
Serverless Dataflows: A Decentralized Workflow Execution
Engine with Predictive Planning

Diogo Alexandre Ferreira de Jesus

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. Luís Manuel Antunes Veiga

Examination Committee

Chairperson: Prof. António Manuel Ferreira Rito da Silva
Supervisor: Prof. Luís Manuel Antunes Veiga

Member of the Committee: Prof. Rodrigo Fraga Barcelos Paulus Bruno

October 2025

Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.

Acknowledgments

I would like to thank my supervisor, Prof. Luís Veiga, for his guidance and support throughout this

thesis. His advice helped me stay focused on the most important aspects of the work and provided

valuable technical and non-technical insights. I am also deeply grateful to my friends and family for their

constant support and encouragement throughout my academic journey.

i

Abstract

Serverless computing has become a suitable cloud paradigm for many applications, prized for its op-

erational ease, automatic scalability, and fine-grained pay-per-use pricing model. However, executing

workflows, which are compositions of multiple tasks, in Function-as-a-Service (FaaS) environments re-

mains inefficient. This inefficiency stems from the stateless nature of functions, and a heavy reliance on

external services for intermediate data transfers and inter-function communication.

In this document, we introduce a decentralized DAG engine that leverages historical metadata to plan

and influence task scheduling. Our solution encompasses metadata management, static workflow plan-

ning, and a worker-level scheduling strategy designed to drive workflow execution with minimal synchro-

nization. We compare our scheduling approach against WUKONG, another decentralized serverless

DAG engine. Our evaluation shows that our most resource-efficient planner reduces workflow execu-

tion time by 12.6% and simultaneously lowers resource consumption by 36% compared to the optimized

WUKONG scheduling approach. For users prioritizing speed over cost, our fastest planner (Non-Uniform

optimized) achieves a 57.5% reduction in makespan compared to our most resource-efficient planner

(Uniform), but this performance gain requires a 114% increase in resource consumption.

Keywords

Cloud Computing; Serverless; FaaS; Serverless Workflows; Workflow Prediction

iii

Resumo

A computação serverless tornou-se um paradigma oferecido por fornecedores de serviços de com-

putação em nuvem adequado para muitas aplicações, valorizado pela sua facilidade operacional, es-

calabilidade automática e modelo de preços granular baseado na utilização. Contudo, a execução de

workflows, que são composições de múltiplas tarefas, em ambientes Function-as-a-Service (FaaS) per-

manece ineficiente em certos cenários. Esta ineficiência resulta da natureza stateless (sem estado)

destas funções e de uma forte dependência de serviços externos para transferências de dados inter-

médios, sincronização e comunicação entre funções.

Neste documento, apresentamos uma solução de scheduling de workflows descentralizada que uti-

liza metadados históricos para planear e influenciar a atribuição de tarefas a workers antes do workflow

ser executado. A nossa solução abrange a gestão de metadados, o planeamento estático de workflows

e uma estratégia de scheduling ao nível dos workers concebida para permitir a execução de work-

flows com sincronização mínima. Comparamos a nossa abordagem com o WUKONG, outro motor de

workflows serverless descentralizado.

A nossa avaliação demonstra que o nosso algoritmo de planeamento estático mais eficiente em

termos de recursos reduz o tempo de execução dos workflows em 12.6% e, simultaneamente, diminui

o consumo de recursos em 36% em comparação com a abordagem de scheduling WUKONG. Para

os utilizadores que priorizam a velocidade em detrimento do custo, o nosso planeador mais rápido

alcança uma redução de 57.5% no makespan em comparação com o nosso planeador mais eficiente

em recursos, exigindo no entanto um aumento de 114% no consumo de recursos.

Palavras Chave

Computação em Nuvem; Serverless; FaaS; Workflows Serverless; Previsão de Workflows

