
Smart-ML - Reduce Running Costs of a ML Model in Production

JOÃO RAMALHO, Instituto Superior Técnico, Portugal
Nowadays technology is a crucial part of our world, present in due day life,
and even cutting edge solutions being applied to several sectors of society,
using new paradigms of computation that years ago would be labeled as far
fetched but today are heavily used. This is the case for Machine Learning
(ML) and Cloud Computing, as both of these seemed intriguing subjects in
the past, but nowadays are at the disposal of every person as a service.

Companies and workplaces also take advantage of this and use cloud
services as well as running ML models for various applications, although
this becomes costly: running both of these services combined can deplete
monetary funds pretty quickly.

In this sense, Smart-ML is presented as a way to reduce running costs
of ML models in the cloud, focusing in inference, having a deeper focus on
the latter. It explores techniques that balance the accuracy of a model and
the cost of running it in a cloud service, as well as reviewing techniques
regarding cloud computing that can be more money efficient. These are not
the only factors, as more are introduced and studied more in-depth during
the work. We also review use-cases of these models in different sectors and
each case requires changes to the way Smart-ML applies, according to its
necessities.

1 Introduction
In the ever-growing world of production and technology, Machine
Learning (ML) started to take a preponderant position in many as-
pects of development, evaluation and prediction of the work indus-
try. It is pretty recurrent in our day-to-day life to hear conversations,
and even resort to using services like ChatGPT, or even learn about
the rising in usage of CNNs, or object detection neural networks
like You Only Look Once (YOLO)1. Truth is, ML has already seen
plenty of usage in the industry before it broke mainstream. Models
like Support Vector Machines were seeing already plenty of usage,
as well as Natural Language Processing models, Google Translate
being its prime example or even PageRank which Google still uses
for its search engine. Nonetheless, Artificial Intelligence (AI) has
been present in our lives for more than a decade.

The factor that played a key role for AI to be more present in our
everyday life are the technological advancements that make it able
to now run ML models on commercial computers, and everyone is
now able to develop and explore models making this technology
and studies more accessible. This allowed not only for better run-
times, but also to rapid progress in the field in the past few years.
Every device that has been introduced in the past decade has been
upgraded to now to able to use AI or even be powered by AI. Of
course this also conveyed idea to run these services in third party
software, as well as devices altogether, and providing AI as a service,
rather than software.
With this there was a also a shift in the paradigm of how to

use these type of resources: the companies are not investing in
developing, testing and deploying these models themselves, and
started buying already developed and tested models as services.
This means that instead of buying the whole model, third party
1https://pjreddie.com/darknet/yolo/, accessed on 10 Set 2024
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entities spend onlymonetary resources to utilise it as an end product.
Then, they supply the data they want to run and the companies that
develop the models are the ones responsible for decisions such as
hosting and maintenance. Hence, the responsibilities of making sure
that the profitable margins of running these models are being met
lie further on the companies that develop the ML models. Given that
many have found that ML models are perfect suitors to be run in the
cloud and be available as a service on third party servers 2 [Amazon
2019; Zhang et al. 2022], the main challenge that arises is how can
developers reduce costs by applying direct changes to ML models.

Thework and research done towards Smart-ML is going to revolve
around cost reduction, this takes into account various approaches,
and considerations, such as how to to reduce costs in inference,
but also what can one do in training, while considering the option
for retraining (the latter due to lack of publicly accessible research
and information about this topic, which can be seen in the studies
mentioned in Section 3), but also understanding howmuch resources
are used to train again amodel. Besides, it also focuses on specific use
cases of MLmodels that have different requirements of performance,
or other metrics such as accuracy, F1 or even computation times.
In this work we present Smart-ML, a framework that contains

ML-models and cost reduction measures applied to the framework,
which is presented in Section 3. These measures can be centered
around the models themselves, but also may not be directly applied
to them, but rather a certain aspect of the whole framework in an
effort to make it more cost efficient. Due to this, a Cost Model is
also proposed to better understand the impact of the changes made
by the measures and to facilitate in the evaluation of each measure.

2 Related Work
Machine Learning embodies a predominant portion of this work, and
many fields have utilised its capabilities to great extent, therefore
we state some similar studies done in the field of cost reduction
techniques (applied in training and in inference) applied to general
ML, which are relevant approaches to ML-Ops and provided great
inspiration for the work to be developed. Besides these ML focused
studies, it is relevant to mention that cloud computing also has had
some great research towards better cost reduction. As mentioned,
these systems are mentioned not for the purpose to implement
them all, rather to gain knowledge on what is usually work towards
making ML-Ops more efficient.

Energy-Efficient ML-Ops. A study made by Desislavov et al. [De-
sislavov et al. 2023] addresses how different modelings of neural
networks, such as the rapid growth of number of parameters in new
neural networks can affect the energy consumption. Factors like al-
gorithmic improvements, hardware specialisation and consumption
efficiency are not the cause of increase of the energy consumption of
ML models, and still maintain consumption below of what a human
consumes when having the same tasks at hand.

2https://azure.microsoft.com/en-us/products/machine-learning, accessed on 8 Nov
2023.
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Besides this, there are of course several changes and ways for
models to be changed and achieve better efficiency while running
the in the cloud, here are some that are deemed important to be
mentioned for the purposes of this work.

