run parallel duplicated-run; Restore
- If(different results)
Restore checkpoint using the handler
Rerun one instance

Execution

[S——

Execution

/ Task instance \
Inputs, inouts, outputs

statements

/ Task instance \ / Task instance \

Inputs, inouts, outputs Inputs, inouts, outputs
Checkpoint inputs, inouts Checkpoint inputs, inouts

Statements statements

o RN

*Instance of task is run in parallel within the rest of the task instances

Scalability of Task Replication

SparselLld Benchmark

160
140 o
150 W Original
— W FEate =5%
- 100 -
c Rate = 10%
o 80
@ ® Rate = 20%
o
= 60 B Rate = 40%
E 40

20 -

Threads

® Background

® OmpSs and Nanos

® Target fault models
® Advantage of our substrate for resilience
® Our proposed solutions

® Checkpoint restart (detected uncorrected errors
(DUE))

® Task redundancy (silent data corruption (SDC +
DUE))

® Partial redundancy (SDC + DUE)

® Partial task replication in Nanos Runtime

® Automated replication
® User-specified replication

® Comparison to random task selection

® Simple Runtime Heuristic:

® Only replicate reliability-critical tasks
® Select t for replication if risk(t) > global task risk
® Global task risk = 0.7*global task risk + 0.3*risk(t)

® risk(t) = (i + 0)"2 + s

® i: #inputs of the task t

® o: # outputs of the task t

® s:# successors of the task t

® To capture the memory space used by the tasks
as well as dependency among tasks

® Number of inputs/outputs is good hint for memory
space usage

® The more a task has successors, the more the
severe effect of not protecting the task in terms of
error propagation to the successors

User-specified Selective Task Replication

® User specifies which tasks to protect for runtime
® FTT (early tasks)

® As being a iterative refinement algorithm, early
stages likely to be more reliability-critical

® Cholesky (diagonal tasks)

® As these blocks are utilized during all subsequent
phases of the algorithm, directly or indirectly

® SparselLU (no clear distinction between tasks but can
protect early tasks processing diagonal elements)

Random Task Selection vs. Our Heuristic vs. User
FFT

0.009
0.008

0.007
0.006 il ' 2N COM Selection

0.005 willes | SEr-Specified
0.004 wedees OLT HeEUTSTIC
0.003
0.002
0.001
0 '

0% 20% 40% 60% 80% 100%

Percentage of Task Selection

Percentage of Number of Incorrect Entries in Output

Percentage of Number of Incorrect Entries in Output

[
-

=
Ll

=
o

Random Task Selection vs. Our Heuristic vs. User
Cholesky

0%

20%

40% 60%

Percentage of Task Selection

80%

100%

i = 2N COM Selection
il | 5EM-Specified
e QLI HeUrstic

® OmpSs and Nanos can be leveraged to develop
efficient fault-tolerance mechanisms

® Current results seem promising

® Scalable
® Low overhead for checkpointing
® Parallel and asynchronous