v

Contents

1 Introduction 1

1.1 Problem/Motivation . 2

1.2 Gaps in prior work . 3

1.3 Proposed Solution . 3

1.4 Document Organization . 3

2 Related Work 5

2.1 Serverless Computing . 6

2.1.1 Advantages . 7

2.1.2 Limitations . 8

2.1.3 Research Efforts . 9

2.2 Workflows . 11

2.2.1 Workflow Definition Languages . 11

2.2.2 Traditional Workflow Scheduling . 12

2.2.3 Modern Workflow Scheduling . 13

2.2.3.A Stateful Serverless Functions . 14

2.2.4 Serverless Workflow Scheduling . 15

2.2.4.A Workflow Scheduling Approaches . 15

2.2.4.B Relevant Workflow Schedulers . 16

A – DEWE v3 . 16

B – PyWren . 17

C – Unum . 17

D – WUKONG . 18

2.3 Discussion/Analysis . 20

3 Architecture 21

3.1 Workflow Definition Language . 22

3.2 Architecture . 24

3.3 Metadata Management . 26

vii

3.4 Static Workflow Planning . 28

3.4.1 Workflow Simulation . 28

3.4.2 Planning Algorithms . 28

3.4.3 Optimizations . 35

3.5 Client . 39

3.6 Decentralized Workers . 42

4 Evaluation 47

4.1 Emulating FaaS environment . 47

4.2 Research Questions . 49

4.3 Experimental Setup . 51

4.4 Results . 53

4.4.1 Predictions Accuracy and SLA fulfillment . 53

4.4.2 Overall Performance . 54

4.4.3 Optimizations . 56

4.4.4 Resource Usage . 57

4.5 Analysis . 61

5 Conclusion 63

5.1 Achievements . 63

5.2 Limitations and Future Work . 64

Bibliography 65

A Structure of Workflows used for Evaluation 73

viii

List of Figures

2.1 Serverless Computing . 7

2.2 WUKONG Architecture (source: WUKONG paper [1]) . 18

3.1 Simple DAG example . 23

3.2 Solution Architecture . 25

3.3 Planned Workflow Execution Example . 36

3.4 Real Workflow Plan Visualization . 39

3.5 DAG Visualization Feature for a Text Analysis Workflow 40

3.6 Workflow Real-time Dashboard . 41

3.7 Choreographed Scheduling Example . 44

4.1 Predictions Accuracy across all planners and SLA fulfillment rates 53

4.2 Makespan distribution . 55

4.3 Waiting for dependencies distribution . 55

4.4 Worker startup time distribution . 56

4.5 Time breakdown analysis . 57

4.6 Warm vs cold starts . 58

4.7 Resource usage distribution (in GB-seconds) . 58

4.8 Makespan comparison . 59

4.9 Resource usage comparison . 60

A.1 Matrix Multiplication Workflow (Partial) . 74

A.2 Tree Reduction Workflow (Partial) . 75

A.3 Text Analysis Workflow (Partial) . 76

A.4 Image Transformation Workflow (Partial) . 76

ix

x

List of Algorithms

1 Select Relevant Samples for Predictions . 29

2 Worker Assignment Algorithm (used by Uniform and Non-Uniform planners) 32

3 AssignGroup Procedure . 33

4 Resource Downgrading Algorithm (used by Non-Uniform planner) 34

xi

xii

Listings

3.1 DAG definition example . 22

3.2 Setting up and launching workflow execution . 23

3.3 Task Predictions API . 26

3.4 Overridable worker execution logic stages . 37

4.1 Example of Delegating Tasks to Gateway . 48

xiii

xiv

1
Introduction

Contents

1.1 Problem/Motivation . 2

1.2 Gaps in prior work . 3

1.3 Proposed Solution . 3

1.4 Document Organization . 3

Function-as-a-Service (FaaS) represents a serverless cloud computing paradigm that simplifies ap-

plication deployment by abstracting away infrastructure management. It provides automatic, elastic

scalability (potentially without limit) along with a fine-grained, pay-per-use pricing model. This has led

to its widespread adoption for event-driven systems, microservices, and web services on platforms like

AWS Lambda [2], Azure Functions [3], and Google Cloud Functions [4]. These applications typically

benefit the most from FaaS because they are lightweight, stateless, and characterized by highly variable

or unpredictable workloads, allowing them to leverage serverless platforms’ on-demand scalability and

cost-efficiency.

This paradigm is also increasingly used to execute complex scientific and data processing workflows,

such as the Cybershake [5] seismic hazard analysis or Montage [6], an astronomy image mosaicking

workflow. These applications are structured as workflows, formally represented as Directed Acyclic

1

Graphs (DAGs) of interdependent tasks. However, efficiently executing these complex workflows on

serverless platforms remains a significant challenge.

1.1 Problem/Motivation

Despite their advantages, serverless platforms present several limitations that complicate the execution

of complex workflows. Since these platforms allow scaling down to zero resources to save costs, they

can also introduce unpredictable latency, known as cold starts [7], particularly for short-lived functions,

affecting overall workflow performance. The lack of direct inter-function communication [8] means that

tasks often have to rely on external services, such as message brokers or databases to exchange in-

termediate data, which can increase overhead and reduce efficiency. Interoperability between platforms

is further limited by the use of platform-specific workflow definition languages, which restricts the porta-

bility of workflows across different serverless environments. Additionally, while statelessness simplifies

scaling and management, it can introduce overhead and complexity for applications that require conti-

nuity or coordination across multiple function invocations. Finally, developers have limited control over

the underlying infrastructure, restricting the ability to optimize resource usage or tune performance for

specific workloads.

Several solutions have emerged to address the limitations of serverless platforms. Stateful functions

(e.g., AWS Step Functions [9], Azure Durable Functions [10], and Google Cloud Workflows [11]) ex-

pand the range of applications that can run on serverless platforms by maintaining state across multiple

function invocations, coordinating complex workflows, and providing built-in fault tolerance. Other ap-

proaches tackle limitations at the runtime level, proposing extensions to FaaS platforms (e.g., Faa$T [12],

Palette [13], Lambdata [14]) or entirely new serverless architectures (e.g., Apache OpenWhisk [15]).

Other research projects focus on improved orchestration and coordination mechanisms that work

on top of FaaS platforms, such as Moyer et al. [16]’s hole punching approach to allow direct inter-

function communication, Pheromone [17], Triggerflow [18], FaDO [19], and FMI [20]. These solutions

aim to overcome the inherent limitations of stateless functions through intelligent middleware layers that

optimize function coordination, data placement, and workflow execution without requiring modifications

to the underlying FaaS infrastructure.

Finally, some workflow-focused solutions (e.g., WUKONG [1], Unum [21], DEWEv3 [22]) employ

scheduling strategies and workflow-level optimizations to enhance efficiency, primarily by improving data

locality to bring computation closer to the data and minimize reliance on external services.

2

1.2 Gaps in prior work

These workflow-focused approaches, however, often use the same resources for all tasks in a workflow

and rely on "one-step scheduling", making decisions based solely on the immediate workflow stage with-

out considering the broader context or the downstream effects of their decisions. Other solutions often

use homogeneous worker configurations, which can lead to an inefficient use of resources when tasks

have diverse computational or memory requirements. Furthermore, the heuristic-based approaches

used by other solutions can be inefficient in certain scenarios, as they lack mechanisms to adapt worker

resource allocations to the specific needs of individual tasks. Moreover, we found no prior work that

leverages metadata or historical metrics to inform scheduling decisions across an entire serverless

workflow.

1.3 Proposed Solution

These research gaps motivated the central research question of this work: if we have knowledge of all

DAG tasks, collect sufficient metrics on their behavior, and understand how they are composed to form

the full workflow, can we leverage this information to make smarter scheduling decisions that minimize

makespan (the total time taken to complete a workflow) and maximize resource efficiency in a FaaS

environment?