Transfer Learning. This consists in taking an already trained
model, and retrain it for specific, more simpler tasks. This not only
reduces training times, but also results in a simpler model which
will grant lower prediction times, as well as boost its accuracy. One
great example of this type of applications can be seen in YOLOv5.
We can reduce the number of outputs to the ones desired for the
model to detect and retrain it, making it a much more compact and
faster model by doing so.

Hyperparameter training. This type of ML models training is one
of the latter techniques and Bardenet et al. [Bardenet et al. 2013]
presented a study of collaborative hyperparameter training, inwhich
it uses surrogate-based optimization (SCoT) and ranking techniques,
being essentially a sequence model based optimizer, to find the best
parameters for a given model.

Model pruning. Pruning is a different approach to hyperparame-
ters, as it makes the model more compact and efficient while main-
taining its accuracy, instead of finding the best possible parameters.
A study made by Zhu et al. [Zhu and Gupta 2017] proves how us-
ing model pruning can be beneficial, not only in inference times
but as well as the models becoming more cost-efficient by using a
large-sparse approach instead of small-dense, yielding at times even
better results than the baseline models.

Knowledge Distillation. As mentioned by Phuong et al. [Nayak
et al. 2019; Phuong and Lampert 2019], knowledge distillation is a
technique that creates a compact ML model by using a teacher and
a student model, and the student model learns the outputs of the
classifier designated to be its teacher. With this the model becomes
much more efficient and less complex.

Surrogate Models. Along with Knowledge Distillation comes the
paradigm of using surrogate models in production. This models are
much simpler and faster than the original models, while maintain-
ing the same levels of accuracy. There are many ways to produce
a surrogate model, it mainly depends on the purpose of the surro-
gate, as well as the ML model it derivates from. It can use different
methods such as Kriging, Response surface models (RSM) or even
SVMs [Alizadeh et al. 2020].

Cost-Sensitive SVM. Work from Iranmehr et al. [Iranmehr et al.
2019] shows a Cost-Sensitive SVM. This model identifies that im-
balanced data is a great adversity to achieve better performance
with SVMs, but nonetheless the authors presented a version of this
algorithm in which it enforces cost sensitivity for separable and
non-separable data, enforcing larger margins. Lin et al. [Lin and
Lin 2003] also presented a different version of a cost-oriented SVM,
named Reduced Support Vector Machine (RSVM) which was able to
reduce training times significantly for large clusters of data, while
having only a small degradation in accuracy in comparison to the
standard SVM model.

Model Ark (MArk). Zhang et al. [Zhang et al. 2022] proposed
MArk, an SLO-aware framework that is based on IaaS, namely AWS
EC2 instances, which employs techniques such as auto-scaling and
batching to make this framework cost-efficient while granting low
latency to users that wish to utilise its ML services.

BATCH. BATCH is a framework presented by Ali et al. [Ali et al.
2020] that shows how a framework has been devised that is able to
provide to users a platform for ML services, using stateless compu-
tation (FaaS), and without becoming more expensive with increased
workloads, due to using batching as an optimization technique, even
performing better in comparison to MArk.

Scrooge. Other applications such as Scrooge (Hu et al.) [Hu et al.
2021] are able to lower the inference time ofmodels used online, with
many mechanisms such as packing efficiency and cost-awareness,
and it is able to achieve a decrease of at least 16% in costs while
maintaining the latency objectives satisfied.

Clover. Also exploiting the usage of graphs and partitioning work-
loads on GPU, Clover is a framework proposed by Li et al. [Li et al.
2023] and it shows how clever usage of these tools can have an
impact on the carbon footprint of a ML model . Another interesting
contribution made to this field of study was made by Florian et
al. [Florian et al. 2021] in which it was introduced predictive main-
tenance of ML models: a cost oriented approach based on simple
inputs such as the yearly maintenance costs of false positives, false
negatives and true positives of models.

Finally it is necessary to mention that recently frameworks were
created to facilitate the deployment of ML models such as Tensor-
flow 3, scikit-learn 4 and Pytorch 5. These are helpful as both have
pre-deployed versions of ML models to be used with simple library
function calls, as well as by using Pandas it becomes much easier to
process, manipulate and visualize data.

3 Solution
In this Section we present the proposed solution. We explain the
methodology to analyze, explore and decide the techniques and
Machine Learning (ML) models that go into the framework. We
show the architecture of how the study is developed, as well as the
general specifications for this implementation, such as environment
used. We then formulate a Cost Model, to be able to translate the
changes that the techniques make on the framework into cost, as
well as algorithms to facilitate in the evaluation of the techniques.

3.1 Solution Overview
The solution consists of three tasks: a research task, analysis task,
and a testing & evaluation task. In the research task, we review
mostly classical ML models, and evaluate whether each model is a
proper conduit of research for the goals of the study. The models
were chosen taking into account industry sectors that use ML mod-
els in production, or even have the potential to incorporate ML to
great extent. The sectors taken into account are Healthcare, Trans-
portation, Manufacturing, Agriculture and Software Development.

