
ParaDIME: Parallel Distributed Infrastructure for Minimization of Energy

Oscar Palomar, Gulay Yalcin, Santhosh Kumar Rethinagiri, Adrian Cristal, Osman S. Unsal and Gina Alioto
Barcelona Supercomputing Center, Barcelona Spain

E-mail: Firstname.Lastname@bsc.es

1. Introduction
The increasing power and energy consumption of modern
computing devices are critical to technology minimization and the
associated gains in performance and productivity. On the one hand,
we expect technology scaling to finally come face-to-face with the
problem of “dark silicon” (only segments of a chip can function
concurrently due to power restrictions), which will push us to use
devices with completely new characteristics. On the other hand, as
core counts increase, the shared memory model based on cache
coherence will severely limit code scalability and increase energy
consumption. Therefore, to overcome these problems, we need
new computing paradigms that are radically more energy efficient.

These problems of energy consumption scale beyond the
computing node to the data center where consumption is
independent of the computing load of the system [1]. The nodes
keep state in memory and on local disk which means that they
cannot be turned off even if the load is low. Moreover, making
individual servers energy-proportional without any vital
architectural changes. In ParaDIME, we will explore scheduling
between the computing nodes by employing a mechanism for
maintaining the state that allows switching off nodes when their
load is low. At the same time, data centers have high power
consumption even when they are idle due to the fact that CPU
loads are often kept between 10%-30% [1] in order to be able to
react to sudden peaks in load. In ParaDIME, we will employ a
mechanism that raises the CPU load to 90% while at the same time
adhering to Service Level Agreements (SLAs).

The high level objectives of the ParaDIME Project can be
summarized as follows:

� Objective 1: To develop an energy-aware programming model
driving an associated ecosystem, the ParaDIME Computing
Node / Stack (applications, runtime and architecture) that
combines energy efficient SW programming and HW design
methodologies and utilizes new emerging devices at the limit
of CMOS scaling to radically decrease energy consumption;
to quantify the energy savings from employing these
methodologies by running several real-world power-hungry
applications to stress test this Computing Node / Stack.

� Objective 2: To build a reference Data Center (Infrastructure
as a Service or IaaS) platform that incorporates new energy
conscious workload scheduling techniques utilizing
information from the runtime to radically decrease energy
consumption; to quantify the energy savings from employing
these techniques by running several real-world power-hungry
applications to stress test this Data Center platform.

2. Project flow
ParaDIME stands for Parallel Distributed Infrastructure for
Minimization of Energy. As the name states, this project is defined
for minimization and optimization of energy consumption for the
data center. The Figure 1 presents a global view of the project
which is based on several energy minimization methodologies. In

the Figure 1, there are two computing nodes are shown, First node
is the prototype developed with the simulator and second node is
the real hardware. The various energy efficient methodologies,
which are proposed in this project at different level are given
below:
� Programming model level

o Message passing
o Error detection/recovery
o Approximate computing

� Runtime level
o Energy aware scheduling

� Architectural level
o Approximate computing
o Task specific accelerators
o Operation below safe Vdd

� Device level
o Emerging device

 ParaDIME Infrastructure
 Data Center

Computing Node/Stack

OS

JVM

API

Application/BM

Intra Data Center Scheduler

Simulated HW

Cores

Accelerators

Interconnect

Future Devices

JVM

 Scala

AKKA

Actor Sched

Computing Node/Stack
R

e
a

l
H

W

JVMJVM

OSOS

VMVM

Hypervisor

R
e

a
l

H
W

R
e

a
l

H
W

R
e

a
l

H
W

R
e

a
l

H
W

Hyper

JVM JVM

OS

VM

 Scala

AKKA

Actor Sched

API

Application/BM

M
u

lt
i D

a
ta

 C
e

n
te

r
S

c
h

e
d

u
le

r

Figure 1: The ParaDIME Infrastructure

In this paper, we will discuss about the work in progress of
combining different error detection mechanism and transactional
memory for energy efficient computing below safe operation
voltage [1] which is one of the several crucial methodologies
described in the project to minimize the energy. By decreasing the
voltage, the occurrence of failures increases drastically and without
mechanisms for reliability, the systems would not operate any
more [1]. For reliability we need (1) error detection and (2) error
recovery mechanisms. According to our preliminary results, using
reliability schemes combined with transactional memory for error
recovery gains energy by 54 % while providing a reliability level
of 100 %.

