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1. Introduction 
The increasing power and energy consumption of modern 
computing devices are critical to technology minimization and the 
associated gains in performance and productivity. On the one hand, 
we expect technology scaling to finally come face-to-face with the 
problem of “dark silicon” (only segments of a chip can function 
concurrently due to power restrictions), which will push us to use 
devices with completely new characteristics. On the other hand, as 
core counts increase, the shared memory model based on cache 
coherence will severely limit code scalability and increase energy 
consumption. Therefore, to overcome these problems, we need 
new computing paradigms that are radically more energy efficient. 
 
These problems of energy consumption scale beyond the 
computing node to the data center where consumption is 
independent of the computing load of the system [1]. The nodes 
keep state in memory and on local disk which means that they 
cannot be turned off even if the load is low.  Moreover, making 
individual servers energy-proportional without any vital 
architectural changes. In ParaDIME, we will explore scheduling 
between the computing nodes by employing a mechanism for 
maintaining the state that allows switching off nodes when their 
load is low. At the same time, data centers have high power 
consumption even when they are idle due to the fact that CPU 
loads are often kept between 10%-30% [1] in order to be able to 
react to sudden peaks in load.  In ParaDIME, we will employ a 
mechanism that raises the CPU load to 90% while at the same time 
adhering to Service Level Agreements (SLAs). 
 
The high level objectives of the ParaDIME Project can be 
summarized as follows: 

� Objective 1: To develop an energy-aware programming model 
driving an associated ecosystem, the ParaDIME Computing 
Node / Stack (applications, runtime and architecture) that 
combines energy efficient SW programming and HW design 
methodologies and utilizes new emerging devices at the limit 
of CMOS scaling to radically decrease energy consumption; 
to quantify the energy savings from employing these 
methodologies by running several real-world power-hungry 
applications to stress test this Computing Node / Stack. 

� Objective 2: To build a reference Data Center (Infrastructure 
as a Service or IaaS) platform that incorporates new energy 
conscious workload scheduling techniques utilizing 
information from the runtime to radically decrease energy 
consumption; to quantify the energy savings from employing 
these techniques by running several real-world power-hungry 
applications to stress test this Data Center platform. 

 

2. Project flow 
ParaDIME stands for Parallel Distributed Infrastructure for 
Minimization of Energy. As the name states, this project is defined 
for minimization and optimization of energy consumption for the 
data center. The Figure 1 presents a global view of the project 
which is based on several energy minimization methodologies. In 

the Figure 1, there are two computing nodes are shown, First node 
is the prototype developed with the simulator and second node is 
the real hardware.  The various energy efficient methodologies, 
which are proposed in this project at different level are given 
below:  
� Programming model level 

o Message passing 
o Error detection/recovery 
o Approximate computing 

� Runtime level 
o Energy aware scheduling 

� Architectural level 
o Approximate computing  
o Task specific accelerators 
o Operation below safe Vdd 

� Device level 
o Emerging device 
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Figure 1: The ParaDIME Infrastructure 
 
In this paper, we will discuss about the work in progress of 
combining different error detection mechanism and transactional 
memory for energy efficient computing below safe operation 
voltage [1] which is one of the several crucial methodologies 
described in the project to minimize the energy. By decreasing the 
voltage, the occurrence of failures increases drastically and without 
mechanisms for reliability, the systems would not operate any 
more [1]. For reliability we need (1) error detection and (2) error 
recovery mechanisms. According to our preliminary results, using 
reliability schemes combined with transactional memory for error 
recovery gains energy by 54 % while providing a reliability level 
of 100 %. 
 

3. Operation below Safe Vdd 

 



In our previous studies, we extended the gem5 simulator in order to 
implement FaulTM, a replication-based error detection scheme 
combined with an error recovery mechanism based on 
transactional memory [2].  In the ParaDIME project, we started 
with this FaulTM-simulator which has the capability of simulating 
both sequential and parallel applications.  It measures the error 
detection overhead, the error recovery overhead and the reliability 
performance.  The equation (1) given below is used to calculate the 
probability of the transaction fault (PTXf), where PALU denotes the 
error rate of the execution unit and s denotes the size of a 
transaction.  

PTXf = 1- (PALU)s    (1) 
Thus assuming that the failing probability of a transaction is PTXf 
and the energy required for re-execution is ETX; we calculate the 
energy spent for recovery (Erecovery) is given by the following 
equation (2). 
 

Erecovery = ETX * PTXf * (1/(1-PTXf))                 (2) 
 

4. Results 
In this section, we analyze the feasibility of applying the error 
detection schemes with TM-based error recovery. We are 
specifically interested in how much we can lower the voltage while 
still providing high error detection capability. For the evaluation 
we consider the following two scenarios: 1) We investigate the 
energy overhead of the error detection schemes and the combined 
error detection and recovery and 2) combination of different error 
detection schemes. Our preliminary results are shown in the Figure 
2 and Figure 3. 

 

Figure 2: Energy for transactions with 100 instructions 

In Figure 2, we summarize the performance of all applications in 
the SPLASH benchmark by averaging their energy consumption. 
The energy consumption is normalized to the error-free base case 
in which 2V supply voltage is used. From this graph (Figure 2), we 
can observe that when a transaction consists of 100 instructions, 
Double Modular Redundancy (DMR) starts to outperform the base-
case, when Vdd is 1.4V (up to 28% reduction) or 1.2V (up to 54% 
reduction). Due to the increase in the fault rate, the probability of 
faults causing rollbacks repeatedly becomes significantly high. 
Thus, the energy consumption of DMR increases drastically after 
this voltage level.  
 
There is a trade-off between energy efficiency and reliability, as 
we can see for DMR and symptom-based error detection and TM 
recovery. Thus, we can for example combine symptom-based error 

detection and DMR for consuming less energy, but providing full 
reliability for critical parts. In Figure 3, we analyzed the energy 
overhead of this combination in comparison to the base case and 
DMR only for a transaction size of 100 instructions. We assume 
that 30, 50 or 70% of the application are only secured by symptom-
based error detection. With this combination it is possible to lower 
the Vdd to 1 V (in comparison to 1.2 V with DMR only) and still be 
more efficient than the base case. Specifically, we reduce the 
energy consumption by 66\% in comparison to the base case. 

 

 
Figure 3. Combination of different error detection schemes  

5. Conclusion 
To improve the energy-efficiency of modern CPUs, one can reduce 
the supply voltage of cores. Reducing the supply voltage increases 
however the likelihood for wrong executions of programs. In this 
paper, we proposed using transactional memory (TM) for rolling 
back the effects of wrong executions. To reduce energy 
consumption, one needs an error detection scheme that has both a 
sufficient coverage and a low overhead. Based on our evaluation, 
we conclude that one can reduce the energy consumption of CPUs, 
in particular, if we have efficient hardware support for TM and for 
error detection. An open question remains with respect to how to 
effectively protect the TM itself against transient errors caused by 
lowering Vdd. Future work of this methodology will focus on the 
development of  SW (programmer-driven) and HW methods to 
operate below the safe Vdd limit using selective replication to 
detect and correct sporadic errors and also devise a probabilistic 
model for near- and far- future devices that provides failure rates 
for SRAM cells when Vdd is below the safe limit in order to build 
a statistical distribution. 
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