
Parallelizing Online Error Detection  
in Many-core Microprocessor Architectures 

 

Manolis Kaliorakis1, Mihalis Psarakis2, Nikos Foutris1, Dimitris Gizopoulos1  
1 Dept. of Informatics & Telecomm., University of Athens, Greece  

{manoliskal, nfoutris, dgizop}@di.uoa.gr 

   2 Dept. of Informatics, University of Piraeus, Greece 
mpsarak@unipi.gr 

 
 

Abstract—Many-core processors encounter significant 
dependability issues due to their design complexity and the 
inherent unreliability of the underlying deep nanometer 
technologies. Online functional (software-based) testing, well-
established in single processor cores, can provide a low-cost error 
detection solution for many-core architectures as well. We study 
the parallelization of online test programs to reduce test 
execution time. We evaluate the proposed test program 
parallelization method on a popular research many-core 
architecture, Intel’s Single-chip Cloud Computer (SCC), showing 
up to 47.6X speedup.  

I. INTRODUCTION 
Functional or software-based testing has gained increasing 
acceptance for off-line and on-line error detection in 
uniprocessor architectures [1], [2], [3], while recent approaches 
[4], [5], [6] have studied its feasibility in multicore processor 
architectures. An online error detection strategy for many-core 
architectures must exploit the massive execution parallelism 
and reduce the duration of test program execution. Otherwise, 
the overall execution time will excessively scale with the 
number of cores. In this paper, we study the parallelization of 
online test programs in many-core microprocessor 
architectures.  

Online error detection in many-core architectures radically 
differs from conventional parallel programming problems, 
since the entire test program must be simply applied to every 
core. Therefore, parallelizing the test programs seems to be 
effortless: all processor cores must run the test program in 
parallel and there is no need for communication. However, the 
experimental results we performed on a popular many-core 
microprocessor chip (Intel’s SCC) show that the 
straightforward parallel application of typical memory-
intensive test programs achieves very low speedup (i.e. less 
than 11X in a 48-core architecture), which is far below the 
theoretical maximum speedup in such an architecture. This is 
mainly due to fact that the memory-intensive test programs 
running in parallel in all processor cores push the memory 
system and the interconnection network to their limits 
exceeding the maximum memory bandwidth they can deliver.  

In this paper, we propose an effective parallelization 
method which aims to accelerate the test preparation phase of 
the test programs. The key idea of the proposed method is that 
every processor core produces a subset of the test patterns set 
and then distributes it to the other processors through the high-
bandwidth on-chip message-passing interconnection network. 
This parallelization method significantly speeds up the 

memory-intensive test programs. Furthermore, we propose a 
simple scheduling method that runs in parallel the memory-
intensive and CPU-intensive test programs to reduce the traffic 
congestion in the interconnection network. The proposed 
methods are demonstrated on Intel’s Single-chip Cloud 
Computer (SCC) platform.  

II. ONLINE ERROR DETECTION IN A MANY-CORE 
ARCHITECTURE  

There are two approaches for the online execution of a test 
program in a many-core architecture: (a) non-intrusive 
approach: each core runs the test programs individually during 
its idle periods and (b) intrusive approach: groups of cores or 
all cores together are periodically set out-of-service for normal 
workload execution to run simultaneously the test programs. In 
this paper, we consider the application of an intrusive online 
error detection approach in a many-core architecture, Intel’s 
Single-chip Cloud Computer (SCC) [7]. SCC contains 48 in-
order Pentium cores (organized in 24 tiles, with two cores per 
tile) connected in a 6x4 2D mesh network. It integrates four 
DDR3 memory controllers and hardware-support for message 
passing.  

For our experimentation, we developed two functional test 
programs for the SCC chip with different characteristics which 
represent typical test program formats used in functional online 
testing: (a) Load-Apply-Accumulate (LAA) test program: this 
memory-intensive test program applies ATPG-generated test 
patterns (or pre-computed by other means) stored in the off-
chip main memory (DRAM). It first reads two test vectors 
from memory, applies the target instruction and accumulates 
the responses. (b) Linear-Feedback-Shift-Register (LFSR) test 
program: this CPU-intensive test program applies 
pseudorandom patterns generated by an LFSR. Similarly to 
LAA program, the LFSR program first generates two 
pseudorandom test patterns, applies the target instruction and 
accumulates the responses.  

