
Serverless Dataflows: A Decentralized Workflow
Execution Engine with Predictive Planning

Diogo Jesus
Instituto Superior Tecnico (IST), INESC-ID Lisboa

Lisbon, Portugal
diogofjesus@inesc-id.pt

Abstract—Serverless computing offers operational simplicity
and automatic scalability, but executing multi-task workflows
in Function-as-a-Service (FaaS) environments remains inefficient
due to stateless functions and heavy reliance on external storage.

We present an adaptive decentralized DAG engine that uses
historical metadata to guide task scheduling, combining metadata
management, static workflow planning, and low-synchronization
worker-level scheduling. Compared to WUKONG, a state-of-
the-art decentralized serverless DAG engine, our most resource-
efficient planner reduces execution time by 12.6% and resource
consumption by 36%. For users prioritizing speed, our fastest
planner achieves a 57.5% shorter makespan at the cost of a 114%
increase in resource usage.

Index Terms—Cloud Computing, Serverless, FaaS, Serverless
Workflows, DAG, Metadata, Workflow Prediction

I. INTRODUCTION

Function-as-a-Service (FaaS) simplifies application deploy-
ment by abstracting infrastructure management and providing
automatic, fine-grained scalability with pay-per-use pricing.
These advantages have driven its adoption for event-driven
systems and lightweight microservices on platforms such as
AWS Lambda [1], Azure Functions [2], and Google Cloud Run
Functions [3]. Recently, FaaS has also been used to execute
complex scientific and data-processing workflows, typically
represented as Directed Acyclic Graphs (DAGs). However,
running such workflows efficiently on serverless platforms
remains challenging.

Serverless environments introduce cold-start latency, lack
direct inter-function communication, and often require exter-
nal services for intermediate data exchange. Platform-specific
workflow languages restrict portability, while the stateless and
opaque execution model complicates resource optimization.
Existing solutions, including stateful serverless services, ex-
tended FaaS runtimes, and workflow-level schedulers, partially
address these issues but still suffer from two key limitations:
(1) one-step scheduling, which considers only the current
task rather than the full workflow context, and (2) uniform
resource allocation, which is inefficient when tasks vary in
computational or memory demands. Moreover, no prior work
leverages historical execution metadata to inform scheduling
decisions across an entire workflow.

This motivates our central research question: given knowl-
edge of workflow structure and historical task behavior, can
we make globally informed scheduling decisions that mini-
mize makespan and maximize resource efficiency in a FaaS
environment?

To answer this, we propose an adaptive decentralized server-
less workflow execution engine that uses historical metadata to

generate informed task allocation plans executed cooperatively
by FaaS workers. This approach reduces reliance on external
storage for intermediate data and avoids the inefficiencies of
homogeneous worker configurations.

The key contributions of this work are:
• An analysis of current serverless workflow orchestration

approaches and their limitations;
• A decentralized execution engine that overcomes one-step

scheduling and uniform-resource constraints by using
historical metadata to generate workflow-wide execution
plans;

• Evaluation of our solution, demonstrating the benefits of
using historical execution data to improve task placement,
reduce external storage usage, and enhance overall work-
flow efficiency on FaaS platforms.

II. ARCHITECTURE

As we have stated, most existing serverless schedulers em-
ploy an approach where decisions are made based solely on the
immediate workflow stage without considering the global im-
plications. We hereby propose a novel adaptive decentralized
serverless workflow execution engine that leverages historical
metadata from previous workflow runs to make lightweight
predictions and create workflow plans before they execute.
Such plans include information about where to execute each
task (locality), the worker resource configuration to use (how
much vCPUs and Memory) and optimizations. At run-time,
the workers will execute the plan and apply the specified
optimizations. Our solution was written in Python, a language
known for its simplicity and popularity among data scientists.

A. Workflow Definition Language

We will now present our workflow language that trans-
forms ordinary Python functions into parallelizable tasks,
automatically managing dependencies and execution through
an intuitive decorator-based API. It is inspired by WUKONG,
Dask and Airflow: the user creates workflows by composing
individual Python functions, as shown in Listing 1. In this
example, we define two tasks, task_a and task_b, and
then compose them into a workflow by passing their results
as arguments to the next task.

Listing 1: DAG definition example
1 # 1) Task definition
2 @DAGTask
3 def task_a(a: int) -> int:
4 return a + 1
5

6 @DAGTask(forced_optimizations=[
PreLoadOptimization()])

7 def task_b(*args: int) -> int:
8 return sum(args)
9

10 # 2) Task composition (DAG/Workflow)
11 a1 = task_a(10)
12 a2 = task_a(a1)
13 a3 = task_a(a1)
14 b1 = task_b(a2, a3)
15
16 # 3) Workflow execution
17 b1.compute(storage_configs, planner,

planner_config)

While this example passes data directly, passing storage
references (e.g., cloud object storage URLs) as function argu-
ments is a common pattern in serverless workflows that is not
supported by our solution. This limitation could be addressed
through code instrumentation, wherein storage access APIs
would be intercepted to record relevant metrics.

When task_a(10) is invoked, it doesn’t actually run the
user code. It instead creates a representation of the task, which
can be passed as argument to other tasks. Workflow planning
and execution occur only when .compute() is called on
the final sink task (b1) (line 19), at which point the system
backtracks through task dependencies to construct a DAG
representation of the entire workflow.