3. Operation below Safe Vdd

In our previous studies, we extended the gem5 simulator in order to
implement FaulTM, a replication-based error detection scheme
combined with an error recovery mechanism based on
transactional memory [2]. In the ParaDIME project, we started
with this FaulTM-simulator which has the capability of simulating
both sequential and parallel applications. It measures the error
detection overhead, the error recovery overhead and the reliability
performance. The equation (1) given below is used to calculate the
probability of the transaction fault (PTXf), where PALU denotes the
error rate of the execution unit and s denotes the size of a
transaction.

PTXf = 1- (PALU)s (1)
Thus assuming that the failing probability of a transaction is PTXf
and the energy required for re-execution is ETX; we calculate the
energy spent for recovery (Erecovery) is given by the following
equation (2).

Erecovery = ETX * PTXf * (1/(1-PTXf)) (2)

4. Results
In this section, we analyze the feasibility of applying the error
detection schemes with TM-based error recovery. We are
specifically interested in how much we can lower the voltage while
still providing high error detection capability. For the evaluation
we consider the following two scenarios: 1) We investigate the
energy overhead of the error detection schemes and the combined
error detection and recovery and 2) combination of different error
detection schemes. Our preliminary results are shown in the Figure
2 and Figure 3.

Figure 2: Energy for transactions with 100 instructions

In Figure 2, we summarize the performance of all applications in
the SPLASH benchmark by averaging their energy consumption.
The energy consumption is normalized to the error-free base case
in which 2V supply voltage is used. From this graph (Figure 2), we
can observe that when a transaction consists of 100 instructions,
Double Modular Redundancy (DMR) starts to outperform the base-
case, when Vdd is 1.4V (up to 28% reduction) or 1.2V (up to 54%
reduction). Due to the increase in the fault rate, the probability of
faults causing rollbacks repeatedly becomes significantly high.
Thus, the energy consumption of DMR increases drastically after
this voltage level.

There is a trade-off between energy efficiency and reliability, as
we can see for DMR and symptom-based error detection and TM
recovery. Thus, we can for example combine symptom-based error

detection and DMR for consuming less energy, but providing full
reliability for critical parts. In Figure 3, we analyzed the energy
overhead of this combination in comparison to the base case and
DMR only for a transaction size of 100 instructions. We assume
that 30, 50 or 70% of the application are only secured by symptom-
based error detection. With this combination it is possible to lower
the Vdd to 1 V (in comparison to 1.2 V with DMR only) and still be
more efficient than the base case. Specifically, we reduce the
energy consumption by 66\% in comparison to the base case.

Figure 3. Combination of different error detection schemes

5. Conclusion
To improve the energy-efficiency of modern CPUs, one can reduce
the supply voltage of cores. Reducing the supply voltage increases
however the likelihood for wrong executions of programs. In this
paper, we proposed using transactional memory (TM) for rolling
back the effects of wrong executions. To reduce energy
consumption, one needs an error detection scheme that has both a
sufficient coverage and a low overhead. Based on our evaluation,
we conclude that one can reduce the energy consumption of CPUs,
in particular, if we have efficient hardware support for TM and for
error detection. An open question remains with respect to how to
effectively protect the TM itself against transient errors caused by
lowering Vdd. Future work of this methodology will focus on the
development of SW (programmer-driven) and HW methods to
operate below the safe Vdd limit using selective replication to
detect and correct sporadic errors and also devise a probabilistic
model for near- and far- future devices that provides failure rates
for SRAM cells when Vdd is below the safe limit in order to build
a statistical distribution.

Reference
[1] Combining Error Detection and Transactional Memory for Energy-
efficient Computing below Safe Operation Margins. Gulay Yalcin,
Anita Sobe, Alexey Voronin, Jons-Tobias Wamhoff, Derin
Harmanci, Adrián Cristal, Osman Unsal, Pascal Felber, Christof
Fetzer, In 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP 2014) - Feb
2014 (accepted and will appear in the proceedings).

[2] FaulTM: error detection and recovery using hardware transactional
memory. Gulay Yalcin, Osman Unsal, and Adrian Cristal. 2013.
In Proceedings of the Conference on Design, Automation and Test
in Europe (DATE '13). EDA Consortium, San Jose, CA, USA, 220-
225.