3https://www.tensorflow.org/, accessed on 20 Mar 2024
4https://scikit-learn.org/, accessed on 20 Mar 2024
5https://pytorch.org/, accessed on 20 Mar 2024
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The reason for choosing these five sectors were essentially due to
relevancy, and abundance of usage of ML in each sector. In essence,
the popularity of models is defined by simple characteristics, such
as cross-domain success & industry adoption, interpretability &
adaptability, easy-of-use, and performance and accuracy.
During the analysis task what is accounted is how the model

behaves, and the most proper and commonly done work to make
the model more compact and cost-efficient. As such, one dives into
the characteristics of the model, what are its strong and weak points,
its applications and evaluate how to reduce costs for this model. To
make this decision it must be taken into account if the techniques
or set of techniques to be used interfere with the capabilities of
the model, in the sense that it makes it unable to sustain sufficient
metric results to be considered an effective cost reduction.
The analysis task plus the testing & evaluation task are ex-

ecuted in iteration, as it is better to revolve around a model at a
time until it fully meets the needed requirements, than to have the
review of all the models and then proceed to evaluate them all. The
reasoning for this resides in the fact that if a model needs to be
reviewed again due to not meeting the goals set for it then one as a
fresher memory of the matter.
Finally, in the testing & evaluation task, the research done is

applied to a given model, as it is ran either in a cloud service (like
Azure or even a simple Kubernetes cluster), or even a local cluster of
machines that can simulate identical behavior of the cloud systems
studied, depending on the evaluation task of the work. After running
it, data is gathered to understand if the techniques found to be the
best theoretical practice are actually meeting the requirements to
reduce costs, without compromising the performance of the services
provided. For models that showed positive outcomes, it was just a
matter of documenting the results and then move to the research
task of a different model, but if a model is lacking in its results we
must understand why that happened and go back to the research
task of said model and comprehend the changes to be made, then
after that is done a new testing & evaluation task was feasable to
be done.

Table 1 sums up the results from applying the research and analy-
sis tasks. The reasoning for not continuing the study tasks of SVMs
after the Research Task is due to the fact that other models included
in the study also tackle the same purposes. Besides, it needs a signif-
icant understanding of kernel functions to be effective. Regarding
LSTM also not being included in the next task, its problem comes
from being a greatly complex model which translates that complex-
ity to production. This means it could have taken plenty of time
and resources trying to understand where are some characteristics
of the model that when modified it leads to a more cost-efficient
model. CNNs were ultimately decided not to continue to the testing
& evaluation task since the study goes over Deep NNs already, and
a ML model for object detection, the need to study this specific
architecture of ANNs felt uneventful.

3.2 Framework Architecture
The framework implemented is built with all the models to be ex-
plored during the length of this work, which then can be run in all
testing environments, with representative workloads as well (will

Models Research Task Analysis Task Testing & Evaluation Task
Random Forest Sufficient Sufficient Sufficient
Isolation Forest Sufficient Sufficient Sufficient
Deep NN Sufficient Sufficient Sufficient
CNN Sufficient Insufficient NA
Yolov7 Sufficient Sufficient Sufficient
SVM Insufficient NA NA
LSTM Insufficient NA NA

Table 1. Table of decision based on the systematic tasks.

be mentioned in Chapter 4). For this to be possible, the work is
implemented in a library, with callable methods whose calls can be
made by using a REST API (using resources like Python and Docker
containers).
For the cloud environment used we implement it in a basic Ku-

bernetes cluster, to be a representative cloud environment that re-
sembles the ones used in production, even if at a more simpler level.
As far as the tools to be used to monitor, Prometheus [Prometheus
2014] offers great monitoring services, which are also capable of
storing these metrics, and then be queried when it is needed. Then
Grafana [Labs 2014] can be used to create dashboards, as it is a great
data visualization tool.

3.2.1 Distributed Architecture. The implementation comes in three
different steps, not only to expedite the development of the frame-
work in small and incremental steps, but to test the models in these
different and easier to monitor environments before going into the
final testing environment. The first step was to develop the worker
nodes locally and using HTTPS requests locally. Then the next test-
ing environment came from containerizing the worker nodes into
Docker containers and using simple port forwarding to be able to
receive requests from the client-side. Finally, came the final testing
environment, which is held in a Kubernetes cluster. In it contains
all the worker nodes which are each in a Pod. Then they are able
to receive and send the results of the requests made by the client
with a service that is established which allows it to receive requests
from a local client.
Containerizing the software to be used by using Docker con-

tainers, as well as using those images to deploy the software on
Kubernetes is a great option to confer optimizations to the model
serving in the framework. Not only it is an efficient solution and
also enables for easy implementations of auto-scaling, as well as
launching multiple workers in a single machine in the environment
of the service, but the greatest takeaway of using this is that it is
agnostic to software, meaning that it does not need specific software
in the machine besides Docker and Kubernetes to be able to run the
framework.

3.2.2 Communication Protocols. The main differences in imple-
mentations, asides from the ML models themselves, come from how
the nodes communicate. Due to the research made it was found
that exploring the communication protocol between nodes could
be valuable, therefore we came to the conclusion to compare two
prominent protocols: HTTPS and gRPC. The reasoning for choos-
ing these two is based on being currently the most famous and used
request/response protocols used worldwide.