One limitation of our DAG definition approach is that it
doesn’t support ”dynamic fan-outs” (e.g., creating a variable
number of tasks depending on the result of another task) on
a single workflow. This is a powerful and expressive feature,
but that is seldom supported in other DAG definition languages
(e.g., Dask [4], WUKONG [5], Unum [6], Oozie [7] do not
support it). These languages require the user to split the
workflow into multiple workflows, one for each dynamic fan-
out: one workflow runs up to the task that generates a list of
results, while a second workflow starts with a number of tasks
that depends on the size or contents of that list.

Apache AirFlow 1 supports this feature through an extension
to their DAG language, allowing a variable number of tasks
to be created at run-time depending on the number of results
produced by a previous task. Implementing similar functional-
ity is possible, but it would reduce the accuracy of predictions.
This is because we would also need to predict the expected
fan-out size, and any errors in that prediction could amplify
inaccuracies in the predictions for the rest of the workflow.

We will now present our solution architecture overview,
highlighting the core layers of our decentralized serverless
workflow execution engine.

B. Architecture Overview
Figure 1 shows the overall architecture and logical flow

of our decentralized serverless workflow execution engine,
which is organized into 3 high-level layers. The upper part
of the figure represents the components that run on the user’s
machine, while the lower part represents the components that
run outside the user’s machine.

After the user writes its workflow in Python, as demon-
strated in Section II-A, it can then specify a planning algo-
rithm, which will run locally to generate a static workflow

1https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-
scheduling/dynamic-task-mapping.html

plan, defining a task-to-worker mapping and other task-level
optimization hints for FaaS workers. Once the plan is created,
the client launches the initial workers for the root tasks,
kicking off workflow execution. The user program then waits
for a storage notification indicating workflow completion,
when it finally retrieves the result from storage.

The following sections should provide a deeper understand-
ing of each layer as well as how the user interacts with the
system.

1) Metadata Management: Responsible for collecting and
storing task metadata from previous executions. It then
uses this metadata to provide predictions regarding task
execution times, data transfer times, task output sizes,
and worker startup times;

2) Static Workflow Planning: Receives the entire work-
flow, represented as a Directed Acyclic Graph (DAG),
and a ”Planner” (an algorithm chosen by the user). This
Planner will use the predictions provided by Metadata
Management to create a static workflow plan/schedule;

3) Decentralized Scheduling: This component is inte-
grated into the workers, and it is responsible for execut-
ing the plan generated by the Static Workflow Planning
layer, applying optimizations and delegating tasks as
needed without the need for a central entity.

There are 3 distinct computational entities involved in this
system:
• User Computer: Responsible for creating workflow

plans, submitting them (triggering workflow execution),
and receiving its results;

• Workers: FaaS workers that execute workflow tasks and
handle scheduling, task delegation, and launching new
workers without a central scheduler. They also collect
and upload relevant metadata;

• Storage: Consists of an Intermediate Storage for task
outputs which may be needed for subsequent tasks and
a Metadata Storage for storing metrics (used for pre-
dictions) and information crucial to workflow execution
(e.g., notifications about task readiness and completion).

Next, we will go through the three layers that compose
our solution: Metadata Management, Static Workflow Plan-
ning, and Decentralized Scheduling.

C. Metadata Management

The goal of the Metadata Management layer is to provide
accurate task-wise predictions to help the planner algorithm
chosen by the user make better decisions. To achieve this,
while the workflow is running, we collect metrics (i.e., task
execution time, data transfer size and time, task input and
output sizes, and worker startup time).

Storing these metrics enables us to provide a prediction API,
which estimates upload/download times, worker startup times
(whether it’s cold or warm), and function output sizes and
execution times. To improve accuracy, metrics are kept sepa-
rate for each workflow meaning that, even if two workflows
use the same function or task code, their metrics are stored
independently. This design choice reflects our assumption that
different workflows have different characteristics and may
have different execution patterns. Metrics are batched and

Fig. 1: Solution Architecture

uploaded when the worker shuts down, to reduce runtime
overhead.

The prediction methods take an additional parameter, SLA
(Service-level Agreement), which is specified by the user
and influences the selection of prediction samples. For ex-
ample, SLA=Percentile(50) will use the median of the
historical samples, whereas SLA=Percentile(80) will
return a more conservative estimate. By allowing the user to
control this parameter, the API can provide predictions that
are tailored to different performance requirements.

In addition, metrics such as worker startup time, data
transfer time, and task execution time are tied to the specific
worker resource configuration. To account for this, our predic-
tion method follows two paths. If we have enough historical
samples for the same resource configuration, we use only
those. Otherwise, we fall back to a normalization strategy:
we adjust samples from other memory configurations to a
baseline, use those to estimate execution time, and then rescale
the result back to the target configuration.

D. Static Workflow Planning
This layer executes on the client, and it receives the work-

flow representation and a workflow planning algorithm chosen
by the user. Its job is to run the planning algorithm, providing
it access to the workflow DAG and predictions exposed by the
Metadata Management layer (Section II-C).

Planners can run workflow simulations based on the pre-
dictions, allowing them to experiment with different resource
configurations for different tasks and different task co-location
strategies. Additionally, they can apply different user-selected
optimizations. The accuracy of these simulations depends on
the accuracy of the predictions exposed by the Predictions
API.

For each task, the planner assigns both a worker_id
and a resource configuration (vCPUs and memory). The
worker_id specifies the worker instance that must execute
the task, analogous to the “colors” in Palette Load Balanc-
ing [8], but in our case this assignment is mandatory rather
than advisory, giving strict control over execution locality. Two

tasks assigned the same worker_id will be executed on
the same worker instance. If worker_id is not specified,
workers will, at run-time, have to decide whether to execute
or delegate those tasks, similar to WUKONG’s [5] scheduling.
We refer to these workers as ”flexible workers”.

