
Dynamic Verification for Hybrid Concurrent Programming
Models

Erdal Mutlu
Koc University

ermutlu@ku.edu.tr

Vladimir Gajinov
Barcelona Supercomputing

Center
vladimir.gajinov@bsc.es

Adrián Cristal
Barcelona Supercomputing

Center
adrian.cristal@bsc.es

Serdar Tasiran
Koc University

stasiran@ku.edu.tr

Osman S. Unsal
Barcelona Supercomputing

Center
osman.unsal@bsc.es

1. INTRODUCTION
Most modern computation platforms feature multiple CPU
and GPU cores. For many large applications, it is more
convenient for programmers to make use of combination of
di↵erent programming models to coordinate di↵erent kinds
of concurrency and communication in the program. In this
paper, we explore hybrid concurrent programming models
that combine shared memory with dataflow abstractions.
Shared memory multi-threading is ubiquitous in concurrent
programs. By contrast, in the dataflow programming model,
the execution of an operation is constrained only by the
availability of its input data – a feature that makes dataflow
programming convenient and safe when it fits the problem
at hand.

Using the dataflow programming model in conjunction with
shared memory mechanisms can make it convenient and nat-
ural for programmers to express the parallelism inherent in
a problem as evidenced by recent proposals [4, 8] and adop-
tions [5, 6, 7]. The proposed hybrid programming models [4,
8] provide programmers with dataflow abstractions for defin-
ing tasks as the main execution unit with corresponding data
dependencies. Contrary to the pure dataflow model which
assumes side-e↵ect free execution of the tasks, these models
allow tasks to share the data using some form of thread syn-
chronization, such as locks or transactional memory (TM).
In this way, they facilitate implementation of complex algo-
rithms for which shared state is the fundamental part of how
the computational problem at hand is naturally expressed.

Enabling a combination of di↵erent programming models
provides a user with a wide choice of parallel programming
abstractions that can support a straightforward implementa-
tion of a wider range of problems. However, it also increases
the likelihood of introducing concurrency bugs, not only
those specific to a given well-studied programming model,
but also those that are the result of unexpected program be-
havior caused by an incorrect use of di↵erent programming
abstractions within the same program. Since the hybrid
dataflow models we consider in this paper are quite novel,
many of the bugs that belong to the latter category may
not have been studied. The goal of this work is to identify
these bugs and design a verification tool that can facilitate
automated behavior exploration targeting their detection.

We present a dynamic verification tool for characterizing
and exploring behaviors of programs written using hybrid
dataflow programming models. We focus in particular on
the Atomic DataFlow (ADF) programming model [4] as a
representative of this class of programming models. In the
ADF model, a program is based on tasks for which data
dependencies are explicitly defined by a programmer and
used by the runtime system to coordinate the task execu-
tion, while the memory shared between potentially concur-
rent tasks is managed using transactional memory (TM).
While ideally these two domains should be well separated
within a program, concurrency bugs can lead to an unex-
pected interleaving between these domains, leading to in-
correct program behavior.

We devised a randomized scheduling method for exploring
programs written using ADF. The key challenge in our work
was precisely characterizing and exploring the concurrency
visible and meaningful to the programmer, as opposed to
the concurrency present in the dataflow runtime or TM im-
plementations. For exploration of di↵erent interleavings, we
adapted the dynamic exploration technique “Probabilistic
Concurrency Testing (PCT)” [3] to ADF programs in order
to amplify the randomness of observed schedules [2].

2. MOTIVATION
In this section, we illustrate the e↵ectiveness of ADF pro-
gramming model on a simple example and describe an unex-
pected execution scenario for motivating our dynamic ver-
ification method. In this example, two input streams of
integers, x and y, are given and the goal is to provide, for
each pair of tokens consumed from these streams, the larger
of the two values, and also to maintain the global maximum
of all values received on both streams. Figure 1 shows how
this program is implemented in pure dataflow, shared mem-
ory and the ADF programming models. In pure dataflow,
maintaining the global maximum is ine�cient (the max of
two tokens needs to be fed back to the task for the next
step) whereas in the shared memory model, the global max-
imum is treated as the mutable state which can easily be
updated in-place. However, condition variables are needed
to detect the availability of new input tokens. ADF com-
bines the best of two worlds. The atomicity of the code in
the “atomic” block in Figure 1-b and c can be ensured using



locks or transactional memory.

Figure 1: Computing maxima using: a) dataflow, b)

shared memory and c) ADF

Due to the asynchronous concurrent execution of tasks in
the ADF model, users can face unexpected execution orders
causing atomicity violations between dataflow tasks. To il-
lustrate such a behavior, consider two ADF tasks, max min

(Figure 2) that compute the maximum and minimum values
from two input streams while updating a global minimum
and maximum, and comp avg that uses the output streams
provided by max min for comparing the average values of
g max and g min with the input values and returning the
bigger one. As seen in Figure 2-c, the dependencies between
these tasks can be expressed with ADF programming model
naturally as shown in Figure 2-a and b. However, while
these particular implementations appear correct separately,
when combined, they may result in unexpected behavior
in an ADF execution. As the updates on the global vari-
ables, g max and g min, are performed in separate atomic
blocks, concurrently running tasks can read incorrect values
of global variables. Imagine an execution where first pair
from the input streams are processed by max min and than
passed to comp avg. During the execution of comp avg,
max min can start to process the second pair and update
g max value causing comp avg to read the new g max value
from the second iteration while reading g min value from
the first one. Such concurrency scenarios that arise due to
an interaction between dataflow and shared memory may be
di�cult to foresee for a programmer and are not addressed
properly by verification methods for pure dataflow or pure
shared memory model.