HTTPS [Fielding et al. 1999] is an extension of the HTTP protocol,
which ensures better security to both parties that are establishing
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communication from attacks. It ensures confidentiality, integrity
and data authentication [Felt et al. 2017]. Since this is one of the
most used protocols for the past decades, it was decided to be the
default protocol for communication in the framework.
gRPC [Google 2024] is a Remote Protocol Calls (RPC) service

developed by Google which is built using HTTP/2 but contains
some key features which distinguishes it from HTTPS, the main one
being the usage of Protocol Buffer. Unlike HTTPS which uses JSON
to serialize its data, gRPC uses Protocol Buffer which is a mechanism
that allows the used to serialize data in a structured manner 6. It is
done by creating .proto files, which are essentially the files that set
the rules for the requests and responses to be communicated. With
this, we are free to create different requests with their corresponding
responses that contain customizable messages which must also be
specified in the .proto file.

3.3 Techniques Overview
The general work of this thesis is to integrate cost reduction tech-
niques on the three basic modules of which the pipeline of the
framework consists of, which is represented by the flowchart dis-
played on Figure 1, hence the focus of the work is mainly around
each of those three aspects of ML-Ops: Data, Model and Inference.
The three of those are crucial not only for ML related aspects of per-
formance, but also at a production point of view, there are valuable
changes that can be made to them to achieve the desired results.
The figure shows each module connected to each other in a se-

quence, as one change in a certain aspect, can have impact on an-
other later. What it means is that for instance any change made by a
technique applied to data, can also have repercussions for example
in the model or even the inference of the framework. We delve
deeper in this in the following subsection of Decision Criteria.

Fig. 1. General flow of technique validation.

With this division settled, then came the task to name the most
suited techniques to apply to each of these three aspects of the
framework. Ultimately there were select two techniques for Data
Related, four for the Model Related, and three for the Inference
Related, shown in Table 2.

Data Techniques Model Techniques Inference Techniques
Data Pruning and Transformation Feature Importance/Selection - Clustering Communication Protocol - gRPC
Data Optimization Parallel Computation Batching Requests

Quantization - Deep NN Surrogate Models
Quantization of YOLOv7

Table 2. Cost Reduction Techniques Studied.

All of these techniques derive from the study which used the
tasks made earlier, as well as gathering other techniques which
are not ML centered, such as Data related techniques, or parallel
computation.
6https://grpc.io/docs/what-is-grpc/core-concepts/, accessed on 20 Jul 2024

3.4 Cost Modelling
Now we delve into deeper understandings of what cost is for the
goals of this work. This is important to understand as it is one of the
main metrics to take into account, and although it seems a simple
domain, it can become vague when plenty of variables that are
cost-derivative must be considerate.
For this, we strive to englobe all of the aspects that are relevant

from the standpoint of companies regarding the optimization of
ML models. To realise this, we formulate cost formulas for every
dimension of cost that it is justified to exist for the purposes of
evaluation.
Keep in mind that although there are many domains that can

define cost in a sense, like space, time, ML metrics and hardware,
these do not necessiraly reflect on cost with the end-goals that
we have settled for this system, but nonetheless very important to
understand as they can be evaluated, or even be part of a larger
composition that will define cost.

3.4.1 Types of Cost. Now that the basic foundations of cost have
been explained, we delve into what are the key factors to take into
account while evaluating the behavior of the technique applied in
the framework to make the ML models more cost-efficient to be
provided in the cloud.

By employing an analogous process to the technique, we discrim-
inate cost into three different types: Data,Model and Inference.

Data-Related Costs. These are costs associated with acquiring,
processing, and managing the data required for training, testing,
and inference. They are horizontal to the whole framework as data
is a central piece throughout the whole pipeline, and take different
aspects into account in different parts.

The key aspects for this are Data Storage, Data Processing and
Data Ingestion.
Data Storage is focused on how the data is stored and its stor-

age solutions for the whole framework. Data Processing on the
other hand takes into account all the changes that are done to the
data, either it is cleaning, transforming or preparing the data. Data
Ingestion comes as the criteria for analysing the streaming of data
around the network.

Model-Related Costs. Model-Related Costs are more focused on
the expenses that it takes to modify the model itself, and then the
subsequent preparation for the model to be able to be used. This
means that it is focused on its Model Training, which englobes
both the initial training, and necessary subsequent retraining, and
alsoModel Maintenance, more focused on version control, testing
and debugging of the model.

Inference-Related Costs. The focus of this type of costs is centered
around the production environment itself, and how the models
behave in said environment.
It includes Compute Costs, which take into account resources

required to make the requests, model complexity and latency re-
quirements. It also includes Scaling & Deployment which as into
its scope matters like service scaling, batching and fluctuating de-
mands.

https://grpc.io/docs/what-is-grpc/core-concepts/
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3.5 Formulas
The main reason why we discriminated all of these type of costs
was to be able to also have a way to quantify the techniques to apply
to ML-Ops, making it an easier task to evaluate the work. Therefore
all types of costs will turn into formulas which have its importance
on the global evaluation of each technique.

Data Cost. (𝐶𝑑𝑎𝑡𝑎)

𝐶𝑑𝑎𝑡𝑎 = 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒 +𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 +𝐶𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 (1)
Where 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒 , 𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 and 𝐶𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 are the costs related

to data management.

Cost Model. (𝐶𝑚𝑜𝑑𝑒𝑙 )

𝐶𝑚𝑜𝑑𝑒𝑙 = 𝐶𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 +𝐶𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 +𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 (2)
Where 𝐶𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , 𝐶𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 are the costs re-

lated to model training and maintenance.