Users can select from three provided planners or implement
their own planner by implementing an interface. All planners
have access to the predictions API as well as the workflow
simulation. The planners the user can choose from are the
following:

1) WUKONG: All tasks will use the same worker config-
uration (specified by the user) and won’t be assigned a
worker_id, meaning they will be executed by ”flexi-
ble workers”. This is a dynamic scheduling approach
where tasks aren’t tied to specific workers, trying to
reproduce WUKONG’s scheduling behavior;

2) Uniform: Tasks use a common worker configura-
tion specified by the user, with each task assigned a
worker_id, allowing co-location of tasks;

3) Non-Uniform: Tasks can use different worker configu-
rations (a list of available resources is specified by the
user). Each task is assigned a worker_id. This algo-
rithm starts by assigning the best available resources to
all tasks. Then, it runs a resource downgrading algorithm
that attempts to downgrade resources of workers outside
the critical path as much as possible without introducing
a new critical path.

Both the Uniform and Non-Uniform planners follow a two-
phase approach for task allocation: Resource Configuration
assignment followed by Worker ID assignment. The planners
differ in their resource allocation strategies. The Uniform
planner applies a single, user-specified CPU and memory
configuration to all tasks, while the Non-Uniform planner
initially selects the most powerful configuration from the
user-specified options for each task. After assigning initial
resources, both planners employ the logic detailed in Al-
gorithm 1 (in Appendix) for Worker ID assignment. This
algorithm implements a balanced clustering strategy that

Algorithm 1 Worker Assignment Algorithm (used by Uniform
and Non-Uniform planners)
Require: nodes, predictions, MAX CLUSTERING
1: assigned← ∅

▷ nodes are topologically sorted
2: for all n ∈ nodes do
3: if n ∈ assigned then
4: continue
5: end if
6: if n.upstream = ∅ then ▷ root nodes
7: roots← {r ∈ nodes | r.upstream = ∅ ∧ r /∈ assigned}
8: ASSIGNGROUP(null, roots)
9: else if |n.upstream| = 1 then ▷ 1→1 or 1→N

10: u← n.upstream[0]
11: if |u.downstream| = 1 then
12: ASSIGNWORKER([n], u.worker) ▷ reuse worker
13: else ▷ 1→N
14: fanout← {d ∈ u.downstream | d /∈ assigned}
15: ASSIGNGROUP(u.worker, fanout)
16: end if
17: else ▷ N→1 (assign to worker of upstream task with the largest total output)
18: outputs ← {u.worker : predictions.output size(u) | u ∈

n.upstream}
19: worker w greatest acc output ←

argmaxw∈outputs outputs[w]
20: ASSIGNWORKER([n], worker w greatest acc output)
21: end if
22: end for

uses history to try maximizing data locality while avoiding
resource contention. It achieves this by launching the minimal
number of new workers necessary to maintain efficiency, while
avoiding overloading any individual worker with excessive
task assignments; and minimizing network data transfers by
co-locating tasks whose outputs are expected to be larger. This
clustering approach achieves a balance between resource
contention and data locality, contrasting with WUKONG.

After Worker ID assignment, the Non-Uniform planner runs
an additional algorithm that attempts to downgrade resources
of workers outside the critical path as much as possible with-
out introducing a new critical path, by iteratively simulating
the global effect of downgrading resources of workers outside
the critical path with different configurations.

With the information they have access to, planners can
estimate whether it is worthwhile to offload a task to a
more powerful worker. This involves weighing the overhead
of uploading the input data, waiting for the worker to be
provisioned, downloading dependencies, and then executing
the task, against the alternative of simply executing the task
on the current, less powerful worker.

Aside from worker_id and resource assignments, plan-
ners can also apply different user-selected optimizations to
further improve the workflow execution. We implemented and
tested two optimizations, pre-warm and pre-load:

1) pre-warm(worker config, delay s): This optimization
triggers a special invocation to the FaaS gateway
to proactively launch a worker with the specified
worker_config, masking cold-start latency. The
planner selects a task whose execution window aligns
with the ideal pre-warming interval, so the worker is
neither initialized too early nor too late.

2) pre-load: This optimization allows a worker to proac-
tively download a task’s inputs as soon as its upstream
dependencies complete, using notifications from the
Metadata Storage. This optimization is assigned to tasks
that depend on two or more upstream tasks executed on

Algorithm 2 AssignGroup Procedure
1: function ASSIGNGROUP(up worker, tasks)
2: if tasks = ∅ then return
3: end if
4: exec t← {t : predictions.exec time(t) | t ∈ tasks}
5: out sz ← {t : predictions.output size(t) | t ∈ tasks}
6: median← MEDIAN(exec t.values())
7: longs← {t ∈ tasks | exec t[t] > median}
8: shorts ← SORTLARGEROUTPUTFIRST({t ∈ tasks | exec t[t] ≤

median})

9: ▷ 1) short tasks with bigger outputs on upstream worker
10: if up worker ̸= null ∧ shorts ̸= ∅ then
11: cluster ← shorts[0 : MAX CLUSTERING]
12: ASSIGNWORKER(cluster, up worker)
13: shorts← shorts[MAX CLUSTERING :]
14: end if

15: ▷ 2) pair long tasks with remaining shorts tasks
16: while longs ̸= ∅ ∧ shorts ̸= ∅ do
17: cluster ← [longs[0]] + shorts[0 : MAX CLUSTERING− 1]
18: worker id← NEWWORKERID
19: ASSIGNWORKER(cluster, worker id)
20: longs← longs[1 :]
21: shorts← shorts[MAX CLUSTERING− 1 :]
22: end while

