

Leveraging a Task-based Asynchronous

Dataflow Substrate for Efficient and

Scalable Resiliency
Omer Subasi, Javier Arias, Jesus Labarta,

Osman Unsal and Adrian Cristal

Barcelona Supercomputing Center

2 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Outline

• Background

• OmpSs and Nanos

• Target fault models

• Advantage of our substrate for resilience

• Our proposed solutions

• Checkpoint restart (detected uncorrected errors

(DUE))

• Task redundancy (silent data corruption (SDC +

DUE))

• Partial redundancy (SDC + DUE)

3 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

OmpSs and Nanos

• OmpSs– Task based programming model (OpenMP derivative)

• Task - Once started can execute to completion independent of other tasks

• Programmer supplies directionality annotations on tasks arguments

• Nanos – Runtime supporting OmpSs

• Dataflow-based - if a task is “ready”, it will be scheduled to a processing element

• Constructs dataflow graph dynamically from task dependencies

4 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Our Fault Model From Hardware Failure Taxonomy (by Symptom)

• Undetected

• Benign (masked faults)

• Silent Data Corruption

• Hardware Detected

• Hardware Corrected

• Hardware Uncorrected

• Detected Uncorrected Error (DUE)

5 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Outline

• Background

• OmpSs and Nanos

• Target fault models

• Advantage of our substrate for resilience

• Our proposed solutions

• Checkpoint restart (detected uncorrected errors

(DUE))

• Task redundancy (silent data corruption (SDC +

DUE))

• Partial redundancy (SDC + DUE)

6 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Potential and Advantages of OmpSs and Nanos for resilience

• All task inputs and outputs known

• It is relatively easy and efficient to checkpoint the inouts of tasks

• facilitates recovery

• It is relatively easy to replicate tasks and to check the outputs of

the replicated tasks

• facilitates fault detection

• Nanos tasks executed asynchronously and parallel

• Inherently easy to implement asynchronous and parallel fault

tolerance features

• Tasks deferred only because of their dependencies

• Any redundancy (checkpointing, reissuing) defers only part of

execution dependent on it

• Thus, more efficient than mechanisms subject to fork/join

parallelism and than synchronous approaches

7 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Advantages of OmpSs and Nanos for resilience (Cont.)

• Efficient incremental checkpointing schemes easily employed

• since we only need to checkpoint the inputs of a task

• All dependencies among tasks are known, which

• facilitates the development of runtime heuristics which can

determine which tasks are more reliability-critical

• facilitates partial redundancy

• Both programmer specified & automated and adaptive

• The only state that propagates out of the task is through the outputs

and inouts:

• straightforward to limit error propagation, and to determine the source
of an error

8 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Outline

• Background

• OmpSs and Nanos

• Target fault models

• Advantage of our substrate for resilience

• Our proposed solutions

• Checkpoint restart (detected uncorrected errors

(DUE))

• Task redundancy (silent data corruption (SDC +

DUE))

• Partial redundancy (SDC + DUE)

9 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Checkpoint Restart Implementation

Program
 statements
 …..
 pragma
 …..
 statements

Task instance

Inputs, inouts, outputs

statements

…………….

…………….

…………….

Task instance

statements

……………….

……………….

……………….

Inputs, inouts, outputs

Checkpoint inputs, inouts

Regular version

-Satisfy dependences and wait
for resources availability
- Run*

Checkpoint Restart version

- Satisfy dependences and wait for resources
 availability
- Checkpoint inputs, inouts to checkpoint structure
- do {
 if(fail) Restore checkpoint structure
 Run*;
 } while (Non-deterministic fail)

*Instance of task is run in parallel within the rest of the task instances

Ex
ec

u
ti

o
n

Ex
ec

u
ti

o
n

Ex

ec
u

ti
o

n

backup

Restore

10 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Experimental Setup and Benchmarks

• Experiments run in MareNostrum III (Sandy Bridge)

• Benchmarks

• Cholesky

• Matrix size 16384x16384 and block size

512x512

• Sparse LU

• Matrix size 6400x6400, block size 100x100

• Fast Fourier Transform

• Array size 16384x16384, block size 128

11 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Checkpoint Restart: Cholesky Scalability

12 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Checkpoint Restart Implementation: Singleton backups

Program
 statements
 …..
 pragma
 …..
 statements

Checkpoint Restart version

- Satisfied dependences and wait
 for resources availability
- Checkpoint inputs, inouts
 to checkpoint structure
- do {
 if(fail) Restore checkpoint structure
 Run*
 } while (Non-deterministic fail)

Ex
ec

u
ti

o
n

Ex

ec
u

ti
o

n

backup

Restore

CR version and singleton backups
-Satisfy dependences and wait for resources
 availability
-Checkpoint inputs, inouts
 using the concurrent backup handler
-do {
 if(fail) Restore checkpoint using the handler
 Run*
 } while (Non-deterministic fail)

Task instance

statements

……………….

