
Fairness vs. Linearizability

in a Concurrent FIFO Queue

Mike Dodds, Andreas Haas, Christoph M. Kirsch

We are interested in the design and implementations as well as correctness conditions of
e�cient and multicore-scalable concurrent data-structures. In particular, we are exploring
tradeo↵s between their performance, scalability, and semantics. In this paper we discuss the
relation between linearizability and what we call fairness of concurrent FIFO queues.

Intuitively, in a correct FIFO queue an element which gets enqueued first also gets de-
queued first. However, in a concurrent environment the order in which elements get inserted
and removed is not clear as some operations may execute faster than others. For example,
a dequeue operation may start before but return after another dequeue operation. Thereby
an element in the queue may get returned after elements which were inserted later but get
removed by faster dequeue operations. We say that a FIFO queue implementation is fair if
any element is returned by its dequeue operation before any other element is returned which
was inserted later. An element b is inserted later than an element a if the insert operation
of a returns before the invocation of the insert operation of b according to a global time. A
similar kind of fairness is discussed in [HKLP12].

The correctness condition linearizability [HW90] tolerates unfair behavior as it only re-
quires that there exists a linearization where the queue shows correct behavior independent
of the times dequeue operations actually return. In this paper we presents an optimization
of a recently designed concurrent FIFO queue which, although incorrect according to lin-
earizability, is still quiescently consistent [AHS94] and moreover provides more fairness and
performance than a second optimization which is linearizable.

The key idea of the underlying FIFO queue is that elements are timestamped before they
are enqueued into an unordered bu↵er. Dequeue operations search through the bu↵er and
try to remove the element with the earliest timestamp. If a global atomic counter is used to
create unique and strictly increasing timestamps, then an optimization described in [HPS13]
is possible: Assume there exist two elements a and b in the queue with timestamps 4 and 5,
respectively, and assume that two dequeue operations d1 and d2 are executed concurrently.
If d2 knows that there exists a second dequeue operation d1, then d2 can remove b immedi-
ately knowing that the concurrent operation d1 will remove a. Intuitively, d2 considers the
element a as already removed.

The optimization can be applied naively on our FIFO queue as follows: In addition to
timestamping elements, also dequeue operations get timestamped. Each dequeue operation
removes the element with the same timestamp as itself. In the following we call this opti-
mization the linearizable optimization. The linearizable optimization has several drawbacks:
If an enqueue operation gets interrupted between acquiring a timestamp and inserting the
element into the bu↵er, then the matching dequeue operation would have to wait for the
enqueue operation to complete or it would have to make sure that a later dequeue opera-
tion will remove the element. If the dequeue operation gets interrupted after acquiring the
timestamp, then the queue shows unfair behavior.

1



time

enqueue(a)

dequeue()!b

enqueue(c)enqueue(b)

dequeue()!a

dequeue()!c

TS:2 TS:3

TS:1TS:3TS:2TS:1

Figure 1: Example where the optimization is fair but unsound according to linearizability.

Both problems are solved by what we call the fair optimization: A dequeue operation
still acquires a timestamp, but di↵erent to the linearizable optimization it does not try to
find and remove the element with the same timestamp but any element with the same or
an earlier timestamp. If no such element is found, then the dequeue operation removes the
element with the earliest timestamp it encounter in the bu↵er.

The queue with the fair optimization is quiescently consistent because if a dequeue opera-
tion is executed in a quiescent state, then it will return the element with the same timestamp.
However, the optimization is incorrect according linearizability. Consider the execution in
Figure 1 where horizontal lines represent the execution times of operations, # and " mark
the invocation and response of operations, respectively, and • and ⇥ mark the time when a
dequeue operation acquires a timestamp and removes an element, respectively. First three
elements a, b, and c are enqueued sequentially with timestamps 1, 2, and 3. Then a de-
queue operation acquires a timestamp 1 but gets interrupted afterwards. A second dequeue
operation acquires a timestamp 2 and removes b. After the response of the second dequeue
operation a third dequeue operation starts, acquires a timestamp 3, and removes the ele-
ment a because the timestamp of a is lower than the timestamp of the dequeue operation.

In this execution, the element a is inserted before but removed after b which clearly
violates the sequential specification of a queue. Had the dequeue operation with timestamp 1
returned a, the behavior would have been linearizable, but a would have been treated even
more unfairly than in our example execution as both b and c would have been returned
before a then.

The example shows that linearizability does not imply fairness, and that fairness does
not require linearizability. Preliminary measurements showed that the optimized queue out-
performs most state-of-the-art concurrent FIFO queues in both execution time and fairness.

References

[AHS94] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM,
41, 1994.

[HKLP12] A. Haas, C.M. Kirsch, M. Lippautz, and H. Payer. How FIFO is your concurrent
FIFO queue? In RACES. ACM, 2012.

[HPS13] T.A. Henzinger, H. Payer, and A. Sezgin. Replacing competition with cooperation
to achieve scalable lock-free FIFO queues. Technical Report IST-2013-124-v1+1,
IST Austria, 2013.

[HW90] M.P. Herlihy and J.M. Wing. Linearizability: a correctness condition for concur-
rent objects. TOPLAS, 12(3), 1990.

2