23: ▷ 3) group remaining short tasks
24: while shorts ̸= ∅ do
25: worker id← NEWWORKERID
26: ASSIGNWORKER(shorts[0 : MAX CLUSTERING],

worker id)
27: shorts← shorts[MAX CLUSTERING :]
28: end while

29: ▷ 4) group remaining longs (half-size)
30: half ← max(1, ⌊MAX CLUSTERING/2⌋)
31: while longs ̸= ∅ do
32: worker id← NEWWORKERID
33: ASSIGNWORKER(longs[0 : half], worker id)
34: longs← longs[half :]
35: end while
36: end function

different workers.
Because planners may sometimes lack sufficient information

to make optimal decisions about optimization assignments, it
is important to not only allow the user to select optimizations
at the workflow-level, but also allow them the flexibility to
specify optimizations at the task-level. An example of this
feature is shown in Listing 1, where the user explicitly requests
that task_b applies the pre-load optimization.

Once optimizations are assigned, workflow planning is
complete, and workers can begin execution. Because planning
occurs on the user’s machine (i.e., the machine launching the
workflow), it is responsible for initiating the workflow by
starting the initial workers. From that point onward, workers
dynamically invoke additional workers as needed, following a
choreographed, decentralized execution model.

To illustrate this execution model, Figure 2 provides a
visual trace of how a planned workflow would be executed.
The diagram depicts the workflow with the optimizations
and worker_id assignments for each task. The non-dashed
arrows represent task dependencies, while the dashed arrows
represent interactions with the Intermediate Storage to either
upload or download task data. We can see that task outputs are
only uploaded to storage when there is at least one downstream
task that depends on it and is assigned to another worker.

It is also worth noting that the planner assigned Task
6 to Worker 2. This decision might be due to Worker
2 being more powerful than Worker 1, and because the
output of Task 5 is larger than that of Tasks 4 and 5.

Fig. 2: Planned Workflow Execution Example

Therefore, even if the task were executed on a more powerful
worker (such as Worker 3, which handled Task 3), the
potential performance gain would not offset the additional time
or resources required. This is an example of a planner deciding
to co-locate Tasks 5 and 6 on the same worker to reduce
data movement.

Regarding optimizations, we can see Task 1
pre-warming Worker 3, by making a dummy invocation
to the FaaS gateway, in an attempt to make Task 3’s
worker have a warm start. The pre-load optimization is
used in Task 5, where the planner decided that Worker
2 should start downloading the external dependencies for
Task 6 (Task 3 and Task 4) as soon as they are
available. This pre-loading can begin as soon as Task
6’s dependencies are ready in storage, potentially overlapping
with Task 2’s execution instead of Task 5, as shown in
the figure.

E. Decentralized Scheduling
Since our target execution platform is FaaS, the worker logic

is implemented as a FaaS handler. Due to the decentralized
nature of our solution, workers will be responsible for perform-
ing both task execution and scheduling in a choreographed
manner.

When invoked, a worker receives the workflow structure
with the embedded plan and the task_ids of the tasks it
should execute first. Rather than immediately executing the
initial tasks, the worker first subscribes to TASK_READY and
TASK_COMPLETED events for specific tasks. These events
are essential both for enabling certain optimizations and for
ensuring the worker follows the workflow plan correctly.

After this preparation phase, the worker starts executing its
initial tasks concurrently. The logic for executing tasks is the
following:

1) Gathering Dependencies: Check which dependencies
are missing (not downloaded yet) and download them
from storage. Some dependencies might be present in

the local representation of the DAG if pre-load
was applied, if the same worker executed some of the
upstream tasks, or if the worker already downloaded
large hardcoded data because previous tasks needed it;

2) Executing Task: Execute task code, which is embed-
ded within the workflow representation, similarly to
WUKONG. Tasks’ code execute on a separate thread, to
avoid slowing down or even blocking (e.g., if the task
code calls time.sleep()) the main thread, where the
other coroutines are running;

3) Handling Output: Evaluate whether it’s necessary
to upload the task’s output to storage and emit a
TASK_COMPLETED event. A tasks’ output is uploaded
if there is at least one downstream task assigned to a
different worker, or if it’s the last task of the workflow;

4) Updating Dependency Counters: For each down-
stream task, the perform an atomic increment and get
operation on a ”Dependency Counter” (inspired by
WUKONG [5]) stored in Metadata Storage, which
tracks how many dependencies of a task have been
satisfied. If the counter value is the same as the number
of dependencies for a downstream task, the worker emits
a TASK_READY event for that task, signaling other
workers or workers that aren’t active yet that the task
became ready to execute;

5) Delegating Downstream Tasks: After updating depen-
dency counters, the worker identifies tasks that became
READY and consults the execution plan. Tasks assigned
to itself with no remaining dependencies are executed
(one coroutine per task). For tasks assigned to another
active worker, a TASK_READY event is emitted; for
tasks assigned to an inactive worker, it launches that
worker passing it the task IDs of the branches it should
execute. Thanks to planner validation (Section II-D), a
worker can always determine whether another worker is
active by inspecting the workflow plan.

Both Intermediate Storage and Metadata Storage are imple-
mented in Redis for deployment simplicity. For exchanging
events among workers, we use Redis’s Pub/Sub 2. Such
events include TASK_READY and TASK_COMPLETED, and
are implemented as Pub/Sub channels.