To answer this research question, we propose a decentralized serverless workflow execution engine

that leverages historical metadata from previous workflow runs to generate informed task allocation

plans, which are then executed by FaaS workers in a choreographed manner, without needing a central

scheduler. By relying on such planning, our approach aims to minimize the usage of external cloud

storage services, which are often employed by similar solutions for intermediate data exchange and

synchronization, while also avoiding the inefficiencies of homogeneous worker resource allocations.

1.4 Document Organization

The rest of this document is organized as follows: In Chapter 2 we do a background analysis on the

serverless landscape, analyzing serverless platforms, offerings, open-source solutions and existing re-

search work. In Chapter 3 we present our proposed solution, detailing its architecture and implementa-

tion of the core layers and components. In Chapter 4, we evaluate our proposed solution by comparing

it with WUKONG’s scheduling algorithm as well as with algorithms we have implemented. Finally, in

Chapter 5 we conclude our work and discuss future directions for research.

3

4

2
Related Work

Contents

2.1 Serverless Computing . 6

2.1.1 Advantages . 7

2.1.2 Limitations . 8

2.1.3 Research Efforts . 9

2.2 Workflows . 11

2.2.1 Workflow Definition Languages . 11

2.2.2 Traditional Workflow Scheduling . 12

2.2.3 Modern Workflow Scheduling . 13

2.2.3.A Stateful Serverless Functions . 14

2.2.4 Serverless Workflow Scheduling . 15

2.2.4.A Workflow Scheduling Approaches . 15

2.2.4.B Relevant Workflow Schedulers . 16

A – DEWE v3 . 16

B – PyWren . 17

C – Unum . 17

5

D – WUKONG . 18

2.3 Discussion/Analysis . 20

In this section, we explore the serverless computing landscape, starting by exposing the architec-

ture of a typical serverless computing platform, referencing the use cases for this new cloud computing

model, and presenting both commercial and open-source offerings. We also delve into workflows, show-

ing how they can be represented, how they are run and managed, and contrasting traditional frameworks

for workflow management with more recent solutions that explore cloud technologies, including server-

less. Then, we write about three extension proposals to the current serverless platforms design, aiming

to improve data locality. We finish this section by presenting relevant workflow orchestrators and sched-

ulers (serverful, serverless, and hybrid) for executing tasks, highlighting their advantages but also some

of their limitations and inefficiencies.

2.1 Serverless Computing

Traditionally, cloud applications have been deployed on virtual machines, such as Amazon EC2 1, which

provide full control over the operating system and runtime environment. This model allows predictable

performance, flexible resource allocation, direct communication via local network interfaces between

VMs, and the ability to run long-lived services, but it comes with significant operational overhead: devel-

opers must manage provisioning (which can take several minutes), scaling, patching, and fault tolerance.

Serverless computing addresses these challenges by abstracting away infrastructure management,

enabling developers to focus solely on application logic. At the storage and database layer, serverless

databases and object stores automatically scale with demand and charge based on actual usage. At

the application level, Backend-as-a-Service (BaaS) platforms offer ready-to-use components like au-

thentication and messaging. Finally, at the compute layer, Function-as-a-Service (FaaS) provides the

most flexible and fine-grained model, allowing developers to deploy individual functions that execute on

demand in response to events. In this document, we focus specifically on FaaS, as it is the model most

relevant to our work.

The core of a typical serverless/FaaS runtime is composed of 4 layers (as depicted in Figure 2.1):

Controller, Workers, Storage, and Monitoring. The Controller is responsible for forwarding requests to

workers (often run in containers) and scaling (up and down) the number of available workers at any given

point in time. Workers receive invocation requests from the controller and have to prepare the runtime,

download the function code from storage, run it and return a response to the controller. The Storage

component stores user-specific data, functions code, metadata, etc. Also, Serverless runtimes usually

contain Monitoring components that send alerts to the controller to help it make load balancing and
1https://aws.amazon.com/pt/ec2/

6

https://aws.amazon.com/pt/ec2/

scaling decisions. Besides that, this module is particularly important for commercial platforms because

it is what allows them to use metrics such as function execution time and memory usage to charge

users.

Figure 2.1: Serverless Computing

This execution model is now offered by major cloud providers, including Amazon (Lambda [2]),

Google (Cloud Run Functions [4]), Microsoft (Azure Functions [3]), and Cloudflare (Workers [23]). In

addition to these commercial offerings, several open-source runtimes such as OpenWhisk [15], Open-

FaaS [24], and Knative [25] provide developers with alternatives for deploying FaaS in self-managed or

hybrid environments.

2.1.1 Advantages

Recent industry reports 2 show that serverless computing has seen rapid adoption over the last few

years. For example, in 2024 the global serverless computing market was estimated at USD 24.51 billion,

and it is projected to more than double to USD 52.13 billion by 2030, with a compound annual growth

rate (CAGR) of about 14.1%. Function-as-a-Service (FaaS) constitutes the majority service model,

representing over 60% of serverless market share in 2024. This rapid growth highlights the increasing

appeal of serverless architectures, which can be attributed to the following key benefits:

• Operational Simplicity means that developers are abstracted away from the underlying infras-

tructure management, without worrying about server maintenance, scaling, or provisioning. This
2https://www.grandviewresearch.com/industry-analysis/serverless-computing-market-report

7

https://www.grandviewresearch.com/industry-analysis/serverless-computing-market-report

enables faster development and deployment cycles;

• Scalability means the FaaS runtime handles increasing workloads by automatically provisioning

additional computational capacity as demand grows, ensuring that applications remain respon-

sive and performant. This makes the FaaS model ideal for applications with highly variable or

unpredictable usage patterns, where we don’t know how many or when requests will arrive;

• Pay-per-use: FaaS provides a pricing model where users are only charged for the resources

used during the actual execution time over the memory used by their functions, rather than for

pre-allocated resources (as in Infrastructure-as-a-Service).

