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With the growing development and adoption of Internet of Things (IoT)
technologies, it becomes necessary to create the conditions for these sys-
tems to operate effectively and in a scalable manner. The amount of data
constantly generated and transferred by such devices is extremely high, and
many of these systems may support services that operate in real time and
with a strong sense of urgency. It is therefore essential to find solutions and
approaches that enable and optimize their operation, capable of handling
these large data flows in terms of storage, processing, and transmission.
Edge computing, a paradigm that shifts data processing closer to the user,
addresses some of these problems by mainly reducing response latencies
and also offering advantages in terms of privacy. If an IoT device is capable
of performing all or part of the required processing locally, it immediately
prevents all data from having to leave the local network. Nevertheless, even
if these devices can independently perform the necessary tasks, a mecha-
nism is still required to distribute such tasks and organize the computational
effort involved. In this context, the fog computing paradigm emerges, propos-
ing an intermediate layer located above the local edge nodes, capable of
coordinating distributed processing in an organized manner. By bringing
computational intelligence closer to the user, this architecture not only en-
ables efficient segmentation and distribution of tasks but also reinforces the
relevance of distributed computing in scenarios with critical performance
requirements. This work discusses the current relevance and applicability
of these paradigms, proposing and developing an architecture and platform
designed to demonstrate their potential. The implemented platform focuses
on the prediction of meteorological variables, using tools oriented toward
big data and distributed processing, such as Apache Spark and Hadoop, to
support the cluster.
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1 Introduction
Cloud computing has established itself as one of the most popular
and essential paradigms in recent technological evolution, mainly
due to its scalability and the wide range of available services capable
of meeting diverse needs. These services, whether physical or virtual
resources, allow organizations and users to leverage such resources
without the need to maintain them within their own infrastructures.

Despite the success and importance of these technologies and this
computing model, the cloud approach does not seem to establish the
best paradigm for dealing with massive amounts of data transferred
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in real time, since such transfers imply considerable delays, which
may potentially scale depending on the context. Especially since the
emergence of Internet of Things (IoT) technologies — which gen-
erate these enormous amounts of real-time data and often require
real-time decisions — efforts have been made to bring processing
and storage closer to the user [25]. Due to these limitations, cloud
computing faces difficulties and is unable, by itself, to meet the
growing demands imposed by IoT technologies [7], particularly
in critical service domains such as healthcare systems, vehicular
networks, environmental monitoring, or smart cities. Moreover, the
increasing need for real-time processing capacity and latency mini-
mization makes these architectures inefficient in handling scenarios
that require near-instantaneous responses and decisions.
Edge computing, closer to the user, and fog computing, which

provides essential resources at the boundary between the local edge
network and the cloud, significantly contribute to addressing these
challenges. The edge paradigm implies a model in which data pro-
cessing occurs near the user or the data source, focusing on the de-
centralization of computational resources and allowing devices that
traditionally would not serve such a purpose to now contribute com-
putationally in loco to the system. The fog component, positioned
between the edge and the cloud, facilitates resource transfer and op-
timization for data processing, intelligently distributing workloads
while considering network conditions and the state and capabilities
of the available devices. By addressing critical issues such as latency,
scalability, and bandwidth [26], these paradigms not only increase
the operational efficiency of a system within such environments
but also enable the emergence of new applications and services that
previously struggled with the mentioned challenges.

Building upon these conclusions, a platform has been developed,
which we shall refer to as "Weather@Edge", combining both the
edge and fog approaches. This platform is capable of performing
weather forecasting by leveraging not only the resources of the
user’s own devices but also those of nearby devices that are capa-
ble of contributing. These devices are orchestrated by a superior
fog layer, which organizes and distributes the cooperative effort.
We will therefore explore how these architectures operate together
in a controlled environment, in this case, focusing on the predic-
tion of hourly meteorological variables (temperature, humidity, and
precipitation) for a short-term interval.

2 Related Work
With the advances in IoT and machine learning technologies, there
arises the need to explore different approaches that enable under-
standing the most efficient ways to handle them computationally
and to combine their capabilities.

2.1 Smart Cities @ Edge
The previously mentioned continuous development of IoT technolo-
gies further strengthens and sparks interest in the concept of smart
cities. The potential inherent in traditional technologies is immense,
and the examples are numerous:
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• Urban areas filled with networks of intelligent infrastructures
that communicate with each other, collecting and sharing
information, data, and patterns — everything that can provide
value to the cities and their inhabitants [18].

• Traffic lights capable of recognizing traffic patterns or identi-
fying vehicles through video streams, making autonomous
decisions, and even storing the data obtained or the decisions
made [20].

• Local data of various types (for example, temperature, hu-
midity, or probability of precipitation at a given location)
made publicly available for citizens/users to query locally,
for instance, via API requests, without the need to rely on
cloud infrastructures or central servers (already exploring
the concept of information and communication technologies)
[16].

These scenarios are just examples of how everyday technologies
can “gain intelligence” and how a city can transform into a smart
city — offering new and varied functionalities or improving existing
services and technologies, maximizing the potential of the surround-
ing infrastructures. The gains in efficiency for complex real-time
services, energy savings [4], reductions in network congestion, and
overall benefits for citizens could be substantial. The objectives
of smart cities align with improving citizens’ quality of life and
enhancing urban efficiency.