A workflow is considered complete once the output of
the final (sink) task is available in storage. The worker that
uploads this final result is also responsible for cleaning up all
intermediate results before shutting down. This worker emits
a TASK_COMPLETED event for the sink task, triggering the
client to retrieve the final result from Intermediate Storage.

In contrast to traditional FaaS-based workflow engines that
rely on a centralized scheduler, our system’s scheduling is
driven by the workers themselves. This decentralized model
eliminates continuous coordination with a central controller,
reducing overhead and removing a single point of failure. By
enabling workers to trigger subsequent tasks immediately after
completing their own, this approach minimizes scheduling
latency and improves scalability, which primarily depends on
the horizontal scalability of the underlying FaaS and storage
layers. The client launches the initial set of workers, after
which execution proceeds autonomously based on metadata
embedded within the workflow representation passed among
the workers. A lightweight coordination mechanism (atomic
dependency counter) ensures that all tasks are eventually
executed according to the scheduling plan and applied op-
timizations.

Having described the design and implementation of the sys-
tem, we now turn to its evaluation. The next section presents
the experimental setup, results, and analysis used to assess the
strengths and weaknesses of our approach comparing it against
a state-of-the-art FaaS workflow engine, WUKONG [5].

III. EVALUATION

A. FaaS Environment Emulation

To enable reproducible and controlled experiments, a
lightweight Function-as-a-Service (FaaS) emulator was imple-
mented in approximately 300 lines of Python. It reproduces
the core behavior of serverless platforms while remaining
simple, with greater observability, and allowing us to run lots
of experiments inexpensively.

The system consists of two components: a gateway service
and a worker runtime. The gateway, implemented as an
HTTP server, receives invocation requests, manages container
lifecycles, and enforces resource constraints using Docker’s
built-in CPU and memory limits3. Workers are packaged as
Docker images containing the execution logic and a persistent
background process to keep the container alive between invo-
cations, until the gateway decides to shut it down (when idle
for too long).

Function execution requests are issued to the gateway’s
/job endpoint, specifying task identifiers, resource configura-
tions, and cached results. If no idle container with the required
configuration is available and the maximum concurrency (32
containers) is reached, requests are queued until resources
become free. To avoid resource contention, each container

2https://redis.io/glossary/pub-sub/
3https://docs.docker.com/engine/containers/resource constraints/

executes a single task at a time. This constraint is enforced
through a file-based locking mechanism.

Idle containers are automatically removed after 7 seconds of
inactivity, to simulate cold starts. The gateway also provides
a /warmup endpoint that pre-allocates containers without
executing worker logic, a simplification that makes it easier
to perform pre-warming without adding extra logic to the
workers code. To improve observability, worker logs (stdout
and stderr) are streamed to the gateway and captured in real
time for debugging.

B. Research Questions
With the evaluation of our work, we aim to address the

following research questions:
• RQ1: To what extent can historical metrics from previous

workflow executions improve the accuracy of predicting
serverless workflow behavior?

• RQ2: Can our prediction-based scheduling approach
in serverless workflows achieve lower makespan and
reduced resource usage compared to reactive or static
approaches, such as WUKONG [5]?

• RQ3: How effective are the proposed optimizations in
practice? In particular, how much does pre-load con-
tribute to hiding latency and enabling earlier task execu-
tion, and how beneficial is pre-warming in reducing
cold-start delays?

• RQ4: How does a non-uniform worker resource alloca-
tion strategy impact performance, and what trade-off does
it introduce between performance gains and additional
resource consumption compared to a uniform allocation
approach?

To address these questions, we collected a comprehensive
set of metrics, including task execution time, dependency
download time, I/O object sizes, workflow submission time,
container statistics, and more. In the following section, we
describe the experimental setup used to evaluate the proposed
system.

C. Experimental Setup
To evaluate our proposed solution, we deployed the FaaS

emulator described in Section III-A on an AMD EPYC 7282
16-Core Processor with 125GiB of RAM, running Ubuntu
22.04.5 LTS. Both Metadata Storage and Intermediate Storage
were deployed as Redis Docker containers. The client, respon-
sible for submitting the workflow and uploading hardcoded
dependencies, was also run on the same machine. We added
some artificial delay in both storage and gateway interactions
to try simulating a more realistic environment. This delay
is applied before requests are made, and the value we used
was 30ms of round-trip time. This value was chosen based
on observations of median latency between AWS Europe data
centers in the same region being around 8ms and around 15ms
across different data centers 4.

The workflows used to test our system were the following:
• Matrix Multiplication: A workflow with a straightfor-

ward structure that performs distributed matrix multipli-
cation, comparable to a workflow used in WUKONG’s
evaluation.

4https://www.cloudping.co/

• Tree Reduction: A workflow that performs a hierarchical
reduction over a list of numeric values, identical in
structure to a workflow from WUKONG’s evaluation.

• Text Analysis: A workflow with a more complex struc-
ture, designed to simulate a multi-stage text processing
pipeline on a large text file (750,000 lines).

• Image Transformation: A complex, highly parallel
workflow composed of 130 tasks that applies multiple
transformations to an input image, featuring large fan-
outs and heterogeneous task execution times.

We ran our experiments with three different SLAs: 50th
percentile (median), 75th percentile, and 90th percentile, and
analyzed the fulfillment success rates of each SLA, as well as
their prediction accuracy.

To assess our research questions, we implemented and eval-
uated three core planners: our proposed Uniform and Non-
Uniform planners, and a planner replicating WUKONG’s
scheduling model. For a comprehensive comparison, we tested
each planner with and without their respective optimizations
enabled (pre-load/pre-warm for our planners, and Task Clus-
tering/Delayed I/O for WUKONG). Planners using a uniform
resource strategy (Uniform and WUKONG variations) assigned
workers with 2GB of memory. The Non-Uniform planner
could assign more powerful workers from a predefined list of
configurations (2GB, 4GB, and 8GB). In total, we evaluated
six planner variations.