Inference Cost. (𝐶𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 )

𝐶𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒 × 𝑁𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 +𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔 (3)
Where 𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒 is the cost per inference request and 𝑁𝑟𝑒𝑞𝑢𝑒𝑠𝑡

is the number of requests. 𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔 includes the auto scaling and
infrastructure costs.

Total Cost. (𝑇𝑐𝑜𝑠𝑡 )
With this, we can formulate the final cost formula as the sum of

the previous proposed cost formulas:

𝑇𝑐𝑜𝑠𝑡 = 𝐶𝑑𝑎𝑡𝑎 +𝐶𝑚𝑜𝑑𝑒𝑙 +𝐶𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (4)

3.6 Decision Criteria
Although all individual aspects of the work have been covered and
explained, the decision criteria is still an important matter to be
explained, since it is due to its nature that we shall ultimately decide
whether the new technique implemented is effective at its goal, or
it should be discouraged of usage.

3.6.1 Decision Algorithms. All of the decisions made will be based
on the three main domains that described Cost in the previous
Section. This means that any change made in the framework will
have an impact in at least one of the following: 𝐶𝑑𝑎𝑡𝑎 , 𝐶𝑚𝑜𝑑𝑒𝑙 and
𝐶𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 . If that is not the case, then it must be justified by ML
metrics, since its the other type of metric that exist that can show
behavioural changes in the framework.

Cost of Data. We can assume that all of the changes and evaluation
is done based on what Algorithm 1 shows, and that 𝑐𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠
will be normally be a negative value. The reasoning for this is that
any technique that directly applies changes only to the cost of data
strive to reduce costs related to data. Although one needs to take
into account that some techniques whose focus is not data, can have
an impact, and at times a negative one, but that will be covered
further in this Section.

Of course, one should also assert the impact those changes bring
regarding metrics and evaluate how beneficial those are for the
framework workflow overall.

Algorithm 1: Cost of Data decision process
begin

if changes applied to Data then
𝐶𝑑𝑎𝑡𝑎 ←− 𝐶𝑑𝑎𝑡𝑎 + 𝑐𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠
𝑎𝑠𝑠𝑒𝑟𝑡𝑀𝑜𝑑𝑒𝑙𝐶𝑜𝑠𝑡 ()

Cost of Model. On the other hand, whenever changes are applied
to the model specifically, it will result in an increase in cost. This
happens due to model covering the costs for the training, re-training
and maintenance of models. The way the decision is made regarding
cost of model changes can be seen in Algorithm 2.
A key and interesting aspect of this process is that it checks

if there were any changes made regarding inference costs. The
reasoning for this comes from the fact that the changes made to
the model usually have an impact in the serving of the model in
production, namely the computation costs. Thus, one needs to check
if this is the case, and especially if it actually reduces the cost of
inference like intended. If that is the case, then if the technique is
properly implemented, over time the reduction in costs of inference
will outweigh the costs of model necessary to make the change.
Else, one needs to check the ML metrics extracted from running the
model after being applied the technique to analyse the behaviour of
the model.

Algorithm 2: Cost of Model decision process
begin

if changes applied to Model then
𝐶𝑚𝑜𝑑𝑒𝑙 ←− 𝐶𝑚𝑜𝑑𝑒𝑙 + 𝑐𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠
ℎ𝑎𝑠𝐼𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑠𝑡𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 ←−
𝑎𝑠𝑠𝑒𝑟𝑡𝐼𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑠𝑡 ()
if ℎ𝑎𝑠𝐼𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑠𝑡𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 === 𝑇𝑟𝑢𝑒 then

𝑎𝑠𝑠𝑒𝑟𝑡𝑀𝐿𝑀𝑒𝑡𝑟𝑖𝑐𝑠 ()

Cost of Inference. The processing of the computations of the cost
of inference can be seen in Algorithm 3. When it comes to evaluate
the changes made cost-wise in inference this comes as a two-part
process. In the first if case, we check for changes in the cost of
scaling of the system in the framework. This is fairly simple since
it only affects one variable on the formula. Then the next step is
to check for changes in the number of requests, as well as the
computation costs in inference of the model, which is represented
by the second if.
Unlike cost of scaling the cost of computation and number of

requests are not independent. They are correlated, as there can be
techniques that will reduce the computation costs but increase the
number of requests made to the framework, or vice-versa. For this
to be properly analysed, we compute the product of the cost of
computation with the number of requests if there is any change
made to either of these variables.
Finally, the new cost of inference is computed by adding the

product and the cost of scaling and then checked if its lower than
the previous value of cost.
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Algorithm 3: Cost of Inference Decision Process
begin

if changes applied to Inference then
if 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐶ℎ𝑎𝑛𝑔𝑒𝑠 === 𝑇𝑟𝑢𝑒 then

𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ←− 𝑜𝑙𝑑𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔 +𝑐𝑜𝑠𝑡𝑂 𝑓 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐶ℎ𝑎𝑛𝑔𝑒𝑠

if 𝑛𝑢𝑚𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ===

𝑇𝑟𝑢𝑒 or 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠 === 𝑇𝑟𝑢𝑒 then
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ←−
𝑁𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ∗𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

𝐶𝑐𝑜𝑠𝑡 ←− 𝑐𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 +𝐶𝑠𝑐𝑎𝑙𝑖𝑛𝑔
if 𝐶𝑐𝑜𝑠𝑡 < 𝑜𝑙𝑑𝐶𝑐𝑜𝑠𝑡 then

𝑎𝑐𝑐𝑒𝑝𝑡𝑐ℎ𝑎𝑛𝑔𝑒

else
𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑐ℎ𝑎𝑛𝑔𝑒

Total Cost. One key characteristic about applying cost reduction
techniques is that there are times when applying a technique with
the intention to reduce a certain aspect of cost, there can also be
impacts on different aspects. What this means is that one should
be careful when applying techniques and leverage whether the
technique in the overall cost total is not increasing the cost, rather
than lowering it.