Nam and Pardo [19] highlight that technologies related to IoT, big
data, and artificial intelligence are an important step that enables
the interconnection of different urban services and optimizes the
distribution of resources.

Obviously, such benefits also bring new challenges. The amount
of data generated by these technologies is enormous, and much of it
has sufficient relevance to justify and require storage. Furthermore,
these are technologies and devices that communicate and provide
services demanding time-critical and urgent responses and decisions.
As Apat et al. [3] point out, the cloud computing model, despite
offering a vast pool of physical and virtual resources, does not
yield ideal latency results for IoT users due to the extensive flow of
data traffic and potential network bandwidth limitations caused by
excessive request concurrency at a given moment [3]. How, then,
can these challenges be addressed?

By moving both data processing and storage as close as possible
to the devices generating the data. This is where the “@ Edge”
component, as referred to in the section title, comes into play. Studies
show that edge computing is the ideal solution when the goals are to
reduce latency and improve data privacy [2], thanks to the shorter
path data must travel when processed locally.

2.2 Fog Architecture
Despite the benefits already discussed and those that edge comput-
ing can offer, it must also be considered that, in reality, this type
of architecture can hinder a system’s scalability and flexibility —
precisely the opposite of what cloud-based architectures provide.
A hybrid solution, therefore, emerges, capable of bringing such

’elasticity’ to the network edge and addressing the identified chal-
lenges [26]. This solution leverages both edge service components
and cloud services: the fog architecture. The fog layer, which can be

defined as the layer that intermediates between local nodes and the
cloud, at a one-hop distance from the nodes, combines the strengths
of both approaches, offering low latency while being efficient in re-
source and bandwidth management [2]. Edge devices generate and
process data in real time, while the orchestration and coordination
of nodes are handled by this layer. Typically, this type of architec-
ture also provides offloading capabilities, distributing and assigning
tasks based, for example, on computational capacity, battery level,
or proximity between devices.

Bebortta et al. [5] designed a framework for optimizing big data
processing in heterogeneous IoT networks that “enables data col-
lection, feature selection, predictive models, and data visualization,”
and it essentially relies on a structure such as the one illustrated in
Figure 1.

Fig. 1. Fog Architecture

In terms of security and privacy, the advantages can also be nu-
merous: data that can now be processed locally no longer need to
be transferred beyond the local network, thereby reducing the risks
associated with network data traffic and potential cloud vulnerabili-
ties. Regarding scalability, this distributed architecture facilitates the
addition of nodes to a system in cases where increased processing
or storage capacity is required, making it a very appealing model
for large-scale sensor networks, such as in the context of smart
cities, where the number of local devices and data production may
increase constantly.

2.3 Distributed Computing
Distributed computing allows systems to divide a given task into
smaller segments that can then be distributed across different de-
vices capable of executing them. It therefore becomes a highly viable
solution for contexts that demand constant or high computational
effort, such as those found in the smart city environments we have
been discussing [14].
By granting the architecture the ability to orchestrate the con-

stituent nodes of the network through this intermediate layer, if
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the tasks required for the system’s operation are further partitioned
and distributed among different nodes capable of contributing, then
in addition to the proximity established between the system and
the user, we also achieve full decentralization and, consequently,
optimize its efficiency. Since there are always at least two elements
in the system when an execution takes place — the user node and its
corresponding fog-layer “orchestrator” LS — it means that there will
always be parallelism and segmentation of computations. To support
this division of computations, a framework such as Apache Hadoop
can be employed — an open-source library widely used in such
large-scale data processing contexts [23, 27], also extended for volun-
tary computing [9, 10]. Hadoop, through its distributed file system,
HDFS (Hadoop Distributed File System), enables distributed storage
of datasets among the network nodes [23]. Beyond its functionalities
related to distributed data storage and management, Hadoop also of-
fers distributed processing capabilities, particularly the well-known
MapReduce model, which allows the decomposition of processing
tasks into smaller sub-tasks that are executed in parallel by the
network nodes. It is therefore important to distinguish the two fun-
damental stages of this programming model: Map, where data is
processed and transformed, and Reduce, where the intermediate
results are combined to produce the final output. The user defines a
map function to be executed by the different nodes according to an
input (key, value) (K, v), which will also generate an intermediate set
of (K, v) pairs [11, 13], to be subsequently collected and aggregated.

Delving deeper, in the initial Map phase, the input dataset is parti-
tioned into blocks, typically equal or proportional to the number of
available nodes. Each node executes a map function that transforms
the input data into (key, value) pairs, which will be used in a later
aggregation phase. In the Reduce phase, the (K, v) pairs are grouped
or aggregated, taking into account the pairs sent by each node. This
model also presents some limitations, particularly regarding latency
in iterative processes such as machine learning models or others
that require multiple iterations, reads, and storage operations over
the initial and intermediate data. Therefore, this methodology does
not appear to be ideal for time series forecasting [1]. In addition to
Hadoop, another fundamental and widely used tool for processing
large volumes of real-time data (especially in iterative or stream-
ing applications) is Apache Spark [24], an open-source distributed
computing framework that provides an interface for executing ap-
plications in clusters, offering full parallelism. It overcomes some
of the limitations of MapReduce and achieves better performance
and faster results [24] through an in-memory processing model,
making it suitable for applications that require low latency and high
processing speeds, such as machine learning algorithms or real-time
analytics. This in-memory processing approach reduces the need
for disk access, allowing data to be stored in RAM during operations,
thereby significantly decreasing execution times.