Given these advantages, the serverless model is particularly attractive for applications with highly

variable or unpredictable workloads, such as web services, event-driven pipelines, and real-time data

processing. It also suits applications that benefit from rapid iteration and deployment, including mi-

croservices, and APIs, where minimizing operational overhead is crucial. Furthermore, serverless can

be advantageous in cost-sensitive contexts, where pay-per-use pricing reduces expenses for workloads

that do not require continuous execution.

These benefits make serverless computing attractive not only for simple, event-driven applications

but also for more complex workflows. Serverless workflows are a composition of multiple computational

tasks that are chained together to execute applications by orchestrating individual serverless functions

into a coordinated sequence. Some workflows have been successfully experimented with on FaaS.

Notable examples include ExCamera [26], a highly parallel video encoding system; Montage [6], an

astronomical image mosaic generator; and CyberShake [5], a seismic hazard modeling framework.

2.1.2 Limitations

While these advantages make serverless computing highly appealing for a wide range of applications,

the model is not without its limitations. As adoption has grown, both practitioners and researchers

have identified several technical and architectural challenges that hinder its broader applicability and

performance. A number of studies have systematically analyzed these issues, among which Li et al. [27]

provides a comprehensive overview of the benefits, challenges, and open research opportunities in the

serverless landscape. The challenges mentioned include:

• Startup Latencies: It’s the time it takes for a function to start executing user code. Cold starts

(explained further) can be critical, especially for functions with short execution times;

• Isolation: In serverless, multiple users share the same computational resources (often the same

Kernel). This makes it crucial to properly isolate execution environments of multiple users;

8

• Scheduling Policies: Traditional cloud computing policies were not designed to operate in dy-

namic and ephemeral environments, such as FaaS;

• Resource Configuration Complexity: Despite the promise of abstracting infrastructure manage-

ment, serverless platforms still require developers to manually configure resource allocations (such

as memory limits and timeout values) for each function. This configuration significantly impacts

both performance and cost, yet determining optimal settings remains a non-trivial task. While tools

like AWS Lambda Power Tuning [28] have emerged to assist with empirical optimization through

automated performance testing across different configurations, the burden of resource selection

still falls on developers, partially undermining the serverless promise of infrastructure abstraction;

• Fault-Tolerance: Cloud platforms impose restrictions on developers by encouraging the develop-

ment of idempotent functions. This makes it easier for providers to implement fault-tolerance by

retrying failed function executions.

Hellerstein et al. [8] portrays FaaS as a "Data-Shipping Architecture", where data is intensively moved

to code, through external storage services like databases, bucket storage or queues, to circumvent

the limitation of inter-function direct communication. This can greatly degrade performance, while also

incurring extra costs.

These limitations notably impact workflows—complex applications composed of multiple functions

orchestrated into a Directed Acyclic Graph (DAG), where each function’s output serves as input for sub-

sequent functions. Such workflows are prevalent in scientific computing, data processing, and machine

learning pipelines.

2.1.3 Research Efforts

To overcome some of the inherent limitations of traditional Function-as-a-Service (FaaS) platforms, sev-

eral research initiatives have proposed architectural innovations aimed at improving performance, scala-

bility, and orchestration. Apache OpenWhisk [15] adopts a fully event-driven, trigger-based architecture,

in which functions are invoked automatically in response to events, allowing for more responsive exe-

cution and efficient resource utilization. Its design supports complex workflows and fine-grained control

over function composition, making it suitable for latency-sensitive and distributed applications.

Building on similar principles, TriggerFlow [18] extends the trigger-based approach by implementing

an event-condition-action paradigm, enabling efficient orchestration of complex workflows such as state

machines and DAGs. This allows high-volume event processing, dynamic scaling, and improved fault

tolerance, making it well-suited for long-running scientific and data-intensive workflows.

Another notable platform, OpenFaaS [24], fights vendor lock-in by emphasizing simplicity and porta-

bility, allowing developers to deploy serverless functions on a wide range of infrastructures while main-

9

taining an event-driven execution model. Collectively, these platforms show how architectural innova-

tions—particularly in event handling and workflow orchestration—can mitigate many of the performance

and scalability limitations found in conventional FaaS systems.

While solutions such as OpenWhisk and TriggerFlow propose completely novel serverless architec-

tures, others such as Palette Load Balancing [13], Faa$T [12], Pocket [29], Pheromone [17], and Lamb-

data [14] propose extending either the FaaS runtime or the workflow definition language to address one

of the most pressing limitation of the serverless paradigm: data management inefficiencies.

Palette [13] is a FaaS runtime extension that improves data locality by introducing the concept of

“colors“ as locality hints. These colors are parameters attached to function invocations, enabling the

invoker to express the desired affinity between invocations without directly managing instances. Palette

then uses these hints to route invocations with the same color to the same instance if possible, allowing

for data produced by one invocation to be readily available to subsequent invocations, reducing the need

for expensive data transfers, as it would be required in a typical FaaS runtime. This extra control that

Palette provides can be used by workflow schedulers, which have insights on the data dependencies

between tasks, to try co-locating tasks which share data dependencies, for example, leading to greater

performance while also reducing resource utilization.

Faa$T (Function-as-a-Service Transparent Auto-scaling Cache) [12] tackles the same issue as Palette,

locality, but does so on the data level, by adding a transparent caching layer into the FaaS runtime.

