
Parallelizing Online Error Detection
in Many-core Microprocessor Architectures

Manolis Kaliorakis1, Mihalis Psarakis2, Nikos Foutris1, Dimitris Gizopoulos1
1 Dept. of Informatics & Telecomm., University of Athens, Greece

{manoliskal, nfoutris, dgizop}@di.uoa.gr

 2 Dept. of Informatics, University of Piraeus, Greece
mpsarak@unipi.gr

Abstract—Many-core processors encounter significant
dependability issues due to their design complexity and the
inherent unreliability of the underlying deep nanometer
technologies. Online functional (software-based) testing, well-
established in single processor cores, can provide a low-cost error
detection solution for many-core architectures as well. We study
the parallelization of online test programs to reduce test
execution time. We evaluate the proposed test program
parallelization method on a popular research many-core
architecture, Intel’s Single-chip Cloud Computer (SCC), showing
up to 47.6X speedup.

I. INTRODUCTION
Functional or software-based testing has gained increasing
acceptance for off-line and on-line error detection in
uniprocessor architectures [1], [2], [3], while recent approaches
[4], [5], [6] have studied its feasibility in multicore processor
architectures. An online error detection strategy for many-core
architectures must exploit the massive execution parallelism
and reduce the duration of test program execution. Otherwise,
the overall execution time will excessively scale with the
number of cores. In this paper, we study the parallelization of
online test programs in many-core microprocessor
architectures.

Online error detection in many-core architectures radically
differs from conventional parallel programming problems,
since the entire test program must be simply applied to every
core. Therefore, parallelizing the test programs seems to be
effortless: all processor cores must run the test program in
parallel and there is no need for communication. However, the
experimental results we performed on a popular many-core
microprocessor chip (Intel’s SCC) show that the
straightforward parallel application of typical memory-
intensive test programs achieves very low speedup (i.e. less
than 11X in a 48-core architecture), which is far below the
theoretical maximum speedup in such an architecture. This is
mainly due to fact that the memory-intensive test programs
running in parallel in all processor cores push the memory
system and the interconnection network to their limits
exceeding the maximum memory bandwidth they can deliver.

In this paper, we propose an effective parallelization
method which aims to accelerate the test preparation phase of
the test programs. The key idea of the proposed method is that
every processor core produces a subset of the test patterns set
and then distributes it to the other processors through the high-
bandwidth on-chip message-passing interconnection network.
This parallelization method significantly speeds up the

memory-intensive test programs. Furthermore, we propose a
simple scheduling method that runs in parallel the memory-
intensive and CPU-intensive test programs to reduce the traffic
congestion in the interconnection network. The proposed
methods are demonstrated on Intel’s Single-chip Cloud
Computer (SCC) platform.

II. ONLINE ERROR DETECTION IN A MANY-CORE
ARCHITECTURE

There are two approaches for the online execution of a test
program in a many-core architecture: (a) non-intrusive
approach: each core runs the test programs individually during
its idle periods and (b) intrusive approach: groups of cores or
all cores together are periodically set out-of-service for normal
workload execution to run simultaneously the test programs. In
this paper, we consider the application of an intrusive online
error detection approach in a many-core architecture, Intel’s
Single-chip Cloud Computer (SCC) [7]. SCC contains 48 in-
order Pentium cores (organized in 24 tiles, with two cores per
tile) connected in a 6x4 2D mesh network. It integrates four
DDR3 memory controllers and hardware-support for message
passing.

For our experimentation, we developed two functional test
programs for the SCC chip with different characteristics which
represent typical test program formats used in functional online
testing: (a) Load-Apply-Accumulate (LAA) test program: this
memory-intensive test program applies ATPG-generated test
patterns (or pre-computed by other means) stored in the off-
chip main memory (DRAM). It first reads two test vectors
from memory, applies the target instruction and accumulates
the responses. (b) Linear-Feedback-Shift-Register (LFSR) test
program: this CPU-intensive test program applies
pseudorandom patterns generated by an LFSR. Similarly to
LAA program, the LFSR program first generates two
pseudorandom test patterns, applies the target instruction and
accumulates the responses.

III. TEST PROGRAM PARALLELIZATION
Among the three basic phases of a functional test program, i.e.
test preparation, test application and test response compaction,
the last two cannot be parallelized because each test pattern
must be applied to every core and the core’s response must be
compacted separately. The test preparation phase (the on-chip
production of all patterns that must be eventually applied to
each core) is the only that can be performed only once for the
entire chip. Thus, the test preparation task can be divided and
parallelized in a many-core processor architecture balancing

the test preparation workload between the cores to achieve the
maximum speedup.

Before focusing on the parallelization of the test
preparation phase, we carried out a set of experiments to
identify the most efficient way to load the test vectors of a
memory intensive test program (i.e. LAA) in the processing
cores. Based on the experimental results and a theoretical
performance analysis of the memory subsystem we concluded
that an efficient parallelization method should use message
passing instead of the off-chip DRAM to share test data
between cores. Based on this observation, we propose an
effective method for the parallelization of the LAA test
program. The test patterns are divided into 48 segments each
one assigned to the private memory region of a core. The LAA
test program is divided into two phases. First, all cores load in
parallel the test patterns from their private memories, apply the
tests on themselves and accumulate the responses.
Subsequently, each core copies the corresponding test patterns
from the local Message Passing Buffers (MPBs) of the other 47
cores and applies/accumulates the tests. It is essential that in
each cycle of the second phase each MPB serves the memory
requests of only one core in order to limit the traffic congestion
in the mesh and the routers and thus reduce execution time.

