On the COST of concurrency
In Transactional Memory

Petr Kuznetsov
TU Berlin/DT-Labs

Joint work with Srivatsan Ravi

Euro-TM, 2011

STM is about ease-of-programming
and efficient use of concurrency

Does it come with a cost?

= Ease-of-programming: transactions with all-
or-nothing semantics

v'Opacity: total order on transactions, including
aborted ones, every read returns the last
committed value

= Concurrency: running multiple transactions
in parallel

v"When a transaction must commit?

Progress conditions:
when to commit?

= Single-lock: if no overlap with another transaction
v'Zero concurrency

= Progressiveness: if no overlap with a conflicting
transaction
v'Some concurrency

= Permissiveness: whenever possible (without
affecting correctness)

v'Maximal (?) concurrency

How to measure the cost of concurrency?

= The number of expensive synchronization
patterns [Attiya et al.,, POPL 2011] :

v'Read-after-write (RAW)
v Atomic-write-after-read (AWAR)

Our results

= |n every permissive STMSs, a transaction performs
Q(k) RAW/AWAR patterns for a read set of size k

= There exist progressive STMs that incur at most
one RAW or AWAR per transaction

Read-after-Write: imposing order
in relaxed memory models

In the code

write(X,1)
read (Y)

In almost all modern architectures

read (Y)

write(X,1)

~

Read-after write
reordering

Enforcing the order

= read-after-write (RAW) fence

write(X,1)
fence () // enforce the order
read (Y)

4

Enforcing the order

= atomic-write-after-read (AWAR)
v'E.g., CAS, TAS, fetch&add,...

atomic{
read (Y)

write(X,1)

Why care about RAW/AWARs?

= One RAW fences/AWAR takes ~50 RMRs!

= But [Attiya et al., POPL 2011] any implementation
that exports strongly non-commutative methods
must use RAW/AWARs

v'Queues, counters, sets, ...
v'Mutual exclusion

= ... and transactions in STMs

10

Non-commutative transactions

T,
W(X,1l) rR(y) TryC
[ey o0 g |
C— T —1 1]
T Ll
1 1]
WY, 1) R(X) g0
T,

T, influences T, and T, influences T, =>
= T, must write to some base object x
= ...and then read from some y#x

* (or AWAR is performed)

At least one RAW/AWAR is used in T,

11

In single-lock STMs, every reading and updating
committed transaction performs at least one
RAW/AWAR

Extends to progressive and permissive STMSs

12

Permissive STMs

R(X;) R(X,) ... R(X)

I— | | | | | |
L

[||||—|§
L' '

R (X;) W(X) TryC

[R(X,,)] and [W(X_.);TryC] are strongly non-commutative
=> T, enforces R(X,,) to perform a RAW/AWAR

=> T, performs Q(m) RAW/AWARs

13

In permissive STMSs, a transaction performs at least
one RAW/AWAR per read

What about weaker progress conditions?

14

What about progressiveness?

Constant (multi) RAW/AWAR implementations:

1. Multi-trylocks: acquire a lock on a set of objects
using one multi-RAW

2. mCAS: atomically verify the read-set and update the
write set using at most one AWAR

No RAW/AWAR in read-only or aborted transactions

15

Protected data

= Intuition: at some moment, every transaction
must protect all objects in its write set

v'E.g., by acquiring locks or using time-outs

= |n every progressive disjoint-access-parallel STM,
each transaction has to protect QO(k) objects for a

write set of size k

16

Summary

Trade-offs between the degree of concurrency and
the cost of implementation

» Linear RAW/AWAR complexity for permissive
STMs

» Constant RAW/AWAR complexity for progressive
STMs (optimal)
v Extends to strong progressiveness

= But even a progressive STM requires to protect a
linear number of objects (e.g., acquire a linear
number of locks)

17

Future challenges

= Exploring the space of progress conditions
v'Obstruction-freedom, ...
= Relaxing opacity

v'View transactions, elastic transactions, virtual world
consistency, snapshot isolation, etc.

= Refining the notion of protected data

More in TR, CoRR, http://arxiv.org/abs/1103.1302,
2011

18

THANK YOU!

QUESTIONS?

19

What’s wrong with reordering?

Process P: Process Q:
write (X, 1) write (Y, 1)
read (Y) read (X)
W(X,1) R(Y) W(X, 1)
P+ —
L1 L1
Q i 1 1 1

20

P @

Possible outcomes

Out-of-order: both think
they run solo

P reads before
Q writes

O O O Q

Q reads after P reads after Q reads before
P writes Q writes P writes

21

Read-after-Write: imposing order
in relaxed memory models

write A
read B

write A
fence
read B

In almost all modern architectures

read B — |
write A

Read-after write
reordering

RAW fence:
enforce order

22