Figure 2: Motivating example

3. OUR METHOD
The ADF programming model has an inherently asynchronous
concurrent execution model where tasks can be enabled and
executed multiple times. In addition, programmers are al-
lowed to provide their own relaxed synchronizations using
transactional memory in ADF tasks, which can possibly in-
fluence the dataflow execution. In order to fully investigate

behaviors of programs written using a hybrid model such as
ADF, the dynamic exploration technique has to be aware of
both the dataflow structure and the specifics of the shared
memory synchronization mechanism. Furthermore, the dy-
namic verification tool should not simply instrument the
platform implementations for transactional memory, atomic
blocks and dataflow. This would not only be very ine�-
cient, but it would not provide value to the programmer.
The user of a hybrid concurrent programming model is not
interested in the concurrency internal to the platform im-
plementing the model, which should be transparent to the
programmer, but only in the non-determinism made visible
at the programming model level.

For our initial study, we investigated the PCT algorithm
which defines a bug depth parameter as the minimum num-
ber of ordering constraints that are su�cient to find a bug
and uses a randomized scheduling method, with provably
good probabilistic guarantees, to find all bugs of low depth.
PCT makes use of a priority based scheduler that maintains
randomly assigned priorities for each thread and a list of
randomly assigned priority change points for simulating the
ordering constraints.

We build upon the PCT algorithm but redefine priority as-
signment points, making use of TM transaction boundaries
for priority change point assignment. Rather than using
the original ADF work-stealing scheduler based on a pool
of worker threads, we have devised a new scheduler that
creates a thread with randomly assigned priority for each
enabled task and sequentially schedules the threads by hon-
oring their priorities. Likewise, instead of using the original
priority change point assignment from the PCT method, we
narrowed possible priority change point location to the be-
ginning and the end of atomic regions only. Further, we
devised a monitoring mechanism for checking globally de-
fined invariants during an execution. Di↵erently from pure
shared memory programming models, writing global prop-
erties as assertion is not practical within ADF tasks that
are executing in a dataflow fashion. We provide the users
with the capability to write global invariants on shared vari-
ables. These can be checked at every step by our tool, or at
randomly assigned points in the execution.

4. ONGOING WORK
We have started by investigating ADF implementations of
DWARF [1] benchmark applications. These applications
are mostly numerical computations that have a structured
dataflow with little shared memory accesses. We believe
these to be a good initial set of benchmarks for discovering
possibly missed cases in dataflow-heavy implementations. In
later experimental work, we plan to investigate the dynamic
verification of the ADF implementation of a parallel game
engine. In this complex application, the game map is di-
vided between di↵erent tasks that process the objects mov-
ing between map regions. Dataflow is used to coordinate
the execution of tasks that correspond to di↵erent game re-
gions, whereas the TM synchronization is used to protect
lists of objects, associated with each game region, that hold
all the objects physically located within a region. By using
the game engine application, we wish to evaluate how well
our exploration method behaves with performance-critical
applications characterized with highly-irregular behavior.



5. REFERENCES
[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,

K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson,
K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A
view of the parallel computing landscape. Commun.
ACM, 52(10):56–67, Oct. 2009.

[2] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur.
Producing scheduling that causes concurrent programs
to fail. PADTAD ’06, pages 37–40, New York, NY,
USA, 2006. ACM.

[3] S. Burckhardt, P. Kothari, M. Musuvathi, and
S. Nagarakatte. A randomized scheduler with
probabilistic guarantees of finding bugs. ASPLOS XV,
pages 167–178, New York, NY, USA, 2010. ACM.

[4] V. Gajinov, S. Stipic, O. Unsal, T. Harris, E. Ayguade,
and A. Cristal. Integrating dataflow abstractions into
the shared memory model. SBAC-PAD, pages 243–251,
2012.

[5] Intel. Intel threading building blocks - flow graph.
http://www.threadingbuildingblocks.org/docs/

help/reference/flow_graph.htm.
[6] Microsoft. Task parallel library - dataflow. http://

msdn.microsoft.com/en-us/library/hh228603.aspx.
[7] OpenMP. Openmp 4.0 specification. http:

//www.openmp.org/mp-documents/OpenMP4.0.0.pdf.
[8] C. Seaton, D. Goodman, M. Luján, and I. Watson.

Applying dataflow and transactions to Lee routing. In
Workshop on Programmability Issues for Heterogeneous
Multicores, 2012.