Each application is assigned an in-memory cachelet that stores frequently accessed data, enabling sub-

sequent invocations to reuse it without resorting to remote storage. Cachelets cooperate as a distributed

cache using consistent hashing to share objects across instances, while pre-warming and auto-scaling

mechanisms adapt the cache to workload demands. Unlike Palette, which requires user-provided hints,

Faa$T operates automatically, preserving the simplicity of the serverless model, hence the "transparent"

in its name.

Similarly, Lambdata [14] improves data locality by relying on explicit data intents provided by the

developer. Functions declare which objects they will read and write, allowing the controller to co-locate

invocations that share data dependencies on the same worker and reuse a local cache. This reduces

remote storage accesses and data transfer overheads. Compared to Palette’s flexible color hints, Lamb-

data’s data intents are more precise but place stricter requirements on developers, while contrasting

with Faa$T’s fully automated and distributed approach. Contrasting with Palette, Lambdata requires

less effort from the developer, but at the cost of reduced flexibility.

10

2.2 Workflows

As stated before, workflows represent systematic methodologies for organizing and executing compu-

tational processes, providing a structured approach to designing, managing, and reproducing generic

computations. Workflows have proven to be useful for many different use cases, from application pay-

ments and order processing, to data analytics pipelines that move and transform large datasets, to

scientific computing and simulations where complex experiments are broken into manageable steps.

2.2.1 Workflow Definition Languages

At their conceptual core, most workflows can be represented as directed acyclic graphs (DAGs), which

model computational processes by depicting tasks as nodes and their dependencies as edges connect-

ing them. As an example of a typical web application workflow, consider an online payment process.

When a user makes a purchase, the workflow can be represented as a DAG, where each task corre-

sponds to a step in the transaction process. The first task may involve verifying the user’s credentials,

followed by tasks such as checking product availability, processing payment, and confirming the order.

Each of these tasks depends on the successful completion of the previous step, with dependencies that

ensure the correct order of operations. For instance, payment processing cannot proceed without con-

firming the product availability, and order confirmation only occurs once payment has been processed.

This simple DAG structure ensures that each task is executed in sequence, while also enabling parallel

execution where possible, such as checking product availability and verifying payment simultaneously.

Despite the existence of other ways to express workflows, due to the simplicity of writing and inter-

preting DAGs, most systems and libraries use this representation. For instance, Apache Airflow [30]

uses DAGs to define and schedule workflows defined in Python. Similarly, Dask [31], a Python parallel

computing library, also utilizes DAGs to represent task dependencies, enabling the parallel execution of

tasks across clusters. DAGMan (Directed Acyclic Graph Manager) [32] is a way HTCondor [33] (dis-

tributed computing job manager) users can organize independent jobs into workflows, also in the form

of DAGs.

However, there are more flexible alternatives to define workflows. YAWL (Yet Another Workflow

Language) [34] is a workflow language that provides a highly expressive framework for workflow man-

agement, capable of supporting a wider range of workflow patterns. YAWL uses Petri networks [35]

instead of DAGs to model workflows. This allows YAWL to handle more complex control-flow structures,

such as loops, parallelism, and advanced synchronization patterns, offering greater flexibility and power

in defining and managing intricate workflows.

While using more capable and flexible workflow languages, such as YAWL (Yet Another Workflow

Language) allows the representation of more complex workflow patterns, most of the tools used for

11

defining and running scientific workflows, like Apache Airflow, Dask, and HTCondor’s DAGMan use

the Directed Acyclic Graph format. This is because DAGs effectively model the majority of scientific

workflows, which typically involve non-cyclic dependencies, making them simpler to compose, deploy,

understand, debug, and visualize.

2.2.2 Traditional Workflow Scheduling

Going from a workflow definition to actual execution involves several key stages: provisioning resources

to match computational demands, uploading code, dependencies, and data to ensure a consistent exe-

cution environment, scheduling tasks efficiently to optimize cost and performance, monitoring execution

for performance and fault detection, and finally deprovisioning resources once the workflow completes.

Traditional scheduling approaches from Grid and Cloud computing assume centralized control, which

does not fully align with the ephemeral, stateless nature of serverless computing. Serverless platforms,

however, can simplify many of these stages by automating resource scaling, data staging, fault han-

dling, monitoring, and teardown, reducing operational overhead while adapting execution to dynamic

workloads.

To alleviate some of the developers and researchers’ pain points during these steps while scheduling

workflows on more traditional Infrastructure as a Service (IaaS) platforms, several data processing and

workflow scheduling frameworks have emerged. Among the platforms for data processing pipelines

are Apache Spark [36], Apache Flink [37], and Apache Hadoop [38], which focus on processing and an-

alyzing large datasets efficiently through parallel and distributed computing. On the workflow schedul-

ing and orchestration side, traditional platforms include Apache Oozie [39] and HTCondor [33], which

manage the execution and coordination of complex sequences of tasks, ensuring that dependencies

are handled and resources are allocated effectively. These frameworks help streamline both the data

processing and the management of workflows.

Apache Hadoop provided a foundation for large-scale data processing when it introduced the MapRe-

duce [40] paradigm, supported by HDFS and YARN [41] for reliable storage and resource management.

Apache Spark provides a flexible distributed model with rich libraries for analytics and efficient task de-

pendency management, while Apache Flink specializes in real-time stream processing with low latency

and robust state handling. In terms of workflow orchestration, Apache Oozie specializes in coordinating

Hadoop-based tasks, whereas HTCondor targets high-throughput scientific workflows, efficiently man-

aging complex dependencies. This has been extended with adaptive scheduling based on the relevance

of the new input received (and output produced) in each task [42,43].

Similarly, Dask [31] and its distributed scheduler (Dask Distributed [44]) extend the familiar Python

ecosystem to large-scale data and compute workloads, enabling parallel execution of array, dataframe,

and machine learning operations across clusters, with a lightweight task graph scheduler that supports

12

both batch and interactive computation. Together, these frameworks illustrate the range of solutions

available for executing and coordinating workflows on top of the IaaS model, spanning batch and stream-

ing data as well as data-centric and scientific computing environments.