The experimental process was automated with a script
that iterated through every combination of planner variation,
SLA, and workflow. Each unique configuration was executed
10 times to account for performance variability, resulting
in 720 total experiments for analysis. Before each run, the
environment was reset to ensure that the initial tasks of every
workflow would trigger a cold start, ensuring consistency.

IV. RESULTS

This section summarizes the main evaluation results of our
proposed planners, our WUKONG planner implementation,
and their optimized variants, focusing on prediction accuracy,
workflow execution time (makespan), and resource efficiency.
Note that the optimized versions of the Uniform and Non-
Uniform planners incorporate our proposed pre-loading and
pre-warming optimizations, while the optimized WUKONG
variant uses its own native Task Clustering and Delayed I/O
techniques.

A. Prediction Accuracy and SLA Fulfillment

Fig. 3: Predictions accuracy across all planners and SLA
fulfillment rates

Figure 3 shows the prediction accuracy and SLA fulfillment
rates across all planners (excluding WUKONG, which does
not employ predictions). Execution time predictions were
highly accurate, with median relative errors below 9.3%, con-
firming the reliability of our predictive models for workflow
planning on a semi-predictable environment. Data transfer
time predictions were less precise, with errors around 35%,
likely due to their higher variability and network-dependent
characteristics. SLA fulfillment rates aligned with expecta-
tions: 41.9-71.5% for P50, 66.7-89.7% for P75, and 86.9-
100% for P90.

B. Execution Performance

Fig. 4: Makespan distribution across all planners

As shown in Figure 4, all versions of our planners out-
performed both WUKONG implementations in terms of
makespan. The non-optimized Uniform planner was 12.6%
faster than the optimized version of WUKONG, while the
optimized Non-Uniform planner achieved the best overall
performance.

The observed gap between optimized and non-optimized
versions of the Non-Uniform planner further confirms that

our proposed optimizations (pre-loading and pre-warming)
contribute directly to faster task execution and reduced startup
overhead. The same improvement was not observed between
the baseline and optimized Uniform planners. We attribute
this to resource contention: the Uniform planner allocates
fewer resources per worker, and the pre-loading optimization
increases concurrency within a worker, which can inadver-
tently slow overall execution.

C. Optimization Effects

Fig. 5: Time breakdown analysis

Figure 5 highlights the effect of both our scheduling ap-
proach that tries to cluster more tasks per worker and our
optimizations (pre-loading and pre-warming). Both optimized
planners significantly reduced worker startup and depen-
dency waiting times compared to their base versions and
to WUKONG. The use of pre-warming minimized cold-start
penalties, saving between 2-6 seconds on average, while pre-
loading allowed tasks to start executing earlier by proactively
transferring dependencies.

The optimized Non-Uniform planner achieved the shortest
total execution time, whereas the optimized Uniform planner
maintained higher resource efficiency. This indicates that the
system can prioritize either speed or efficiency depending on
the selected planner.

D. Performance vs. Resource Efficiency

For context, GB-seconds is a commonly used billing metric
in serverless platforms, including AWS Lambda 5, calculated
as the product of allocated memory (GB) and execution
duration (seconds). Figures 6 and 7 summarize the trade-off
between execution speed and resource consumption across all
tested planners. The optimized Non-Uniform planner achieved
a 53% faster makespan and consumed 45% less mem-
ory than its non-optimized counterpart, making it the best
performer overall. While the optimized Uniform planner is

5https://aws.amazon.com/lambda/pricing/

Fig. 6: Makespan comparison

Fig. 7: Resource usage comparison

more resource-efficient, consuming 34.9% fewer GB-seconds
than its optimized Non-Uniform counterpart, it is also 152%
slower.

Comparing to WUKONG, both versions were less efficient,
with the optimized version only 2.7% faster and 25% less
resource-intensive than its baseline, but still 14.4% slower
and consuming 56.2% more resources than our Uniform
planner.

E. Summary

Overall, our results conclusively demonstrate that the pro-
posed Uniform and Non-Uniform planners outperform the

WUKONG model in both execution speed and resource
efficiency.

The Uniform planner establishes itself as the most cost-
effective approach. It not only achieves the lowest median
resource usage (in GB-seconds) among all tested configura-
tions but also executes workflows faster than both the baseline
and optimized versions of WUKONG. This highlights a
key weakness in WUKONG’s scheduling strategy, where its
handling of fan-outs leads to excessive worker startup and
synchronization overhead, inflating both runtime and resource
consumption in most scenarios.

For use cases prioritizing maximum speed, the Non-
Uniform planner provides a distinct advantage over the Uni-
form planner, consistently delivering the shortest makespan.
This performance gain is achieved by leveraging more pow-
erful workers, presenting a clear trade-off between execution
time and cost. The impact of our optimizations is most evident
with this planner; its optimized version achieves a makespan
over 50% shorter while consuming 45% fewer resources.

The SLA parameter, specified as a percentile, was also
validated as a practical parameter for managing user ex-
pectations. Our lightweight, SLA-driven predictions provided
reliable results without the computational overhead of complex
models, often used in other solutions [9]–[12], enabling a path
toward future dynamic scheduling.