2.4 Weather Forecasting Systems
Time series play a crucial role in several practical domains, such as
meteorology and economics [6]. The forecasting of such time series
is primarily based on the analysis of historical data, for example, a
dataset composed of meteorological observations, and, based on the
observed patterns, aims to predict the continuation of that series

over a future interval. In contrast, NWP (Numerical Weather Predic-
tion) models, which depend heavily on computational power, rely on
current atmospheric data, using them as input to produce an analy-
sis and forecast future weather conditions [6]. Traditional statistical
modeling systems assume that a time series follows certain patterns
such as linearity, stationarity, or seasonality. A popular and tradi-
tional statistical modeling and time series forecasting algorithm is
the Auto Regressive Integrated Moving Average model, or ARIMA
[21]. It is an easy model to adopt because it does not require as
much computational effort as Machine and Deep Learning models,
such as Convolutional Neural Networks (CNN) or Recurrent Neural
Networks (RNN). This can be particularly useful depending on the
type of devices at the edge, enabling, for example, even the sensors
responsible for measurements to have the capacity to execute such
models [17]. The model is based on the assumption that the time
series is linear and follows a statistical distribution, such as a nor-
mal distribution [6]. Even more appropriate for forecasting series
identified as seasonal is the Seasonal Auto Regressive Integrated
Moving Average, or SARIMA, which is formed by adding seasonal
parameters to the input of the ARIMA model:

ARIMA (p, d, q) (P, D, Q)𝑚
Where (p, d, q) are the non-seasonal parameters, and (P, D, Q) are
the seasonal ones, with m representing the periodicity of the iden-
tified seasonality. The definition of the parameters (p, d, q) and
(P, D, Q) will be explored and demonstrated in the following sec-
tion. Regarding the period of seasonality, if, for instance, we have
monthly records or data (such as temperature or precipitation) and
they display annual patterns, then m = 12.

3 Solution
Following reflection and analysis on this smart cities scenario at
the edge, and aiming to identify solutions that contribute to the
development of this concept, a possible approach was outlined for
the development of a platform that enables the user—through the
devices currently available to them and by leveraging their com-
putational resources, as well as those of nearby devices capable of
assisting—to perform weather forecasts for that location for the
coming days. The computational work required by these models
will be carried out on historical data related to the specific loca-
tion; therefore, it is necessary to obtain a segment of essential data
for the forecast (either through API requests or available libraries
that allow such access — for example, Meteostat provides a Python
library that allows access to a vast database of historical data for
numerous locations). Regardless of how the fog layer performs this
data collection, it may also periodically update a shared file system
to which the edge layer nodes will have access, thus eliminating the
need for data traffic between these layers.

3.1 Functional Architecture
We can distinguish two clearly distinct roles within our structure:
the fog layer nodes, which act as masters/orchestrators, and the
edge layer nodes, which in turn act as workers/slaves. It is therefore
necessary to plan the responsibilities and tasks of each, as well as
how their interaction will take place. We can outline the following
possible ‘responsibilities’ associated with the fog nodes:
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• Receive/obtain data
• Store and process data locally
• Orchestrate task offloading, for example, delegating parame-
terization or partial forecasts to the corresponding nodes

• Respond to requests from edge nodes for weather forecasts
• Act as a decision point for generating alerts (for example,
when temperature or wind speed exceed certain thresholds)

In our case, this fog layer may consist of the Access Points (APs)
available and associated with the respective device. Each AP per-
forms periodic requests to keep the necessary data updated and
stored close to the nodes. Whenever a new device (node) joins an
AP’s cluster, it must notify it. We can therefore define that all nodes
within the cluster that are available to contribute computational
resources must periodically send messages (or heartbeats) to their
respective AP.

The local nodes of the edge layer, on the other hand, are respon-
sible for periodically informing their availability (by broadcasting a
heartbeat to the network) to the corresponding upper-layer node.
Thus, the fog node can update its inventory of workers and distribute
the required tasks among them, whether executing parameterization
functions or running forecasting models. Regardless of the available
worker nodes in the cluster, the master node will also operate si-
multaneously as a worker. In this way, it can perform the necessary
periodic parameterization of the forecasting model and will be ready
to execute that model quickly whenever requested by a user. This
design choice stems from the long execution time of such param-
eterization functions, which would otherwise result in prolonged
waits for simple forecasts of individual variables—something that
contradicts the efficiency goals of this platform architecture.

3.2 Forecasting Model
Based on the research previously conducted, we began by imple-
menting the ARIMA model on local nodes, followed by testing to
evaluate its efficiency.
The first step was the definition of the parameter values to be

used in this model: ’p, d, q’. A dataset of historical temperature
records in Lisbon for the year 2023, obtained from the Meteostat
database, was used. Starting with parameter ’p’ (or lag order), that
is, the order of the autoregressive model, Partial Correlation (PACF)
tests were conducted to determine the number of significant lags
until the correlation stabilized at 0. The results can be seen in Figure
2. In the resulting graph, approximately 25 significant lags can be
identified; therefore, this will be our lag order.