While these frameworks address many critical aspects of resource provisioning, code and depen-

dency management, and workflow monitoring, they rely on the Infrastructure as a Service (IaaS) model.

While offering significant flexibility and control over the computing environment, IaaS comes with notable

drawbacks as mentioned previously. A major challenge of IaaS platforms is the complexity of managing

and provisioning virtual machines, storage, and network resources, which requires expertise and in-

curs significant overhead. Users must also handle scaling, load balancing, and fault tolerance manually,

often leading to inefficiencies. Predicting resource requirements is difficult, often resulting in over- or

under-provisioning, and the typical hourly billing model can further increase costs, particularly for short

workflows that run for only a few minutes.

As highlighted previously, the serverless paradigm excels in scenarios where automatic scaling and

cost-efficiency are essential, while also providing a much easier set-up process for developers by ab-

stracting away the underlying infrastructure and only requiring the user to follow a few coding rules

and minor configuration. Despite its current inefficiencies, the serverless model shows great potential

for efficiently running the same types of data processing pipelines and workflows as those handled by

the frameworks previously mentioned. Next, we will explore some of the most relevant solutions for

scheduling serverless workflows.

2.2.3 Modern Workflow Scheduling

The limitations of IaaS-based frameworks, such as those mentioned previously, have led to a new gen-

eration of workflow orchestrators designed for flexibility, usability, and ease of deployment. Unlike earlier

systems bound to static clusters and rigid DSLs, modern platforms embrace Python APIs, container-

ization 3, and cloud-native 4 principles. Tools such as Prefect [45], Dagster [46], and Airflow [30] prior-

itize developer productivity and observability, while Argo Workflows [47] leverages Kubernetes [48] as

its native execution environment. Another interesting project is Apache Beam, a cloud-native unified

programming model for batch and streaming data pipelines designed to be executed across multiple

backends, with some of the most popular implementations being Google Cloud Dataflow [49]. These

solutions mark a shift from infrastructure management toward higher-level abstractions that integrate

seamlessly with cloud platforms and services.

3https://aws.amazon.com/what-is/containerization/
4https://aws.amazon.com/what-is/cloud-native/

13

https://aws.amazon.com/what-is/containerization/
https://aws.amazon.com/what-is/cloud-native/

2.2.3.A Stateful Serverless Functions

While modern orchestrators such as Argo, Prefect, Dagster, and Airflow provide powerful abstractions

for coordinating workflows across diverse environments, they can be unnecessarily complex for devel-

opers who already rely on stateless serverless functions within a single cloud provider. In such cases,

what is often required is not a general-purpose orchestration framework but a lightweight mechanism

to compose stateless functions into more complex workflows, supporting coordination patterns such as

fan-out, fan-in, and conditional branching. To address this gap, cloud providers have introduced state-

ful serverless functions, which augment the stateless Function-as-a-Service (FaaS) model with durable

state management and execution control.

A stateful serverless function represents a workflow orchestration paradigm in which an external

coordination layer manages the execution and state of multiple stateless function invocations. These

orchestrators track workflow progress, preserve context across invocations, and handle retries, error

propagation, and branching logic. A common mechanism across these platforms is the use of snap-

shotting or durable state persistence: the engine periodically records workflow state so that execution

can be paused and later resumed without requiring all individual functions to remain active. By com-

bining snapshotting with techniques such as event sourcing, persistent queues, and transactional state

management, stateful orchestrators enable long-running workflows that can scale across distributed

environments while remaining fault tolerant and cost efficient.

Prominent examples include AWS Step Functions [9], Google Cloud Workflows [11], Azure Durable

Functions [10], and Cloudflare Workflows [50]. Despite differences in design and integration, they share

the goal of simplifying complex coordination atop serverless platforms. AWS Step Functions offers

JSON- or YAML-based state machines using the Amazon States Language (ASL)5, enabling workflows

that may last up to one year. Google Cloud Workflows provides YAML- or JSON-based definitions with

a maximum duration of 60 minutes per execution, tightly integrated with Google Cloud services such as

BigQuery and Cloud Run. Azure Durable Functions follows a code-centric approach in which developers

write an "orchestrator function" in languages such as C#, JavaScript, or Python, with workflow durations

of up to 30 days. Finally, Cloudflare Workflows emphasizes lightweight, edge-native 6 orchestration,

optimized for event-driven scenarios at the edge.

Together, these services extend the applicability of serverless beyond short-lived, stateless tasks,

enabling complex approval processes, data pipelines, machine learning training, and financial trans-

action workflows that require state persistence and long execution durations. At the same time, they

shift the responsibility of orchestration away from developers, who would otherwise need to implement

custom, serverful coordination layers.

5https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
6https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing/

14

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing/

The tradeoff, however, is strong vendor lock-in, since each provider enforces its own workflow rep-

resentation and tight integration with its ecosystem, making portability and hybrid-cloud adoption more

challenging. Furthermore, the user is billed for the orchestration service on top of the individual func-

tion executions, which can increase costs for long-running or highly parallel workflows compared to

managing orchestration independently. In addition, the orchestrator can make suboptimal scheduling

decisions, such as inefficient task placement or resource allocation, over which the user has little or no

control, potentially impacting performance and cost efficiency.

2.2.4 Serverless Workflow Scheduling

Having discussed commercial stateful serverless functions and their advantages and limitations, we now

turn to research-oriented approaches for orchestrating workflows in stateless serverless environments.

Unlike managed offerings, some of these systems explore innovative scheduling strategies and trade-

offs that are particularly relevant for our work.