……………….

……………….

Inputs, inouts, outputs

Checkpoint inputs, inouts

Ex
ec

u
ti

o
n

Ex

ec
u

ti
o

n

Handler

Handler

Smart
Container

Insert

Retrieve

*Instance of task is run in parallel within the rest of the task instances

• Concurrent HashMap
• Single Copies

13 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Singleton Mechanism Results

SparseLU Cholesky FFT
Gain in X in

memory usage
31x 32x 2x

SparseLU Cholesky FFT

Checkpoint/Restart:

Checkpoint

Overhead to Fault-

free Exe.Time

2% 6% 9%

Singleton:

Checkpoint

Overhead to Fault-

free Exe.Time

0.2% 1% 7%

14 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Outline

• Background

• OmpSs and Nanos

• Target fault models

• Advantage of our substrate for resilience

• Our proposed solutions

• Checkpoint restart (detected uncorrected errors

(DUE))

• Task redundancy (silent data corruption (SDC +

DUE))

• Partial redundancy (SDC + DUE)

15 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Task Redundancy: Current Implementation

Program
 statements
 …..
 pragma
 …..
 statements

Task instance

Inputs, inouts, outputs

statements

…………….

…………….

…………….

Regular version

-Satisfy dependences and wait for
 resources availability
- Run*

*Instance of task is run in parallel within the rest of the task instances

Ex
ec

u
ti

o
n

TR version

- Satisfy dependences and wait for resources
 availability
- Checkpoint inputs, inouts
 using the concurrent backup handler
- Run* and Run parallel duplicated-run;
- If(different results)
 Restore checkpoint using the handler
 Rerun one instance
}

Task instance

statements

……………….

……………….

……………….

Inputs, inouts, outputs

Checkpoint inputs, inouts

Task instance

statements

……………….

……………….

……………….

Inputs, inouts, outputs

Checkpoint inputs, inouts

Ex
ec

u
ti

o
n

Ex
ec

u
ti

o
n

backup

Restore

Ex
ec

u
ti

o
n

16 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Task Redundancy: SparseLU Scalability

17 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Outline

• Background

• OmpSs and Nanos

• Target fault models

• Advantage of our substrate for resilience

• Our proposed solutions

• Checkpoint restart (detected uncorrected errors

(DUE))

• Task redundancy (silent data corruption (SDC +

DUE))

• Partial redundancy (SDC + DUE)

18 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Partial Redundancy

• Partial task replication in Nanos Runtime

• Automated replication

• User-specified replication

• Comparison to random task selection

19 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Automated Partial Redundancy

• Simple Runtime Heuristic:

• Only replicate reliability-critical tasks

• Select t for replication if risk(t) > global task risk

• Global task risk = 0.7*global task risk + 0.3*risk(t)

• risk(t) = (i + o)^2 + s

• i: # inputs of the task t

• o: # outputs of the task t

• s: # successors of the task t

20 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Rationale for Risk Definition

• To capture the memory space used by the tasks

as well as dependency among tasks

• Number of inputs/outputs is good hint for memory

space usage

• The more a task has successors, the more the

severe effect of not protecting the task in terms of

error propagation to the successors

21 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

User-specified Selective Task Replication

• User specifies which tasks to protect for runtime

• FTT (early tasks)

• As being a iterative refinement algorithm, early

stages likely to be more reliability-critical

• Cholesky (diagonal tasks)

• As these blocks are utilized during all subsequent

phases of the algorithm, directly or indirectly

• SparseLU (no clear distinction between tasks but can

protect early tasks processing diagonal elements)

22 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Selective Task Replication Results: FFT

23 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Selective Task Replication Results: Cholesky

24 Leveraging OmpSs and Nanos for Fault-Tolerance Feb. 5, 2013

Conclusions

• OmpSs and Nanos can be leveraged to develop

efficient fault-tolerance mechanisms

• Current results seem promising

• Scalable

• Low overhead for checkpointing

• Parallel and asynchronous

