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Motivation
Safety-Critical Real-Time Systems

I Increasing parallelism in safety-critical
systems

I Interferences at shared resources
I Interferences at shared data structures

↪→ Indeterministic execution behaviour:
I Accesses have to be serialized
I Mutual detention may result

↪→ Real-Time capable synchronization model
needed

A380, [1]

Google Driverless Car, [2]
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Motivation
Hardware Transactional Memory

I Hardware Transactional Memory
I Simplifies parallel programming
I Optimistic lock-free parallel access can improve performance

I Transactional Synchronization Extension (TSX) implemented
in current Intel Haswell micro architecture

I No congestion in conflict-free case
I Does not guarantee transaction commit
I Transaction aborts and conflicts can happen at any time
I Conflicting transactions must be scheduled to meet real-time

requirements

↪→ Congestion controller for fair transaction execution is
needed
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Example
Without congestion control

I Thread 2 starts its transaction after thread 1

I Transaction 2 leads to a conflict and abort of transaction 1
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I Transaction 2 always aborts transaction 1 subsequently

↪→ Starvation of thread 1
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Approach

I RT-TX library wraps TSX instructions

I Global congestion controller monitors
transaction execution

I Schedule of transactions depends on
statistics:

I TX with less commits are preferred
I TX with more commits are delayed

↪→ Conflicts between TXs are resolved

↪→ Progress of transactions is more
deterministic

Transaction

RT-TX

Congestion Controller

Operating System

begin

notify
scheduler schedule

execute
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Approach
Transaction Wrapper

TSX instructions are wrapped:
I RTTX begin

I registers transaction at congestion controller
I waits for execution allowance
I update TX status and begin counter

I RTTX end
I update TX status and commit counter
I removes TX from congestion controller

I Abort handler
I part of RTTX begin
I in case of abort, TX is restarted
I because TX can always fail, a global lock is used for fallback
I update TX status and abort counter (→ commit ratio

decreases)
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Approach
Scheduler Integration

I Pausing transactions with high commit rate before executing:
I Either: sleep for a specific amount of time
I Or: wait for other transactions to commit

I Prioritising transactions is difficult:
I Scheduler must be aware of threads with transactions
I Transaction commit rate is required for scheduling decision
I Dependencies between transactions must be known

↪→ A new syscall is needed to notify the scheduler
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Example
With congestion control

b: nr. of begins c: nr. of commits a: nr. of aborts
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↪→ Suspending thread 2 ensures progress of thread 1
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Evaluation
Methodology

I 4 threads:
I 1 transaction per thread
I All threads read from shared array
I 1 thread also writes occasionally shared array

I Conflicts occur due to read and write operations

I Congestion controller ensures a fair execution

I Thread with highest completion rate is delayed

I Each threads is executed until TX has 10,000 commits
I Transaction aborts are measured:

I Without RT-TX: congestion controller does not delay TXs
I With RT-TX: congestion controller activated
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Evaluation
Results

Total aborts:

thread 1 thread 2 thread 3 thread 4
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↪→ RT-TX congestion controller leads to
less total aborts and less subsequent aborts
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Conclusion & Outlook

I TSX eases parallel programming, but congestion still possible

I RT-TX provides congestion manager and scheduler integration

↪→ RT-TX is real-time capable:
I Fair transaction scheduling
I Ensures transaction progress

I Future work:
I Integration in Linux scheduler
I Evaluate with MARSSX86 simulator
I Consider different measures for scheduling decisions
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Questions?

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 13



Images

[1] http://www.flickr.com/photos/8313254@N08/496320750/
[2] http://www.flickr.com/photos/jurvetson/5499949739/

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 14

http://www.flickr.com/photos/8313254@N08/496320750/
http://www.flickr.com/photos/jurvetson/5499949739/

	Motivation
	Approach
	Evaluation
	Conclusion & Outlook