2.2.4.A Workflow Scheduling Approaches

Workflow scheduling/orchestration in serverless environments can generally be categorized into three

approaches:

• Centralized scheduling: In this approach, a single scheduler maintains a global view of the

entire workflow, including task dependencies, resource availability, and execution progress. This

allows the scheduler to make fine-grained decisions about task placement, load balancing, and

prioritization, often optimizing for latency or resource utilization. However, the centralized model

can become a bottleneck as workflow size and concurrency increase, introducing single points of

failure. It also requires the scheduler to handle high-throughput metadata and state management,

which can be challenging in highly dynamic serverless environments.

• Queue-based or message-driven scheduling: Here, tasks are decoupled from execution using

queues or message-passing systems. Producers submit tasks to a queue, and workers pull tasks

asynchronously when they become idle. This design improves elasticity, as workers can scale

independently of the workflow controller, and naturally provides fault tolerance—failed tasks can

be retried by re-queuing. While it removes the single bottleneck of a centralized scheduler, queue-

based systems may have less optimal global scheduling decisions, and additional logic may be

needed to enforce task ordering or dependency constraints.

• Decentralized and Choreographed scheduling: In this model, the responsibility for orchestra-

tion is distributed across the worker nodes rather than concentrated in a central entity. Each node

15

independently manages task execution, coordinates with peers, and propagates state updates as

necessary. This approach eliminates the need for dedicated scheduler infrastructure, mitigates

bottlenecks, and enables faster scaling to thousands of concurrent functions. However, this model

introduces greater complexity in ensuring fault tolerance and consistent state propagation across

distributed, ephemeral environments. Ensuring that tasks execute exactly once becomes particu-

larly challenging, requiring stronger coordination and consensus mechanisms. To address these

issues, algorithms such as Paxos [51], Raft [52], or coordination services like ZooKeeper [53] can

be employed, along with localized snapshots or lightweight distributed state stores, to maintain

workflow coherence and reliability without relying on centralized scheduling. Most existing solu-

tions, however, assume that tasks are idempotent, so that repeated execution does not produce

unintended side effects, simplifying failure recovery and avoiding the need for strict exactly-once

guarantees.

2.2.4.B Relevant Workflow Schedulers

To illustrate the spectrum of serverless workflow scheduling strategies, we now discuss represen-

tative systems that embody each approach and inspired our work. DEWE v3 [22] demonstrates a

hybrid (IaaS and FaaS) queue-based model, where tasks are distributed through dedicated queues

depending on their expected execution time. PyWren [54] exemplifies a more centralized schedul-

ing paradigm, in which the user or submission machine maintains control over task execution

while workers simply carry out assigned functions. Finally, Unum [21] and WUKONG [1] showcase

decentralized choreographed orchestration, distributing workflow logic across workers to achieve

high scalability and reduced reliance on central schedulers. Examining these systems provides

concrete examples of the trade-offs and optimizations inherent to each scheduling strategy.

A – DEWE v3 DEWE v3 [22] introduces an innovative hybrid approach to serverless workflow

orchestration that combines the best aspects of both serverless and serverful computing models.

This hybrid workflow execution engine intelligently distributes tasks based on their characteristics:

short tasks are run on FaaS workers while longer tasks run on virtual machines. The system

employs a queue-based job distribution mechanism where jobs expected to complete within FaaS

limits are published to a common job queue for serverless execution, while long-running jobs are

directed to a separate queue for local, serverful execution on dedicated servers.

Jobs that fail to execute on FaaS workers, for being longer than expected and exceeding exe-

cution limits imposed by the platform, are redirected to the serverful queue. This dual-execution

model enables DEWE to accommodate workflows with diverse resource consumption patterns.

16

This system proves particularly effective for scientific workflows, such as Montage [6], where task

durations and resource requirements vary significantly. However, this hybrid approach introduces

specific trade-offs. Latency-sensitive workflows may be slowed by job queuing overhead. In addi-

tion, hybrid deployments often lead to resource underutilization, as serverful workers may sit idle

when most tasks are executed on FaaS. Finally, the centralized workflow manager can become a

scalability bottleneck when handling many short tasks.

B – PyWren PyWren [54], representing one of the pioneering pure serverless approaches,

demonstrates the potential and limitations of leveraging unmodified serverless infrastructure for

distributed computation. Built atop AWS Lambda, PyWren focuses on executing arbitrary Python

functions as stateless serverless functions with minimal user management overhead, automatically

handling function execution, dependencies, S3 bucket storage for serialized code and intermedi-

ate data. The system is ideal for embarrassingly parallel workloads, also known as "bag-of-tasks"

scenarios, with many independent, parallel tasks such as simple data transformations, scientific

simulations, parallel model training, and large-scale media processing. While PyWren’s server-

less orchestration model provides excellent scalability and removes the burden of infrastructure

management, its simplicity limits its applicability. It is not well-suited for workflows with complex

dependency structures or those that require sharing large intermediate results through object stor-

age. Moreover, latency-sensitive applications are disadvantaged by function cold starts, since

PyWren does not include mechanisms to mitigate their impact.

C – Unum Unum [21] takes a radically different approach from the two previous solutions by

decentralizing orchestration logic entirely, eliminating the need for a standalone orchestrator ser-

vice. This application-level serverless workflow orchestration system embeds orchestration logic

directly into a library that wraps user-defined FaaS functions, leveraging an external scalable con-

sistent data store for coordination during fan-ins and execution correctness. Unum introduces an

Intermediate Representation (IR) to capture information about workflow progression (nearby tasks)

and relies only on minimal, common serverless APIs (function invocation and basic data store op-

erations) available across cloud platforms. This design choice provides exceptional portability and

cost-effectiveness, as it can run on unmodified serverless infrastructure.