Regarding the LFSR test program, its test preparation phase
cannot be parallelized in a more efficient way since the time
each core requires to run the LFSR code to generate a certain
number of test patterns is shorter than the time to copy these
test patterns from the local MPB of an adjacent core. Thus, a
second improvement in the parallelization of the entire online
test program (consisting of LAA and LFSR programs) could be
the parallel execution of memory-intensive test programs
(LAA tests) and CPU-intensive test programs (LFSR tests).
The rationale of the proposed method is to balance the
memory-intensive and the CPU-intensive test programs to
avoid high traffic congestion in the mesh and the routers.

Table I presents the execution times of the LAA and LFSR
test programs running in all 48 cores for the Serial, Naïve
Parallel and Proposed Parallel approaches. LAA test program
applies 384KB test data, while LFSR program applies 10 times
more pseudorandom test data, i.e. 3840KB. In the case of the
memory-intensive LAA test program the speedup is less than
11X compared to the serial approach, while in the case of the
CPU-intensive LFSR test program the speedup is close to the
theoretical maximum. In the naïve method, all processor cores
execute in parallel the same test program without
communicating each other. After the normal workload has
been paused in all processor cores, the cores are synchronized
to execute the test program in parallel. Upon completion of the
online test phase, normal workload is resumed in all cores. In
the serial method, the processor cores execute the test program
one after the other, while the remaining cores remain idle. In
both serial and naïve parallel methods, test data are stored in
the shared memory of the SCC in order to be directly
accessible by all cores. Note that Intel supports the
configuration of shared memory either as cacheable or non-
cacheable memory. The experimental results shown in Table I
for the serial and naïve parallel approaches are for cacheable
memory configuration. The proposed parallel method achieves

38.4X speedup for the LAA test program compared to the
serial approach. Applying the proposed parallel approach for
the LAA and the naïve parallel approach for the LFSR test
program results in 44.4X speedup. Furthermore, the proposed
hybrid parallel LAA/LFSR method achieves a further 7%
improvement and up to 47.6X speedup over the serial
approach.

TABLE I. Execution times of the test programs for the Serial, Naïve
Parallel and Proposed Parallel approaches (Execution times are in 106 cycles.
Numbers in parentheses denote the speedup against the serial execution)

Test Program Serial Naïve Parallel Proposed Parallel

LAA 145.8 14.0 (10.4X) 3.8 (38.4X)

LFSR 1047.8 23.1 (45.4X) -

LAA+LFSR 1193.6 37.1 (32.2X) 26.9 (44.4X)
25.1 (47.6X)

IV. FUTURE WORK
We currently investigate the parallelization of the non-intrusive
on-line error detection approach. In this case, the number of
processor cores running in parallel the test program is not
predetermined and consequently, the partitioning of the test
patterns into cores and their distribution through the message
passing buffers are resolved dynamically. Every core has
access to all test patterns and a test scheduler monitors the
cores, assigns the task of loading test patterns into the idle
cores and determines the optimal routes for the distribution of
test patterns through the MPBs.

ACKNOWLEDGMENT
This research is co-financed by the European Union and Greek
national funds through the project “Hardware and Software
Techniques for Multi/Many-core Processor Architectures
Reliability Enhancement (Thalis/HOLISTIC)”. The work is
also funded by a research gift from Cisco Research on online
error detection for multicore microprocessor architectures. It is
also supported by Intel’s MARC Program providing access to
the Single-chip Cloud Computer (SCC) chip.

REFERENCES
[1] L.Chen, S.Ravi, A.Raghunathan, S.Dey, “A Scalable Software-Based

Self-Test Methodology for Programmable Processors”, IEEE/ACM
Design Automation Conference (DAC), pp. 548-553, 2003.

[2] S.Gurumurthy, S.Vasudevan and J.Abraham, “Automatic generation of
instruction sequences targeting hard-to-detect struc-tural faults in a
processor”, in Proc. IEEE Intl. Test Conf., paper 27.3, 2006.

[3] M.Psarakis, D.Gizopoulos, E.Sanchez, M.S.Reorda, "Microprocessor
Software-Based Self-Testing," IEEE Design & Test of Computers,
vol.27, no.3, pp.4,19, May-June 2010.

[4] A.Apostolakis, D.Gizopoulos, M.Psarakis, A.Paschalis, "Software-
Based Self-Testing of Symmetric Shared-Memory Multiprocessors,"
IEEE Transactions on Computers, vol. 58, no. 12, pp. 1682-1694, 2009.

[5] N.Foutris, et al., "Mt-sbst: Self-test optimization in multithreaded
multicore architectures, Proc. IEEE Intl. Test Conf., pp. 1-10, 2010.

[6] M.A.Skitsas, C.A.Nicopoulos and M.K.Michael, "Toward Selective
Software-Based Self-Testing in Multi-Core Microprocessors," in Proc.
1st MEDIAN Workshop, pp. 71-75, 2012.

[7] SCC Programmer's Guide, rev. 1.0, Jan. 2012.