In summary, our results validate three key findings. First,
that predictive optimizations like pre-loading and pre-warming
are critical for mitigating latency and inefficiency in serverless
workflows. Second, it presents a practical choice for developer-
s/data scientists: the Uniform planner for robust and resource-
efficient execution, and the Non-Uniform planner for greater
performance in latency-sensitive applications. Third, it shows
the importance and positive impact of properly balancing re-
source contention and data locality in serverless workflows.

V. RELATED WORK

This section reviews the evolution of workflow orches-
tration, tracing the shift from cluster-based frameworks to
serverless execution engines and highlighting the innovations
that motivated our approach.

A. Traditional and Cloud-Native Orchestration

Traditional distributed frameworks, such as Hadoop [13],
Apache Spark [14], and Apache Flink [15], rely on the
MapReduce [16] model or in-memory processing to manage
large-scale data. While Dask [4] modernized this by enabling
heterogeneous task graphs in Python [17], these cluster-based
systems generally incur high operational overhead, slow scal-
ing, and require complex resource provisioning.

To simplify deployment, cloud-native platforms (e.g., AWS
Step Functions [18], Azure Durable Functions [19], Google
Cloud Workflows [20]) and open-source orchestrators like
Apache Airflow [21] provide managed orchestration. These
”stateful functions” typically employ checkpointing to persist
workflow state, enabling fault tolerance and retries. However,
this abstraction often comes with separate billing costs, vendor
lock-in, and centralized bottlenecks, without addressing the
underlying FaaS inefficiencies like cold starts.

B. FaaS Runtime Extensions
Several works optimize the underlying FaaS runtime to

address data locality and communication overhead without
replacing the orchestration model:

Palette Load Balancing [8] improves locality by introduc-
ing colors as hints attached to function invocations. The system
attempts to route invocations with the same color to the same
worker instance, improving cache hit ratios without strictly
enforcing the assignment if resources are unavailable.

Faa$T [22] enables transparent data sharing via an auto-
scaling distributed cache. It assigns a dedicated in-memory
cachelet to each application, using consistent hashing to inter-
cept data requests and serve them from memory, effectively
hiding the latency of remote storage.

Lambdata [23] focuses on data locality through explicit
data intents. Developers annotate functions with get_data
and put_data parameters, allowing the scheduler to co-
locate computation with data storage. This avoids the com-
plexity of distributed caching but requires manual developer
annotations.

C. Serverless Workflow Execution Engines
Serverless-native engines aim to run workflows on unmodi-

fied FaaS infrastructure, offering distinct scheduling strategies:
DEWE v3 [24] utilizes a hybrid architecture to handle

diverse resource requirements. It employs a queue-based distri-
bution mechanism where short tasks are routed to FaaS work-
ers and long-running tasks are sent to VMs. While efficient for
scientific workflows like Montage [25], this hybrid approach
introduces queuing latency and potential VM underutilization.

PyWren [26] pioneered pure serverless execution for ”bag-
of-tasks” workloads. It executes arbitrary Python functions on
AWS Lambda, relying on S3 for all state exchange. While
highly scalable, it lacks mechanisms to mitigate cold starts or
manage complex dependencies efficiently.

Unum [6] decentralizes orchestration by embedding logic
into a library wrapping the user’s functions. It uses a consistent
data store for coordination and translates workflows into an In-
termediate Representation (IR). However, Unum supports only
static control structures and lacks data locality optimizations.

D. WUKONG
WUKONG [5] is the most sophisticated decentralized

engine related to our work. It employs a static scheduler
to generate DAGs and a dynamic runtime where executors
coordinate via atomic dependency counters in a Key-Value
Store. To minimize data movement, WUKONG implements
three specific heuristics:
• Fan-Out Clustering: Executes multiple downstream

tasks on the same worker if the upstream task produces
large outputs, avoiding fan-out overhead.

• Fan-In Clustering: Allows a worker to execute a fan-in
task locally if dependencies are met during data upload,
preventing unnecessary downloads.

• Delayed I/O: Defers writing large results to external
storage, holding data in memory to potentially pass it
directly to a downstream task.

While effective, WUKONG relies on ”one-step schedul-
ing”, making decisions based solely on the immediate work-
flow stage. It fails to leverage global workflow structure for

planning and assumes a homogeneous resource environment.
Consequently, its heuristics enforce a rigid trade-off: maxi-
mizing locality often leads to high resource contention. Our
work addresses this by using historical metadata to enable
predictive, non-uniform scheduling that balances locality with
resource efficiency.

VI. CONCLUSION

A. Achievements

This work explored a novel scheduling approach for server-
less workflows, leveraging historical task metrics to reduce
makespan and improve resource efficiency. We designed and
evaluated a decentralized workflow engine integrating predic-
tive planning with global knowledge of workflow structure.

Evaluation across multiple workflows showed that our plan-
ners consistently outperformed WUKONG. The optimized
Non-Uniform planner achieved the shortest makespan (ap-
proximately 63% faster than optimized WUKONG) while
the Uniform planner proved to be the most resource-efficient,
consuming about 36% fewer GB-seconds. These improve-
ments stem from effective task co-location strategies and the
proposed pre-warming and pre-loading optimizations, which
reduced both worker startup delays and data waiting times.

The solution’s modular architecture, separating prediction,
planning, and execution layers, provides a solid foundation
for future research and is available at https://github.com/
48302-DiogoJesus/octoflows.