Algorithm 4 shows what needs to be done to take the overall cost
changes into consideration.

Algorithm 4: Cost of Inference Decision Process
begin

if changes made to any Cost Module then
𝐶𝑚𝑜𝑑𝑢𝑙𝑒 ←− 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑠𝑡 ()

𝐶𝑡𝑜𝑡𝑎𝑙 ←− 𝐶𝑑𝑎𝑡𝑎 +𝐶𝑚𝑜𝑑𝑒𝑙 +𝐶𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒
if 𝐶𝑡𝑜𝑡𝑎𝑙 < 𝑜𝑙𝑑𝐶𝑡𝑜𝑡𝑎𝑙 then

𝑎𝑐𝑐𝑒𝑝𝑡𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

else
𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

4 Evaluation
In this Section we go over some of the techniques applied to the
framework. For the results shown we try to have at least one that
covers each module: Data Techniques, Model Techniques and Infer-
ence Techniques.

4.1 Data Preparation - Data Pruning, Transformation &
Optimization

All of the alterations that are done in this technique will solely
affect the cost of Data in the framework. In this we concern with
the changes that were made regarding the data storage and trans-
formations that were made that were not mandatory for the models
to function. This means applying things data loaders to the models,
or data pruning and cleaning of the data.

Data Pruning. Data Pruning is one of the most prominent con-
cepts used during the study, especially for Feature Reduction, which
reduces features based on a given heuristic. The focus in this sub-
section will be specifically towards the impact this technique has
on data, as for the rest it will be explained further ahead.

Relating to the implementations of the Feature Importance/Selection
measures, we have two similar in theory hypothesis: a Random Fea-
ture Selector and a SHAP-based. The original dataset file size is of
125.2kB, and by pruning it, using the Feature Random Selector we
obtain a dataset with 15.2kB and using SHAP we end up with a
dataset of size 22.8kB, so a percentual decrease of 87.86% and 81.79%,
respectively. This might not mean much storage-wise, so 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒
will not suffer a notorious decrease, but still a welcoming one. The
aspect of data which is affected the most is the data ingestion, since
by simplifying the dataset, it also facilitates its ingestion, which
ultimately reduction 𝐶𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 .
All of these matters described just add up to conclude that Data

Pruning plenty of help to make ML-Ops more cost-efficient, so it
should be present in most of the systems that are ML related.

Data Transformation. Data Transformation is the task to trans-
form data from one format or structure to another. The principle
here is to make it more suitable to use throughout the framework.

The principal actions done in the framework are the label encod-
ing done to categorical features, which are transformed to normal-
ized numerical features, as well as regarding the images used as
input for the MLP used to test Deep NN techniques. In this, the data
is originally in images, which are transformed to pixels to make it
possible to send, and subsequently transformed to a data loader for
better processing.

These transformations overall allow for an increase to the cost of
processing of data (𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔), but the purpose of this transforma-
tions is to facilitate the computations done by the models.

Overall, data transformation can be seen as valuable not by infer-
ring cost drops in the framework, but as a technique which enables
better performance and results to other techniques in this frame-
work.

Data Optimization. The only and principal technique applied to
the framework regarding Data Optimization was data batching. This
technique is applied in the context of using MLPs in the framework,
in which its dataset is based on images. Since this ML model deals
with complex data having batching incorporated into the framework.
Essentially, the data loader data structure which is used can be used
for batching as well, which enables for better model performance.
Figure 2 shows a plot which contains the computation times of

the default MLP model used in the framework, and then the same
default MLP model but using batching.
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Fig. 2. Comparison of computation times of MLP model with batching.

Aswe can see utilising batching of data is much faster than simply
not, achieving an average difference in times of 0.7792 seconds (a
decrease of 70.84%). This shows premise regarding cost reductions
in data. It is trivial to understand that the major impact comes from
a decrease in 𝐶𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 , which will lead to a reduction in 𝐶𝑐𝑜𝑠𝑡 .
In a final remark, utilising techniques that manipulate different

aspects of how data is handled in a framework grant many benefits
to a framework.

4.2 Feature Importance/Selection - Clustering
As aforementioned in this Section, there were two types of Feature
Selection studied for this framework: a regular Feature Selector
and then SHAP based Feature Selection. The first one is based on a
Random Feature Selector, which randomizes the labels to be used
across multiple iterations to compute the most important features.
Then the seven most important features (based on their scores from
the algorithm) were kept, and the resulting dataset given as input
to the Random Forest dataset.

Figure 3 shows the Receiver Operating Characteristic (ROC) curve
of what we will be calling the default Random Forest model. It is
a classic and simple model with no alterations made to it, and it
serves as the baseline for not only this technique, but also others
that will be evaluated ahead, therefore this figure is important for
the studies to follow as well.

Fig. 3. ROC curve of a classic Random Forest model.