Next, we analyzed parameter ‘d’, referring to the degree of differ-
encing in the series. One of the ways to determine this parameter is
by performing the Augmented Dickey-Fuller (ADF) test, in order to
verify whether the series is stationary or not. After executing the
test, the following results were obtained:

ADF Statistic: -3.4494898186886993
p-value: 0.00938310848841729

Since the p-value is lower than 0.05 and the ADF statistic is consid-
erably negative, we can conclude that the series is non-stationary,
meaning that differencing is not required. Thus, we will define the
parameter as d = 0.

Fig. 2. Results of the PACF test

Proceeding to the third and final parameter required for the exe-
cution of an ARIMA model, ‘q’, or the order of the moving average
model, an ACF (Autocorrelation Function) test was performed: By

Fig. 3. Results of the ACF test

analyzing the resulting graph (Figure 3), which essentially consists
of identifying the number of lags required until the oscillation de-
cays to zero, we can observe that, even when extending the scope of
the test up to a high number of lags (100), the ACF value oscillates
between 1 and 0.5 without ever converging to zero. What does this
result mean, and how can this obstacle be addressed? The fact that
our ACF graph never converges to zero within a reasonable number
of lags is a strong indicator of seasonality in our dataset. This means
that a simple (non-seasonal) ARIMA model may not correctly cap-
ture the dynamics of the data. Considering this, we will investigate
the seasonal ARIMAmodel, or SARIMA, comparing results between
the two models, with parameters optimized for SARIMA through
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Table 1. Errors of ARIMA vs SARIMA models

Model MSE RMSE MAE
ARIMA 2.0258 1.4233 1.2107
SARIMA 1.8699 1.3674 1.1585

parameterization functions such as grid search, using the following
possible intervals (assuming the seasonal parameter S = 24, due to
the daily seasonal pattern of the series with a period of 24, reflecting
hourly periodicity): paramGrid = {’p’: [0, 1, 2], ’d’: [0, 1], ’q’: [0, 1,
2], ’P’: [0, 1, 2], ’D’: [0, 1], ’Q’: [0, 1, 2]}. The ARIMA parameters
(data, order=(25, 0, 0)) were selected earlier, and several evaluation
metrics for forecasting accuracy—explained in more detail in Section
5—were used.
Our grid search function selected the following optimal parame-

ters for the SARIMA model executed on the provided dataset: (or-
der=(1, 1, 1), seasonalOrder=(1, 1, 1, 24)).
Comparing the results between the ARIMA and SARIMA mod-

els on the same dataset, as shown in table 1, and using the MSE
metric (which measures the mean squared error—the difference be-
tween the forecast and the actual value), it can be concluded that
the SARIMA model achieved slightly better performance. This con-
clusion is also supported by the RMSE values, expressed in the same
units as the original data (that is, the root mean square error in tem-
perature forecasting for the ARIMA model was approximately 1.42
ºC, while for the SARIMA model it was around 1.37 ºC—a slightly
better fit to the data, although the difference is small). The mean
absolute error (MAE) also shows a higher average error for the
ARIMA model.

After evaluating the forecasting models and considering factors
such as model simplicity—crucial to maximize the feasibility of
execution on edge devices close to the data sources (e.g., temperature,
humidity, or precipitation sensors)—it was concluded that the most
suitable option for performing our weather forecasts is the SARIMA
model.

4 Solution Development
To make this proposal functional, a set of open-source tools widely
used in big data and distributed computing contexts was employed.
Apache Hadoop file storage was used as the foundation for dis-
tributed data storage, through its Hadoop Distributed File System
(HDFS), which allows simultaneous and fault-tolerant local access
by multiple nodes. Apache Spark, on the other hand, was the tech-
nology chosen for in-memory processing of large volumes of data
in a distributed manner, benefiting from its efficiency in executing
parallel tasks and its flexibility to integrate machine learning and
time series models. The following sections of this chapter describe,
in a structured manner, the steps involved in creating the platform’s
execution environment, including the installation and configuration
of each component, the definition of the cluster architecture, and
the performance of functionality tests. The main technical chal-
lenges encountered during the process and the strategies adopted

to overcome them are also discussed, contributing to the construc-
tion of a robust, modular solution ready to evolve according to new
requirements and application contexts.

4.1 Cluster Configuration
Widely recognized components from the big data ecosystem were
used, namely Apache Hadoop and Apache Spark. Hadoop, with its
distributed file system HDFS, ensures data access and replication
across multiple nodes. Spark, on the other hand, is responsible for
the efficient processing of data, leveraging an in-memory execution
model and native support for parallel tasks and predictive algorithms.
Although Apache Hadoop includes its own distributed processing
engine, also based on the MapReduce paradigm, it was decided to
use Hadoop exclusively as a distributed storage system (HDFS),
delegating data processing tasks to Apache Spark.