B. Limitations and Future Work

Limitations of our solution include unbounded historical
data growth, potential conflicts in optimizations, and limited
error handling. Future work could explore more aggressive
strategies, such as task duplication, support for dynamic fan-
outs, richer user control, and interactive dashboards. Another
promising direction lies in adapting to potential platform
evolutions, such as FaaS platforms supporting decoupled
memory and CPU configurations. Allowing these resources
to be configured independently would enhance efficiency and
enable finer-grained pricing models. While this introduces
complexity in scheduling, resource allocation, and locality
optimization for the provider, our solution would naturally
extend to such environments, as its design is not constrained
by specific resource coupling. Nevertheless, the increased di-
mensionality of possible resource configurations would signif-
icantly expand the prediction search space, potentially leading
to slower planning times.

Finally, broader evaluation (comparing prediction strategies,
deploying on commercial FaaS platforms, or even on edge
computing environments [27], [28], and testing complex real-
world workflows) would further validate the approach and its
practical applicability.

REFERENCES

[1] Aws lambda. [Online]. Available: https://aws.amazon.com/pt/lambda/
[2] Azure functions. [Online]. Available: https://azure.microsoft.com/en-us/

products/functions
[3] Google cloud run functions. [Online]. Available: https://cloud.google.

com/functions
[4] Dask - python parallel computing framework. [Online]. Available:

https://www.dask.org/

[5] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: A scalable and locality-enhanced framework for serverless
parallel computing,” in Proceedings of the 11th ACM symposium on
cloud computing, 2020, pp. 1–15.

[6] D. H. Liu, A. Levy, S. Noghabi, and S. Burckhardt, “Doing more with
less: Orchestrating serverless applications without an orchestrator,” in
20th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 23), 2023, pp. 1505–1519.

[7] Apache oozie. [Online]. Available: https://oozie.apache.org/
[8] M. Abdi, S. Ginzburg, C. Lin, J. M. Faleiro, I. Goiri, G. I. Chaudhry,

R. Bianchini, D. S. Berger, and R. Fonseca, “Palette load balancing: Lo-
cality hints for serverless functions,” in EuroSys. ACM, May 2023. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
palette-load-balancing-locality-hints-for-serverless-functions/

[9] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “Cose: Configuring
serverless functions using statistical learning,” in IEEE INFOCOM 2020
- IEEE Conference on Computer Communications, 2020, pp. 129–138.

[10] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and
S. Bagchi, “{ORION} and the three rights: Sizing, bundling, and
prewarming for serverless {DAGs},” in 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22), 2022, pp.
303–320.

[11] Z. Zhang, C. Jin, and X. Jin, “Jolteon: Unleashing the promise of
serverless for serverless workflows,” in 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), 2024, pp.
167–183.

[12] S. K. Koney, “Predictive and adaptive scheduling of serverless ml
pipelines for cost-efficient and low-latency execution,” Journal Of En-
gineering And Computer Sciences, vol. 4, no. 7, pp. 620–629, 2025.

[13] Apache hadoop. [Online]. Available: https://hadoop.apache.org/
[14] Apache spark. [Online]. Available: https://spark.apache.org/
[15] Apache flink. [Online]. Available: https://flink.apache.org/
[16] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” vol. 51, no. 1. New York, NY, USA: Association for
Computing Machinery, Jan. 2008, pp. 107–113. [Online]. Available:
https://doi.org/10.1145/1327452.1327492

[17] Dask distributed. [Online]. Available: https://distributed.dask.org/en/
stable/

[18] Aws step functions. [Online]. Available: https://aws.amazon.com/en/
step-functions/

[19] Azure durable functions. [Online]. Available: https://learn.microsoft.
com/en-us/azure/azure-functions/durable/durable-functions-overview

[20] Google cloud workflows. [Online]. Available: https://cloud.google.com/
workflows

[21] Apache airflow. [Online]. Available: https://airflow.apache.org/
[22] F. Romero, G. I. Chaudhry, I. n. Goiri, P. Gopa, P. Batum, N. J.

Yadwadkar, R. Fonseca, C. Kozyrakis, and R. Bianchini, “Faa$t:
A transparent auto-scaling cache for serverless applications,” in
Proceedings of the ACM Symposium on Cloud Computing, ser. SoCC
’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 122–137. [Online]. Available: https://doi.org/10.1145/3472883.
3486974

[23] Y. Tang and J. Yang, “Lambdata: Optimizing serverless computing
by making data intents explicit,” in 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD). IEEE, 2020, pp. 294–
303.

[24] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of
scientific workflows,” in International Conference on Service-Oriented
Computing. Springer, 2017, pp. 706–721.

[25] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. Laity,
E. Deelman, C. Kesselman, G. Singh, M.-H. Su, T. Prince, and
R. Williams, “Montage: A grid portal and software toolkit for
science-grade astronomical image mosaicking,” International Journal
of Computational Science and Engineering, vol. 4, no. 2, pp. 73–87,
2009. [Online]. Available: https://doi.org/10.1504/IJCSE.2009.026999

[26] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: Distributed computing for the 99%,” in Proceedings of the 2017
symposium on cloud computing, 2017, pp. 445–451.

[27] P. Kathiravelu, P. V. Roy, and L. Veiga, “SD-CPS: software-defined
cyber-physical systems. taming the challenges of CPS with workflows
at the edge,” Clust. Comput., vol. 22, no. 3, pp. 661–677, 2019.
[Online]. Available: https://doi.org/10.1007/s10586-018-2874-8

[28] P. Kathiravelu, Z. Zaiman, J. Gichoya, L. Veiga, and
I. Banerjee, “Towards an internet-scale overlay network for
latency-aware decentralized workflows at the edge,” Comput.
Networks, vol. 203, p. 108654, 2022. [Online]. Available:
https://doi.org/10.1016/j.comnet.2021.108654