With this said, the ROC curve it produces is the one described
by the left plot of Figure 5. As we can see the Random Feature

Selector produces an Area Under the ROC (AUROC) curve signif-
icantly smaller than the original model. This can be explained by
the Random Feature Selector not having an optimal heuristic and
at frequent times removes variables that are impactful for better
prediction, thus accuracy.
The SHAP-based Feature Selection takes a different but similar

approach to obtain the same results. The procedure is essentially
the same, but instead we used SHAP-measures to compute them.
With this said the results can be seen in Figure 4.

Fig. 4. Results of SHAP-based Feature Importance.

Then, the next step was to filter out the less relevant features
by order out of the dataset. As mentioned before, we ultimately
rendered out features until we were left with 10 out of the 32 features
in the dataset to give as input to the Random Forest model. The
decision came empirically, by trial & error. The reason for this model
having more features than the Random Feature Selector is due to
the computations needed to gather 10 features would be a lot longer
than SHAP, and when testing Random Feature Selector, adding
three more features would not induce much differences in terms of
performance.

With the final amount of features decided, this was the ROC curve
that was produced from that final model, pictured in Figure 6. This
ROC curve one looking much close to the original models when
compared to the one produced by the Random Feature Selector,
which indicates that its prediction are also closer to the original
mode.

It is also important to take into consideration computation times,
as making the dataset simpler can also produce changes in compu-
tation times of ML models. With this, Figure 8 shows a compari-
son between the three types of Random Forests evaluated in this
technique: default, basic random feature selector, and SHAP-based
feature selection.
In terms of computation times we can see just by looking at the

graph that the default Random Forest is the slowest, the Random
Feature Selector is slightly faster than the default Random Forest,
and the SHAP-based Feature Reduction is the fastest of the three.
This is backed up by the average of the computation times, which
shows that the Random Feature Selector is on average 0.00279 sec-
onds (11.16%) faster than the default model, and the SHAP-based is
0.00527 seconds (21.08%) faster than the default model.
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Fig. 5. ROC-Curve of Random
Feature Selector.

Fig. 6. ROC-Curve of SHAP-
based Feature Reduction.

Fig. 7. ROC-curves from Feature Reduction

Fig. 8. Random Forests computation times comparison.

Taking into consideration all of the factors, we now head to
evaluate how this technique performs. Regarding the cost of data, it
will be reduced for both approaches as the processing of data and
its ingestion will become faster, due to the dataset having a smaller
number of features, its size will also reduce, hence 𝐶𝑐𝑜𝑠𝑡 will drop.
When it comes to the cost of inference, this is where it severely

changes, as the Feature Selector can take up important features, and
that will have an impact on the performance of the model, both in
its ROC curve and score, as well as computation times will be longer,
when compared to the other options. SHAP-based however, does not
underperform drastically in regards of the default Random Forest,
so we can safely assume that the computation cost stays roughly
the same (the main factor from this comes from computation times).

So as a final judgement on the technique, we can safely say that
while the Random Feature Selector is not beneficial to implement in
production, SHAP-based Feature Reduction displays great metrics
and cost efficiency to pose as an alternative for a classic Random
Forest model.

4.3 Quantization - Deep NN
For a regular Deep NN we tested using static and dynamic quan-
tization. Since for both static and dynamic quantization they are
done without requiring any re-training of the model there wouldn’t
typically be any change made to the cost referring to models, but
since quantizing still requires a small amount of time to prepare
the weights, we can count as minimal increase in the cost of model
changes. The model used to test Deep NNs is a Multilayered Per-
ceptron (MLP).

Firstly in Figure 9 is displayed the confusion matrix of the default
MLP model, for comparison purposes against the two forms of

quantization of the MLP weights. As we can see in the confusion
matrix the model performs well at labeling the inputs correctly, only
having some wrong predictions, which do not induce abnormal
behavior in the model’s prediction capabilities.

Fig. 9. Default MLP confusion matrix.

Figure 10 shows us a plot of the computation times differences
between a default MLP model, and then using static and dynamic
quantization. It is visible that static quantization is faster than using
a default model, with an average difference of 0.04823 seconds (a
decrease of 35.54%), but dynamic quantization ends up being the
fastest of the three with an average difference to the default MLP of
0.06035 seconds (44.48% less than the original model).

Fig. 10. MLP computation times comparison.

Figure 11 and Figure 12 show the resulting confusion matrices of
static quantization and dynamic quantization, respectively. We can
see that both static and dynamic quantization do not differ much in
their results when compared to the original model, but that dynamic
quantization is very similar in the results, while static quantization
has more visible differences. To even add up on the results, the
default MLP has an accuracy of 97.68%, which dynamic quantization
also has, but static quantization drops to 95.24%.
Since quantization converts the weights from one complex data

type to a simpler one, it is logical that the size of the weight files
also reduces. In the case in hands this is confirmed, as the static
quantization weight file drops from 440.1kB to 116.6kB (a drop of
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Fig. 11. Confusion Matrix of MLP
with static quantization.

Fig. 12. Confusion Matrix of MLP
with dynamic quantization.

Fig. 13. Confusion Matrices resulting of quantization.

