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® Background

® OmpSs and Nanos

® Target fault models
® Advantage of our substrate for resilience
® Our proposed solutions

® Checkpoint restart (detected uncorrected errors
(DUE) )

® Task redundancy (silent data corruption (SDC +
DUE))

® Partial redundancy (SDC + DUE)
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® OmpSs- Task based programming model (OpenMP derivative)

® Task - Once started can execute to completion independent of other tasks

® Programmer supplies directionality annotations on tasks arguments

® Nanos — Runtime supporting OmpSs

® Dataflow-based - if a task is “ready”, it will be scheduled to a processing element

® Constructs dataflow graph dynamically from task dependencies

Dependency graph
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® Undetected

® Benign (masked faults)

® Silent Data Corruption
® Hardware Detected

® Hardware Corrected
® Hardware Uncorrected
® Detected Uncorrected Error (DUE)
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® All task inputs and outputs known

® 1t is relatively easy and efficient to checkpoint the inouts of tasks

® facilitates recovery

® It is relatively easy to replicate tasks and to check the outputs of
the replicated tasks

® facilitates fault detection
® Nanos tasks executed asynchronously and parallel

® Inherently easy to implement asynchronous and parallel fault
tolerance features

® Tasks deferred only because of their dependencies

® Any redundancy (checkpointing, reissuing) defers only part of
execution dependent on it

® Thus, more efficient than mechanisms subject to fork/join
parallelism and than synchronous approaches



® Efficient incremental checkpointing schemes easily employed

® since we only need to checkpoint the inputs of a task

® All dependencies among tasks are known, which

® facilitates the development of runtime heuristics which can
determine which tasks are more reliability-critical

® facilitates partial redundancy

® Both programmer specified & automated and adaptive

® The only state that propagates out of the task is through the outputs
and inouts:

® straightforward to limit error propagation, and to determine the source
of an error
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P Regular version Checkpoint Restart version
pragrra -Satisfy dependences and wait - Satisfy dependences and wait for resources
statements for resources availability availability
- Run* - Checkpoint inputs, inouts to checkpoint structure
-do {
if(fail) Restore checkpoint structure
Run*;

} while (Non-deterministic fail)
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*Instance of task is run in parallel within the rest of the task instances



® Benchmarks
® Cholesky

® Matrix size 16384x16384 and block size
512x512

® Sparse LU

® Matrix size 6400x6400, block size 100x100
® Fast Fourier Transform

® Array size 16384x16384, block size 128
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Checkpoint Restart version CR version and singleton backups

et _ satisfied dependences and wait -Sat|§fy q?pendences and wait for resources
availability

preeT2 for resources availability Checkpoint inputs, inouts

sy - Checkpoint inputs, inouts ,
P . P using the concurrent backup handler
to checkpoint structure

-do {
- do { e . .
if(fail) Restore checkpoint structure :Lfs!) Restore checkpoint using the handler
Run*

} while (Non-deterministic fail) } while (Non-deterministic fail)

Handler
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Checkpoint inputs, inouts

statements

e Concurrent HashMap
* Single Copies

Execution

*Instance of task is run in parallel within the rest of the task instances
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Regular version TR version
Program c c
e -Satisfy dependences and wait for - Satisfy dependences and wait for resources '% '%
r resources availability availability o =
AP - Run* - Checkpoint inputs, inouts i i

using the concurrent backup handler
- Run* and Run parallel duplicated-run; Restore
- If(different results)
Restore checkpoint using the handler
Rerun one instance

Execution
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*Instance of task is run in parallel within the rest of the task instances




Scalability of Task Replication
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® Partial task replication in Nanos Runtime

® Automated replication
® User-specified replication

® Comparison to random task selection



® Simple Runtime Heuristic:

® Only replicate reliability-critical tasks
® Select t for replication if risk(t) > global task risk
® Global task risk = 0.7*global task risk + 0.3*risk(t)

® risk(t) = (i + 0)"2 + s

® i: #inputs of the task t

® o: # outputs of the task t

® s:# successors of the task t




® To capture the memory space used by the tasks
as well as dependency among tasks

® Number of inputs/outputs is good hint for memory
space usage

® The more a task has successors, the more the
severe effect of not protecting the task in terms of
error propagation to the successors



User-specified Selective Task Replication

® User specifies which tasks to protect for runtime
® FTT (early tasks)

® As being a iterative refinement algorithm, early
stages likely to be more reliability-critical

® Cholesky (diagonal tasks)

® As these blocks are utilized during all subsequent
phases of the algorithm, directly or indirectly

® SparselLU (no clear distinction between tasks but can
protect early tasks processing diagonal elements)



Random Task Selection vs. Our Heuristic vs. User
FFT
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Random Task Selection vs. Our Heuristic vs. User
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® OmpSs and Nanos can be leveraged to develop
efficient fault-tolerance mechanisms

® Current results seem promising

® Scalable
® Low overhead for checkpointing
® Parallel and asynchronous



