
TM-Pure in GCC Compiler Allows
Consistency Oblivious Composition

Hillel Avni
Tel-Aviv University

hillel.avni@gmail.com

Adi Suissa
Ben-Gurion University
adisuis@cs.bgu.ac.il

Abstract
In consistency oblivious programming (COP), we leave the read-
only prefix of a data structure operation, out of the TM transaction.
Then we complete the operation in a transaction by verifying the
prefix output, and performing updates. In STM, this removes a large
part of the overhead, and potential contention.

If a TM transaction can not be suspended, as the case for
example with Haswell HTM block, when we want to concatenate
several COP operations in a single transaction, we have to run all
the read-only prefixes separately before the transaction, and log
their outputs, and then start a transaction to validate all outputs and
complete the operations. This format does not allow a transaction
to update a data structure and later access it, as it will miss its own
updates. Also, if the transaction started with an updating operation,
such as a dequeue, it can not benefit from COP anymore.

We use TM-Pure mode, supported by GCC, to concatenate
COP operations which access a data structure that was modified
earlier by the transaction. As Haswell HTM transaction can not
be suspended, GCC with TM-Pure mode, is demonstrating much
better performance than HTM for many workloads, by composing
COP operations.

Keywords Transactional-Memory, Consistency Oblivious Pro-
gramming, Data-Structures

1. STM in GCC Compiler
In GCC STM support, the transaction code is marked by the
transaction atomic{} directive. Inside the transaction, all ac-

cesses to shared memory are instrumented, which means instead of
plan load or store machine instruction, a library function is called.
The function can lock the location for writing, log it for later veri-
fication or rollback, or check the version it, according to the STM
algorithm implemented in the library.

The STM libraries are divided by a set of typical characteristics.
A library is either write through, which means it may write the
newly stored value to the destination address in memory, or write
back, so the value is kept in a redo log for commit time, visible
only locally. It can be serial, i.e., just take a global lock, or have
multi-locks, which means it maps a lock per set of addresses, like a
set of addresses may map to an index in the cache. Once the library
executes a transactional store, it may lock the address immediately,
in encounter time, or just in commit time. If the library is write-
through, it must be encounter-time-locking, to maintain isolation.
TM research proves that the most efficient and scalable STM is
multi-lock, encounter-time and write-through [4, 5], and thus, this
is the default algorithm in GCC STM library.

During compilation, The compiler infers what addresses in the
transaction can be shared and plants a call to a store or load function
from its library instead of the plan machine instruction.

In GCC, the transaction code can call functions that are at-
tributed by either transaction safe or transaction pure

[7]. transaction safe functions are transactionally instru-
mented, but the transaction pure functions are kept unchanged.

The philosophy behind STM is that the programmer can be
trusted, and can make the decision if a segment of code does not
require instrumentation. As STM, unlike TM in hardware, is not
aware of any non transactional access to memory, it is assumed
such races are in the jurisdiction of the user. The transaction pure

is not changing this philosophy.
A transaction can call transaction cancel, which will abort

the transaction, i.e., discard and undo all its updates, and rollback
the program as if the transactions never happened. The STM algo-
rithm is best effort, in the sense that if it does not manage to commit
successfully in a certain number of retries, it takes a global lock and
executes the code pessimistically. In serial fall back mode, a trans-
action must not call call transaction cancel, otherwise it may
hit a live lock.

2. TM-Pure and Suspended Semantics
The TM-Pure functions, with the default write-through library, has
surprisingly similar semantics to future POWER architecture HTM
block [2] suspended state, which is marked by the newly introduced
instructions tsuspend and tresume. We will follow the POWER
semantics and see how they are correlated in TM-Pure code of GCC
STM:

SEMANTIC 1. Until failure occurs, load instructions that access
memory locations that were transactionally written by the same
thread will return the transactionally written data.

As the address was written transactionally by GCC, it is locked,
and the value is in memory. This implies that a load instruction
from an address that was previously written by the transaction, will
return the transactionally written value.

SEMANTIC 2. In the event of transaction failure, failure recording
is performed, but failure handling is deferred until transactional
execution is resumed.

If our STM transaction got intersected by another transaction, it
will definitely fail when we return from the TM-Pure code.

SEMANTIC 3. The initiation of a new transaction is prevented.

This can be prevented in compile time, but currently we trust
the user for it.

SEMANTIC 4. Store instructions that access memory locations that
have been accessed transactionally (due to load or store) by the
same thread will cause the transaction to fail.

1 2013/12/3