4.1.1 Apache Hadoop. To begin the creation and configuration of
the cluster environment, the Apache Hadoop framework mentioned
earlier was installed on an Ubuntu machine that would serve as the
Master in later stages, with the goal of leveraging the capabilities of
its distributed file system, HDFS. This system, as previously noted,
enables shared access to datasets stored in parallel, thereby facilitat-
ing the coordinated operation of the network’s worker nodes.
After creating the ‘hadoop’ user, a passwordless SSH public key

was generated and stored as an authorized_key in the SSH directory,
followed by testing SSH access to the localhost. These keys must
also be distributed to the cluster’s worker nodes.

Once the required software (JDK, Hadoop, and SSH) was installed
on the machine and the environment variables were configured in
the bashrc file, the next step was to configure the cluster’s XML
property files. The Hadoop cluster was then started, beginning with
the NameNode and the DataNode.
To verify the correct creation of the cluster, access was made to

the NameNode UI at http://localhost:9870, the DataNodes accessible
through the same address, and the YARN ResourceManager located
at http://localhost:8088.

4.1.2 Apache Spark. For the installation of Apache Spark (version
3.5.5), it was first necessary to ensure the installation of its main
dependencies, namely Scala and Git. These components are essential,
as Spark is developed in Scala, and Git facilitates access to project-
related versions and repositories.
Once this step was completed, the installation of Apache Spark

itself was carried out. After extracting and placing the Spark di-
rectory in the system, the necessary environment variables were
configured, such as SPARK_HOME, along with updating the PATH
variable, in order to allow the execution of Spark commands from
any location within the system.
With the installation completed, the configuration of the Spark

cluster was initiated using the scripts provided by the framework.
Themaster nodewas started through the command ’start-master.sh’,
becoming accessible through the web interface at the master’s IP
address, where it is possible to monitor the cluster status, active
nodes, and running tasks.

To enable HDFS access for the worker nodes, the SSH keys must
be distributed among the cluster elements. In other words, once the
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master node receives the first heartbeat from a new node in the
cluster, it must execute the command ’ssh-copy-id new_node’.

Next, twoworker nodes associated with themaster were launched
using the command ’start-worker.sh spark://master:7077’,
where ‘master’ corresponds to the hostname or IP address of the
master node. This connection allows the workers to register them-
selves and become part of the cluster, making their computational
resources available for submitted tasks.

4.2 Application
To test the efficiency assumptions of our architecture, it is now
necessary to run an application based on the execution of simple
forecasting models within our cluster, in order to verify that, indeed,
beyond the reduction of data traffic to external networks, there
is also an increase in the efficiency of our distributed platform
when compared to an execution that does not involve task and data
distribution or parallel processing.

In a weather forecasting system that depends on and is based on
a forecasting model—linear in this case—the first challenge to be
faced is the definition of its optimal parameters, based on a given
dataset, as previously discussed and analyzed. Since the SARIMA
model proved to be the best option in this context, and knowing
that the selection of optimal parameters may vary depending on the
training dataset, it was decided that a periodic (e.g., daily) execution
of a parameterization function for this model would be required.
Given the complexity and computational load of this type of task, it
immediately becomes an ideal ‘target’ for applying our distributed
and parallel computing strategies, in order to optimize this step.

Therefore, a range of ‘normal’ values for the parameters in ques-
tion was first defined — namely SARIMA (p, d, q) (P, D, Q, M) —
which were analyzed individually in the Solution chapter. Hav-
ing this parameter grid defined, how could we then segment this
task into subtasks that could be distributed among the available
nodes? The solution found was to distribute all possible parame-
ter combinations among the edge nodes of the network using the
sparkContext.parallelize() function.
Regarding our forecasting model, the chosen approach was the

SARIMA model, as already justified earlier (Section 4, Solution Pro-
posal). Nevertheless, the same question that arose during the param-
eterization component reappears here: how should we segment the
execution of our model? The final answer was to divide the number
of variables (or columns) requested by the user among the available
nodes.

5 Testing and Results Discussion
This chapter first presents the evaluation methodologies of our sys-
tem and analyzes the results obtained from executing the various
components of the developed platform — particularly the param-
eterization operations, the weather forecasting functions, and the
impact of cluster scalability on the overall system performance. The
experiments carried out aimed primarily to assess the platform’s
behavior under different configurations, both in single-node and
multi-node environments, analyzing how the increase in the num-
ber of nodes influences computational efficiency, latency, and the
responsiveness of the architecture.

Additionally, forecasting functions were executed with different
parameter combinations and workload distributions in order to
identify potential bottlenecks in the system, as well as situations
where a real performance gain is achieved through parallelism and
node collaboration.

The master node, configured with 6 GB of RAM, was responsible
for coordinating the cluster and executing the Spark driver. The vir-
tual machines comprising the cluster, running Linux (Ubuntu 22.04)
and each equipped with 2 vCPUs, were interconnected through a
virtual network in bridge mode, allowing direct communication
between them and simulating a local area network (LAN) environ-
ment.

Regarding the system’s fault model, and considering the dynamic
nature of the cluster, in which nodes may intermittently join or
leave (churn), it is important to understand how the system reacts
to such situations. At the data processing level, in the event of a node
failure or sudden unavailability, the Spark environment—providing
fault tolerance—automatically redistributes the pending tasks to the
remaining available nodes, ensuring the continuity of execution. In
terms of storage, HDFS guarantees the recovery and replication of
data blocks in case of a DataNode failure, ensuring that the loss of a
node does not compromise the integrity of the stored data.

