

Enhancing Real-Time Behaviour of Parallel Applications using Intel TSX

<u>Florian Haas</u>, Stefan Metzlaff, Sebastian Weis, and Theo Ungerer

Department of Computer Science, University of Augsburg, Germany

January 22, 2014

Outline

Motivation

Approach

Evaluation

Conclusion & Outlook

Motivation Safety-Critical Real-Time Systems

- Increasing parallelism in safety-critical systems
 - ► Interferences at shared resources
 - ► Interferences at shared data structures
- - Accesses have to be serialized
 - ► Mutual detention may result
- → Real-Time capable synchronization model needed

A380, [1]

Google Driverless Car, [2]

Motivation Hardware Transactional Memory

- ► Hardware Transactional Memory
 - Simplifies parallel programming
 - ► Optimistic lock-free parallel access can improve performance
- ► Transactional Synchronization Extension (TSX) implemented in current Intel Haswell micro architecture
 - ► No congestion in conflict-free case
 - ► Does not guarantee transaction commit
 - ► Transaction aborts and conflicts can happen at any time
 - Conflicting transactions must be scheduled to meet real-time requirements
- → Congestion controller for fair transaction execution is needed

Example Without congestion control

- ▶ Thread 2 starts its transaction after thread 1
- ▶ Transaction 2 leads to a conflict and abort of transaction 1

- ► Transaction 2 always aborts transaction 1 subsequently
- \hookrightarrow Starvation of thread 1

Approach

- ► RT-TX library wraps TSX instructions
- ► Global congestion controller monitors transaction execution
- Schedule of transactions depends on statistics:
 - TX with less commits are preferred
 - ► TX with more commits are delayed
- → Progress of transactions is more deterministic

Approach Transaction Wrapper

TSX instructions are wrapped:

- ► RTTX_begin
 - ► registers transaction at congestion controller
 - ► waits for execution allowance
 - update TX status and begin counter
- ► RTTX_end
 - update TX status and commit counter
 - ► removes TX from congestion controller
- ► Abort handler
 - ► part of RTTX_begin
 - ▶ in case of abort, TX is restarted
 - ▶ because TX can always fail, a global lock is used for fallback
 - ▶ update TX status and abort counter (→ commit ratio decreases)

Approach Scheduler Integration

- ▶ Pausing transactions with high commit rate before executing:
 - ► Either: sleep for a specific amount of time
 - ► Or: wait for other transactions to commit
- Prioritising transactions is difficult:
 - Scheduler must be aware of threads with transactions
 - ► Transaction commit rate is required for scheduling decision
 - ► Dependencies between transactions must be known
- \hookrightarrow A new syscall is needed to notify the scheduler

Example With congestion control

b: nr. of begins c: nr. of commits a: nr. of aborts

 \hookrightarrow Suspending thread 2 ensures progress of thread 1

Evaluation Methodology

- ▶ 4 threads:
 - ▶ 1 transaction per thread
 - ► All threads read from shared array
 - ▶ 1 thread also writes occasionally shared array
- Conflicts occur due to read and write operations
- ► Congestion controller ensures a fair execution
- Thread with highest completion rate is delayed
- ► Each threads is executed until TX has 10,000 commits
- ► Transaction aborts are measured:
 - ▶ Without RT-TX: congestion controller does not delay TXs
 - ▶ With RT-TX: congestion controller activated

Jan. 22, 2014

Evaluation Results

Total aborts:

Max. subsequent aborts:

Conclusion & Outlook

- ► TSX eases parallel programming, but congestion still possible
- ► RT-TX provides congestion manager and scheduler integration
- \hookrightarrow RT-TX is real-time capable:
 - ► Fair transaction scheduling
 - Ensures transaction progress
 - ► Future work:
 - ► Integration in Linux scheduler
 - ► Evaluate with MARSSX86 simulator
 - ► Consider different measures for scheduling decisions

Questions?

Images

- [1] http://www.flickr.com/photos/8313254@N08/496320750/
- [2] http://www.flickr.com/photos/jurvetson/5499949739/