73.51% in size), and dynamic quantization goes to 115.0kB (a decrease
of 73.87%).
Overall this technique looks very promising to use, as not only

computation times reduce, the size of the weights also go down
significantly, all the while not having a relevant negative impact on
the performance of the model, ML wise. In regards of cost, overall
it will drop, as 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒 drops, which leads to a decrease in 𝐶𝑐𝑜𝑠𝑡 .
𝐶𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 will also be reduced as 𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 lowers due to the
quantized weights being faster in inference.
As a final remark concerning this technique, it is encouraged to

use it since it presents very good results. One could opt for either
static or dynamic quantization, although static quantization offers
better results, static could still be used to viable extents.

4.4 Surrogate Models
The surrogate model to use for Isolation Forests consists of a Kriging
Partial Least Squares (KPLS) regression. It combines the Kriging
Gaussian Process with Partial Least Squares. This was found the
most suitable technique for Isolation Forests as they behave differ-
ently from Random Forests. From using it on the same dataset as
the original model we can have a better understanding from the
differences. Figure 14 depicts how the comparison of the original
model with the final iteration of the surrogate model.

Fig. 14. Original model vs surrogate anomaly detection comparison.

Figure 15 shows how the model Surrogate model performs, with a
ROC curve based on the outputs of the Isolation Forest on the same
test dataset. This is done this way since the ground truth values for
the surrogate model come from the predictions made to the Isolation
Forest, and as we are trying to approximate as much as possible the

student model to its teacher this was the better way to analyse it.
This means that the AUC should be as close to a squared shape as
possible (since it should be approximate to a ROC value of 1.00).

Fig. 15. Original model vs surrogate model comparison.

How the surrogate model leverages against the original Isolation
Forest in terms of computation times is described in Figure 16. These
values indicate that although the surrogate model in theory would
be faster when compared to an Isolation Forest due to supposed
lesser complexity, the original model still is able to compute faster
at times, and with more stable computation times.

Fig. 16. Original model vs surrogate model comparison.

Overall, this method in specific does not offer many strong points.
The main strengths that come from using a Surrogate Model is that
it offers a more comprehensible model (not necessarily less complex,
as shown by the computation times) to have running in production
without losingmuch performanceMLwise, as well as occupying less
space in memory, but only roughly about a 2MB (around 10% smaller
in size) difference is detected. In terms of computation times, the
surrogate model is on average 0.00049 seconds slower (an increase
of 4.5%) that the default isolation forest model.
This being said, it does not offer much aside from this, as when

it comes to computation times, where it is supposed to be its main
strength, it does not out perform the original model. From a cost
point of view, it will of course decrease 𝐶𝑑𝑎𝑡𝑎 as the surrogate is



10 • Ramalho

about 10% lighter than the original model, affecting𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒 . When
it comes to 𝐶𝑚𝑜𝑑𝑒𝑙 it will of course raise, as the surrogate model
requires training based on the outputs of the original model, so the
increase comes from the direct raise in 𝐶𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 . Not only this, but
if the model is deployed to production, it will need maintenance (in-
creasing 𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 in that case) to understand if its performing
to its standards, or it requires adjustments or even retraining alto-
gether. Regarding 𝐶𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 as shown by its performance metrics,
it will have a subtle increase due to the increase in 𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 .
As a final judgement, this type of technique is better suited to

more complex ML models. Isolation Forests have a near-linear com-
plexity, so surrogate models would at the best case scenario only
replicate the same costs the Isolation Forests have in production,
barring training costs. The better course of action for a model that
has this level of simplicity for its effectiveness to reach its goal,
techniques already mentioned such as Data Transformation and
Ingestion, as well as Parallel Computation are better techniques to
apply than Surrogate Models.

5 Conclusions
In this work we presented Smart-ML, a framework which is ca-
pable of monitoring ML models in the cloud with the intuition to
implement and monitor cost-effective models. We presented the
relevancy of the problem, and how it covers so many important
domains, namely Machine Learning and Cloud Computation in
technology and society nowadays. The importance derives from
the broad spectrum of appliances that ML can have and how can
companies maintain their ML services available to the ever grow-
ing demand while keeping those services sustainable. Adding to
this, this study pretends to collect many different approaches to
cost-reduction in Machine Learning Operations, into one single
framework much like a review of several techniques gathered into
a centralized piece of code.

During the work we present a systematic approach to determine
if several techniques are fir to incorporate and analyse in this study,
a distributed architecture on which the framework is developed and
tested on, as well as explained the final cost-reduction techniques
that were deemed as viable to study. We formulate a Cost Model as
well as an algorithmic approach to evaluate each technique. Then
finally, we tested the techniques in the framework and applied the
cost model as well as the algorithms to ponder on its value on
production systems.

With this work done, several options are opened to study. One of
the more direct ones is to layer techniques, or combining them, to
assess how could this added complexity behave in terms of cost. The
other studies come from the fact that for this work we were limited
to a local machine to test the results, so an extension of this could
came by testing this in a bigger, and more powerful environment
with multiple machines. This opens up a lot of possibilities, ranging
from becoming possible to test hardware acceleration techniques
(exploiting GPUs more specifically), to exploring more how cloud
could also suffer changes to make the system more cost-efficient.
This implies using concepts like load balancing, auto-scaling, adap-
tive execution [Esteves et al. 2018] and resource allocation [Simão
and Veiga 2012] or even try ML oriented techniques like surrogate

models, but with the original model as backup. By studying the
impact of Cloud Computation further works would have more com-
plexity, but if positive results emerge from them, then it is sure that
cost would be further decrease for these types of systems.
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