5.1 Evaluation Metrics
In the platforms discussed so far, which include predictive models
at the edge, it also becomes necessary to assess the quality of these
models, as demonstrated in our proposed solution — not only to
ensure that the most reliable result is delivered to the user, but also
to verify that the model is optimized and functioning correctly. For
this purpose, a given dataset can be divided into training and testing
subsets, comparing the results produced by the model based on
the training dataset with the actual results contained in the testing
subset. How, then, can these results be evaluated beyond simple
visual observations?

5.1.1 Forecasting Model Evaluation. Some of the most commonly
used evaluation metrics for forecasting algorithms include the Root
Mean Square Error (RMSE), the Mean Absolute Percentage Error
(MAPE), and the coefficient of determination (R2) [8]. The Mean
Square Error (MSE) measures the average of the squared errors (the
difference between the forecast and the actual value). The lower the
MSE value, the better the model. The RMSE is simply the square root
of the MSE and is more easily interpretable in application contexts,
as it is expressed in the same units as the original data. Lower RMSE
values indicate a more accurate model.

TheMean Absolute Error (MAE) measures the average of absolute
errors — that is, the mean of the absolute distances between the
forecast and the actual value. It is also expressed in the same units
as the original data. Although this facilitates interpretation, it makes
the metric dependent on the data scale, which can hinder compar-
isons between variables. The MAPE, on the other hand, expresses
the error in relative terms, as a percentage [8].

The R-squared (R2), or coefficient of determination, measures the
proportion of variance of a dependent variable explained by the
model. However, it is not entirely reliable for non-linear models and
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time series. It ranges between 0 and 1, and the closer the value is to
1, the more accurate the forecast is considered to be.

5.1.2 Parallel Computing Component Evaluation. The aforemen-
tioned metrics allow us to interpret the efficiency of our forecasting
models. What remains to be evaluated is another important com-
ponent of our system: its efficiency in distributing and executing
the necessary tasks across the existing nodes — that is, its ability
to relieve load and make the platform more efficient through distri-
bution orchestrated by the fog layer of APs/LSs. It is necessary to
demonstrate that efficiency scales (execution times decrease) as a
function of factors such as the increase in the number of nodes in
the network, for example.
To achieve this, it is necessary to create a cluster with a vari-

able number of nodes, something that can be accomplished using
software such as Docker. Docker is an open-source platform that
uses containers to isolate applications and execution environments,
ensuring that they behave consistently and independently of the un-
derlying infrastructure [23]. Each node is represented by a container
configured to process the tasks assigned by the fog layer, which is
responsible for orchestrating the clusters. Thus, Docker provides
the necessary conditions to simulate clusters of independent nodes
orchestrated by master nodes (in this case, the elements of the fog
layer), each with individual and customizable characteristics and
conditions. This setup allows testing of various practical scenarios,
such as variations in the number of active nodes, differing network
conditions and latencies, or variations in the computational load
assigned to each node according to these parameters. In this way, we
can assess the capability of our platform to handle different contexts
and challenges.

The tests will initially consist of validating the basic functionality
of our orchestration layer, that is, its ability to correctly distribute
the computational load among the nodes existing in the cluster.
By comparing the execution time between a single-node run —
requiring one user to complete all tasks individually — and a multi-
node execution (for instance, using two nodes and assuming that
the combined computational capacity of those two nodes is greater
than that of the previously tested single-node), we can immediately
validate the platform’s ability to reduce execution times and latency
by distributing tasks among different contributing nodes, thereby
leveraging a distributed computing architecture.

5.1.3 Stress Tests. Finally, it is also important to evaluate the sys-
tem’s behavior as the volume of data required for the tasks executed
by the nodes scales up, in order to understand how the system
handles increasing data loads. By keeping the number of available
nodes low (for instance, a single node or just two), the processing
load can be successively increased to assess how the system reacts
until it reaches its operational limits. These results will also make
it possible to detect potential bottlenecks and recurring patterns in
our platform that can be used to refine and improve it.

5.2 Forecasting Model Parameterization
This section presents the results obtained during the parameteriza-
tion phase of the forecasting model used in the platform. The main

Table 2. Model parameterization times with grid 1

Nº of nodes 24 combinations grid 36 combinations grid
1 84.89 s 200.52 s
1 82.79 s 208.79 s
1 84.79 s 225.18 s
2 79.55 s 181.88 s
2 78.86 s 173.52 s
2 79.73 s 167.28 s

objective of this stage was to test different combinations of param-
eters and both single-node and distributed executions, in order to
identify those parameter sets that best balance forecasting accuracy
and computational performance within the proposed architecture,
as well as to verify that the platform’s efficiency objectives are met.

