
Enhancing Real-Time Behaviour of
Parallel Applications using Intel TSX

Florian Haas, Stefan Metzlaff, Sebastian Weis,
and Theo Ungerer

Department of Computer Science,
University of Augsburg,
Germany

January 22, 2014

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 1



Outline

Motivation

Approach

Evaluation

Conclusion & Outlook

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 2



Motivation
Safety-Critical Real-Time Systems

I Increasing parallelism in safety-critical
systems

I Interferences at shared resources
I Interferences at shared data structures

↪→ Indeterministic execution behaviour:
I Accesses have to be serialized
I Mutual detention may result

↪→ Real-Time capable synchronization model
needed

A380, [1]

Google Driverless Car, [2]

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 3



Motivation
Hardware Transactional Memory

I Hardware Transactional Memory
I Simplifies parallel programming
I Optimistic lock-free parallel access can improve performance

I Transactional Synchronization Extension (TSX) implemented
in current Intel Haswell micro architecture

I No congestion in conflict-free case
I Does not guarantee transaction commit
I Transaction aborts and conflicts can happen at any time
I Conflicting transactions must be scheduled to meet real-time

requirements

↪→ Congestion controller for fair transaction execution is
needed

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 4



Example
Without congestion control

I Thread 2 starts its transaction after thread 1

I Transaction 2 leads to a conflict and abort of transaction 1

X
B
E
G
I
N

A
B
O
R
T

R
E
T
R
Y

A
B
O
R
T

R
E
T
R
Y

X
B
E
G
I
N

X
E
N
D

X
B
E
G
I
N

X
E
N
D

X
B
E
G
I
N

thread 1

thread 2

I Transaction 2 always aborts transaction 1 subsequently

↪→ Starvation of thread 1

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 5



Approach

I RT-TX library wraps TSX instructions

I Global congestion controller monitors
transaction execution

I Schedule of transactions depends on
statistics:

I TX with less commits are preferred
I TX with more commits are delayed

↪→ Conflicts between TXs are resolved

↪→ Progress of transactions is more
deterministic

Transaction

RT-TX

Congestion Controller

Operating System

begin

notify
scheduler schedule

execute

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 6



Approach
Transaction Wrapper

TSX instructions are wrapped:
I RTTX begin

I registers transaction at congestion controller
I waits for execution allowance
I update TX status and begin counter

I RTTX end
I update TX status and commit counter
I removes TX from congestion controller

I Abort handler
I part of RTTX begin
I in case of abort, TX is restarted
I because TX can always fail, a global lock is used for fallback
I update TX status and abort counter (→ commit ratio

decreases)

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 7



Approach
Scheduler Integration

I Pausing transactions with high commit rate before executing:
I Either: sleep for a specific amount of time
I Or: wait for other transactions to commit

I Prioritising transactions is difficult:
I Scheduler must be aware of threads with transactions
I Transaction commit rate is required for scheduling decision
I Dependencies between transactions must be known

↪→ A new syscall is needed to notify the scheduler

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 8



Example
With congestion control

b: nr. of begins c: nr. of commits a: nr. of aborts

X
B
E
G
I
N

A
B
O
R
T

R
E
T
R
Y

X
E
N
D

delay

X
B
E
G
I
N

X
E
N
D

X
B
E
G
I
N

X
E
N
D

thread 1

thread 2

b=0
c=0
a=0

b=1
c=0
a=0

b=1
c=0
a=1

b=2
c=0
a=1

b=2
c=1
a=1

b=0
c=0
a=0

b=1
c=0
a=0

b=1
c=1
a=0

b=2
c=1
a=0

b=2
c=2
a=0

wait for
thread 1

↪→ Suspending thread 2 ensures progress of thread 1

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 9



Evaluation
Methodology

I 4 threads:
I 1 transaction per thread
I All threads read from shared array
I 1 thread also writes occasionally shared array

I Conflicts occur due to read and write operations

I Congestion controller ensures a fair execution

I Thread with highest completion rate is delayed

I Each threads is executed until TX has 10,000 commits
I Transaction aborts are measured:

I Without RT-TX: congestion controller does not delay TXs
I With RT-TX: congestion controller activated

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 10



Evaluation
Results

Total aborts:

thread 1 thread 2 thread 3 thread 4
0

50,000

100,000

without RT-TX RT-TX

Max. subsequent aborts:

thread 1 thread 2 thread 3 thread 4

500

1,000

without RT-TX RT-TX

↪→ RT-TX congestion controller leads to
less total aborts and less subsequent aborts

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 11



Conclusion & Outlook

I TSX eases parallel programming, but congestion still possible

I RT-TX provides congestion manager and scheduler integration

↪→ RT-TX is real-time capable:
I Fair transaction scheduling
I Ensures transaction progress

I Future work:
I Integration in Linux scheduler
I Evaluate with MARSSX86 simulator
I Consider different measures for scheduling decisions

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 12



Questions?

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 13



Images

[1] http://www.flickr.com/photos/8313254@N08/496320750/
[2] http://www.flickr.com/photos/jurvetson/5499949739/

Jan. 22, 2014 Haas, Metzlaff, Weis & Ungerer / Real Time Transactions 14

http://www.flickr.com/photos/8313254@N08/496320750/
http://www.flickr.com/photos/jurvetson/5499949739/

	Motivation
	Approach
	Evaluation
	Conclusion & Outlook