III. TEST PROGRAM PARALLELIZATION 
Among the three basic phases of a functional test program, i.e. 
test preparation, test application and test response compaction, 
the last two cannot be parallelized because each test pattern 
must be applied to every core and the core’s response must be 
compacted separately. The test preparation phase (the on-chip 
production of all patterns that must be eventually applied to 
each core) is the only that can be performed only once for the 
entire chip. Thus, the test preparation task can be divided and 
parallelized in a many-core processor architecture balancing 



the test preparation workload between the cores to achieve the 
maximum speedup.  

Before focusing on the parallelization of the test 
preparation phase, we carried out a set of experiments to 
identify the most efficient way to load the test vectors of a 
memory intensive test program (i.e. LAA) in the processing 
cores. Based on the experimental results and a theoretical 
performance analysis of the memory subsystem we concluded 
that an efficient parallelization method should use message 
passing instead of the off-chip DRAM to share test data 
between cores. Based on this observation, we propose an 
effective method for the parallelization of the LAA test 
program.  The test patterns are divided into 48 segments each 
one assigned to the private memory region of a core. The LAA 
test program is divided into two phases. First, all cores load in 
parallel the test patterns from their private memories, apply the 
tests on themselves and accumulate the responses. 
Subsequently, each core copies the corresponding test patterns 
from the local Message Passing Buffers (MPBs) of the other 47 
cores and applies/accumulates the tests. It is essential that in 
each cycle of the second phase each MPB serves the memory 
requests of only one core in order to limit the traffic congestion 
in the mesh and the routers and thus reduce execution time.  

Regarding the LFSR test program, its test preparation phase 
cannot be parallelized in a more efficient way since the time 
each core requires to run the LFSR code to generate a certain 
number of test patterns is shorter than the time to copy these 
test patterns from the local MPB of an adjacent core. Thus, a 
second improvement in the parallelization of the entire online 
test program (consisting of LAA and LFSR programs) could be 
the parallel execution of memory-intensive test programs 
(LAA tests) and CPU-intensive test programs (LFSR tests). 
The rationale of the proposed method is to balance the 
memory-intensive and the CPU-intensive test programs to 
avoid high traffic congestion in the mesh and the routers. 

Table I presents the execution times of the LAA and LFSR 
test programs running in all 48 cores for the Serial, Naïve 
Parallel and Proposed Parallel approaches. LAA test program 
applies 384KB test data, while LFSR program applies 10 times 
more pseudorandom test data, i.e. 3840KB. In the case of the 
memory-intensive LAA test program the speedup is less than 
11X compared to the serial approach, while in the case of the 
CPU-intensive LFSR test program the speedup is close to the 
theoretical maximum. In the naïve method, all processor cores 
execute in parallel the same test program without 
communicating each other. After the normal workload has 
been paused in all processor cores, the cores are synchronized 
to execute the test program in parallel. Upon completion of the 
online test phase, normal workload is resumed in all cores. In 
the serial method, the processor cores execute the test program 
one after the other, while the remaining cores remain idle. In 
both serial and naïve parallel methods, test data are stored in 
the shared memory of the SCC in order to be directly 
accessible by all cores. Note that Intel supports the 
configuration of shared memory either as cacheable or non-
cacheable memory. The experimental results shown in Table I 
for the serial and naïve parallel approaches are for cacheable 
memory configuration. The proposed parallel method achieves 

38.4X speedup for the LAA test program compared to the 
serial approach. Applying the proposed parallel approach for 
the LAA and the naïve parallel approach for the LFSR test 
program results in 44.4X speedup. Furthermore, the proposed 
hybrid parallel LAA/LFSR method achieves a further 7% 
improvement and up to 47.6X speedup over the serial 
approach.  

TABLE I.  Execution times of the test programs for the Serial, Naïve 
Parallel and Proposed Parallel approaches (Execution times are in 106 cycles. 
Numbers in parentheses denote the speedup against the serial execution) 

Test Program Serial Naïve Parallel Proposed Parallel 

LAA 145.8 14.0 (10.4X) 3.8 (38.4X) 

LFSR 1047.8 23.1 (45.4X) - 

LAA+LFSR 1193.6 37.1 (32.2X) 26.9 (44.4X) 
25.1 (47.6X) 

 

IV. FUTURE WORK 
We currently investigate the parallelization of the non-intrusive 
on-line error detection approach. In this case, the number of 
processor cores running in parallel the test program is not 
predetermined and consequently, the partitioning of the test 
patterns into cores and their distribution through the message 
passing buffers are resolved dynamically. Every core has 
access to all test patterns and a test scheduler monitors the 
cores, assigns the task of loading test patterns into the idle 
cores and determines the optimal routes for the distribution of 
test patterns through the MPBs.  
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