Executions were carried out in different configurations using the
variable temp (temperature), varying not only the model’s internal
parameters but also the number of active nodes in the cluster, with
the goal of evaluating the impact of task distribution on the system’s
overall performance. Initially, a variation of the auto_sarima()
function was executed in single-node mode, followed by the same
experiment using two nodes, with a .csv file of approximately 11.1
KB and a parameter grid of (0, 2) for ’q’, ’P’, and ’Q’, and (0, 3)
for ’p’. The results can be observed in Table 2. All these executions
identified ARIMA: (2, 1, 1) Seasonal: (0, 1, 1, 24) as the best parameter
set for the model in this context.
As can be seen, in addition to consistently identifying the same

model as the most suitable, the average execution time of the func-
tion dropped from 84.16 seconds to 79.38 seconds, representing an
improvement of approximately 5% (4.78 seconds). And what hap-
pens if we expand the grid’s scope, increasing, for example, the
range of parameter ‘q’ to (0, 3)? How will our cluster respond?
Despite the expanded grid with new combinations, the parame-

terization function continued to identify the same set of parameters
as those that best fit our forecasting model, reinforcing the validity
of the initially chosen grid. It is easy to observe considerable gains
in terms of system efficiency. As expected, the greater the computa-
tional complexity and number of calculations to be performed, the
more significant the reduction in execution times achieved through
parallel computations over the data. With the first and smaller grid
used (encompassing 24 possible combinations), we achieved a 5%
improvement between centralized and parallel computing. When ex-
panding to a larger grid (with 36 combinations, representing roughly
50% more computational load), the improvement increased to 20.8%
— with an average execution time of 211.50 seconds using only one
worker node, and 167.56 seconds with two nodes.

These results also reveal that, although increasing the number
of nodes brings performance improvements, such gains are not
linear nor guaranteed in all scenarios. In configurations with smaller
data volumes or less demanding tasks, the coordination overhead
between nodes may offset the benefits of distribution. On the other
hand, in situations where the parameter complexity or grid size
increases significantly, the distributed architecture demonstrates a
clear advantage, reducing total execution time in a meaningful way.
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This observation reinforces the importance of dynamic and well-
considered offloading management, which must take into account
the nature of the task, the capacity of the available nodes, and the
costs associated with parallelization.

5.3 Forecast Model Execution
The tests related to the distributed computing efficiency component
of our forecasting model began with the execution of the model
configured at the maximum conditions available to the user, using
only one contributing node, with the objective of forecasting five
variables (temperature, humidity, wind speed, dew point, and atmo-
spheric pressure) over a 5-day interval, with a training slice of 4
weeks (24h * 7 days * 4 weeks = 672 hourly records). The average
time observed across the five executions was 22.74 seconds. The
next step was to verify whether these times would be reduced by
adding one worker node to our cluster. After the same five execu-
tions, an average time of 18.42 seconds was recorded, resulting in
an 18.99% reduction in total execution time between a centralized
and a distributed execution.
With this test completed and the expected results obtained, we

decided to gradually reduce task complexity to possibly identify a
point where parallel execution is no longer justified. The same five
target variables were maintained, but the forecast interval was re-
duced to three days (72 future records). For 504 training records, the
cluster produced somewhat inconsistent results, occasionally even
worse than executions with larger training datasets (672 records),
possibly due to internal mechanisms of the SARIMA model, which
may sometimes favor larger arrays and not scale linearly in exe-
cution time relative to the increase in input data volume. Using
the same data slice as in the 5-day forecasts, the improvements are
evident. We therefore opted to use the most recent 700 records for
3-day forecasts.
Although parallelization brings performance gains in many sce-

narios, not all tasks—especially smaller or less computationally
demanding ones—benefit from distributed execution. In some cases,
the additional overhead can even degrade performance. In other
words, the extra costs related to task distribution and result col-
lection (data partitioning, task dispatch, waiting for workers, and
gathering results) may outweigh the gains achieved through par-
allel task execution, effectively negating the expected efficiency
improvements and worsening overall system performance.
Now, in more demanding scenarios—such as higher input data

volume, longer forecasting horizons, unstable network conditions,
or limited computational capacity—how does the platform respond?
We simulated these challenging conditions by changing the num-
ber of training records used by our model: hourly forecasts were
requested for six variables (columns) over the next 31 days (24 * 31
steps), using 8664 records (hourly observations from the past 12
months for a given location). Additionally, network delays of 300ms
were introduced on all interfaces using the command ’tc qdisc
add dev ethx root netem delay 300ms’.
With one node, three execution attempts were made. All failed,

reaching the maximum number of permitted worker failures. Next,
one node was added to the system, and the same parameters were
tested on two different datasets: London (dataset 1), with execution

times of 156.33s and 205.20s; and Lisbon (dataset 2), with results of
329.33s and 196.10s. We thus reached a situation where the model
could only be executed with the support of multiple devices, through
distributed processing.
Subsequently, to further stress the platform and analyze its be-

havior, new columns [temp2, temp3, temp4, temp5, temp6] were
added—simulated hourly temperature records—to dataset 1, thereby
increasing its size and allowing forecasts for a larger number of
variables [temp, dwpt, wdir, wspd, wpgt, pres, temp2, temp3, temp4,
temp5, temp6], raising the count from six to eleven forecasted vari-
ables. The forecast horizon was maintained, still requesting hourly
forecasts for the next 31 days (24 * 31 steps). For these tests, dual-
core nodes were used, each limited to 1GB of memory allocated to
the executors.

With two nodes, four execution attempts were made—all of which
crashed during execution. A third node, identical to the others, was
then added to the environment.With these three nodes, the forecasts
were requested again, most of which completed successfully (one
out of five executions failed), with an average execution time of
1042.76 seconds. This demonstrated that increasing the number of
nodes in highly demanding tasks is highly beneficial for systems of
this kind.

Finally, the complexity of the forecasts was increased further by
extending the forecasting steps to 24 * 31 * 3, corresponding to the
next three months. The node capacity was also slightly increased,
allowing 2GB of RAM per node—effectively doubling the previous
allocation—to enable the two-node system to complete the tasks
as well. The average execution time was 1612.14 seconds for the
3-node setup and 1734.50 seconds for the 2-node setup. Although
the difference is not very large (a bit under 10%), it demonstrates
both improved efficiency and greater result stability with the in-
creased number of nodes. These tests ultimately show that, even
with workloads that are unrealistic for our target scenario, increas-
ing the number of nodes improves the system’s resilience, making
it more resistant to failures and allowing it to complete tasks that it
was previously unable to handle with fewer nodes. By increasing the
capacity of these participating nodes, this capability is also observed
with only two nodes, although the results are less efficient due to
the lower overall processing capacity of the system.

6 Conclusion
This work aimed to explore the main challenges and solutions asso-
ciated with the integration of distributed computing technologies at
the edge, framed within the context of IoT technologies or potential
smart city applications. The proposed platform, which materialized
as a fog-basedweather forecasting system operating on edge devices,
represents a synthesis of all the conclusions drawn throughout the
research, addressing common challenges while leveraging the most
suitable technologies to handle them.
The review of related work demonstrated the potential of com-

bining local processing paradigms with fog architectures to manage
large-scale or real-time data stream computations, decentralizing
processing and bringing operations closer to both users and data
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sources. Furthermore, regarding the weather forecasting compo-
nent specifically, the decision phase focused on simplifying com-
putational algorithms to provide greater flexibility and scalability
to the platform — particularly important given one of the main
objectives was to bring computation closer to the user, thus requir-
ing consideration of a high heterogeneity of devices. Despite these
considerations, ensuring the quality and reliability of the forecasts
remained essential. A testing methodology was also outlined to
evaluate the system’s behavior and performance.
The development phase transformed the theoretical concepts

explored in previous chapters into a practical and functional im-
plementation. By defining a clear functional architecture, it was
possible to logically and efficiently structure the edge and fog layers,
assigning distinct responsibilities to each type of node — from data
collection and requests to storage, coordination, and distributed
processing. The setup of the execution environment, using Apache
Hadoop and Apache Spark, highlighted the importance of integrat-
ing distributed storage systems with in-memory processing engines,
achieving a balance between robustness and performance. The use
of Hadoop HDFS as the storage infrastructure, combined with the
computational power of Spark, contributed to a lightweight yet
capable platform for handling data volume and velocity. The devel-
oped code served as the foundation for experimental tests, allowing
the simulation of weather forecast execution and parameterization
under various configurations.
The discussion of results demonstrated, through controlled ex-

periments, how model parameterization and the number of active
nodes directly influence system performance. It was observed that
efficient task distribution, although not always advantageous for
low-complexity operations, provides clear benefits in more demand-
ing scenarios.
This work therefore reinforces the importance and adaptability

of fog architectures in edge networks that leverage distributed pro-
cessing capabilities to handle contexts requiring the processing of
large or continuous data streams (such as the massive IoT environ-
ments seen in smart city networks) or those demanding real-time
responses, offering efficient resource management and maximizing
the utilization of available computational resources.

Finally, it is worth noting that the results and architecture devel-
oped in this work can be adapted or extended to different application
domains, especially in contexts where real-time response and local
autonomy are critical. The platform could evolve, for instance, to in-
corporate more advanced forecasting techniques, support a greater
number of variables, or integrate event-based decision mechanisms.
Thus, this work opens the door for future developments — ei-

ther through deployment in real-world edge computing environ-
ments [12, 22] or through the expansion of its capabilities within
the broader smart city and IoT ecosystems. As future work, it would
be particularly interesting to extend the developed platform for
testing in real environments with heterogeneous devices and vari-
able network conditions, to validate its robustness under produc-
tion scenarios. Also consider the introduction of federated learning
mechanisms, which would enable cooperative forecasting while pre-
serving user data privacy and reducing the need to transfer sensitive
information, by smart data integration [15]. Additionally, integrat-
ing more advanced predictive models, scaling up data ingestion for

massive volumes, and automating the offloading decision process
through adaptive intelligence could further enhance the solution’s
ability to handle dynamic urban environments typical of smart city
networks. As an additional perspective for future work, the integra-
tion of direct communication mechanisms between edge devices
could also be considered, thereby eliminating the dependency on
fixed network infrastructure. Technologies such as Wi-Fi Direct and
Wi-Fi Aware (Neighbor Awareness Networking), for example, en-
able peer-to-peer communication and the discovery of nearby nodes.
The use of these approaches would strengthen the platform’s re-
silience and availability in scenarios of network connectivity failure.
As an additional perspective for future development, the integration
of direct communication mechanisms between edge devices could
be considered, thereby eliminating the dependency on fixed net-
work infrastructure. Technologies such as Wi-Fi Direct and Wi-Fi
Aware (Neighbor Awareness Networking), for example, enable peer-
to-peer communication and the discovery of nearby nodes. The use
of these approaches would strengthen the platform’s resilience and
availability in scenarios of network connectivity failure.
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