Unum also can and compile workflows defined in languages from providers like AWS Step Func-

tions and Google Cloud Workflows into its IR format. However, Unum’s generic approach comes

with trade-offs: it currently supports only statically defined control structures and cannot express

workflows where the next step is determined dynamically at runtime, and it lacks data locality op-

timizations since it cannot force related tasks to execute on the same worker, with each function

17

instance executing only its specific task before triggering the next function.

D – WUKONG WUKONG [1] represents the most innovative approach among these solutions,

designed as a decentralized choreographed locality-enhanced serverless workflow engine. Built

on top of Dask’s programming model and DAG generation capabilities [31], WUKONG reimagines

the execution layer to address the limitations of traditional serverful models like Dask Distributed

while maximizing the advantages of serverless computing. The system focuses on improving

scale-out speed and enhancing data locality to minimize large object movement. WUKONG’s

architecture, depicted in Figure 2.2, is divided into static components (operating before workflow

execution) and dynamic components (operating during execution). The static scheduler includes

a DAG Generator that leverages Dask’s library to convert Python code into DAGs, a Schedule

Generator that creates n static schedules for n root/leaf nodes (each containing every reachable

task in a depth-first search starting at that node), Initial Task Executor Invokers that launches

the first Lambda instances for each root task, and a Subscriber Process on the client that waits

for and downloads final results.

Figure 2.2: WUKONG Architecture (source: WUKONG paper [1])

After receiving the initial schedules, FaaS workers (referenced to as AWS Lambda Executors)

drive workflow execution. Workers execute tasks until they encounter a fan-out, at which point

they transfer data to intermediate storage, execute 1 of the N fan-out tasks and invoke N - 1 new

executors for the other tasks. Then, when they find a fan-in, the group of executors that reach the

common fan-in node cooperate using a dynamic scheduling model to select only one executor to

18

proceed. This coordination is managed through a shared dependency counter in a Key-Value

Store (KVS). Each involved executor atomically updates this counter; the one whose update sat-

isfies the final input dependency for the fan-in task will execute that task and continue along its

static schedule. The other executors transfer their intermediate data to storage, and then stop

their execution, decreasing the workflow parallelism.

Besides dynamic scheduling, WUKONG employs data locality optimization techniques designed

to avoid moving large data objects; Task Clustering for Fan-Out Operations allows executors to

continue executing downstream tasks when a fan-out task produces large outputs, becoming the

executor of multiple fan-out targets rather than just executing 1 and invoking N - 1 new execu-

tors; Task Clustering for Fan-In Operations enables executors to recheck dependencies after

uploading large objects to storage, potentially executing fan-in tasks themselves if dependencies

are satisfied during the upload process, potentially avoiding large downloads; Delayed I/O allows

executors to hold off on writing large intermediate results to external storage until it is absolutely

necessary. Instead of immediately storing data when some downstream tasks are not yet ready,

the executor first runs any tasks that can proceed and then checks again if the remaining ones

have become ready. If they have, the executor can execute them directly using the data already in

memory, avoiding both the write and a later read from storage. Only when no further progress is

possible are the results finally written out. This can reduce unnecessary data transfers.

These optimizations, combined with WUKONG’s decentralized scheduling approach, significantly

enhance performance compared to both Dask Distributed and PyWren by minimizing data trans-

fer overhead and eliminating central scheduler bottlenecks. However, WUKONG shares the limita-

tion of supporting only statically defined control structures, requiring workflow DAGs to be known

ahead-of-time, similarly to our proposed solution. Additionally, its optimization heuristics can lead

to inefficiencies in certain scenarios: Delayed I/O may increase makespan and storage usage if

dependencies aren’t met after retries; fan-in conflicts where multiple tasks produce large objects

can result in resource waste depending on upload timing; and fan-out scenarios with small inputs

may not justify the overhead of invoking multiple executors as it can make subsequent fan-in’s more

expensive. Furthermore, WUKONG assumes a homogeneous execution environment, where all

workers provide identical resources (e.g., each task is allocated 2 CPU cores and 512 MB of mem-

ory), which prevents tailoring resources to tasks with different computational or memory demands.

While WUKONG represents a significant advance in serverless workflow orchestration through

its decentralization, its scheduling and optimizations remain limited. The system bases decisions

only on the next stage of the workflow (i.e., one-to-one, fan-in, or fan-out transitions). We refer

to this as one-step scheduling, since it relies solely on information about the next step. Crucially,

WUKONG does not exploit the global knowledge of the workflow structure, even though the entire

19

workflow structure is known before execution begins. Also, its optimizations rely on heuristic-

based strategies that can lead to suboptimal performance when workflow behavior deviates from

expected patterns.

Moreover, WUKONG exhibits an extreme trade-off between data locality and resource con-

tention. Without applying its optimization strategies, WUKONG experiences no resource con-

tention but also no data locality, since every fan-out creates new executors and most data ex-

changes occur through storage. When optimizations such as task clustering and delayed I/O are

enabled, the system shifts to the opposite extreme, achieving maximum data locality at the cost

of high resource contention, as executors hold onto large objects in memory and prolong execu-

tion to capture downstream work. This behavior highlights the absence of adaptive mechanisms

to balance locality and resource utilization. We argue that the key to improving efficiency lies in

achieving a dynamic balance between data locality and resource contention, adjusting executor

behavior based on workload characteristics and runtime conditions rather than fixed and extreme

heuristics.

2.3 Discussion/Analysis

The existing body of related work highlights a clear progression in workflow orchestration strategies,

moving from traditional cluster-based frameworks to cloud-native platforms and finally to serverless exe-

cution engines. Cluster-based systems such as Hadoop, Spark, Flink, and Dask emphasize fine-grained

control, strong data locality, and predictable performance, but they incur significant operational overhead,

limited elasticity, and often require technical expertise to deploy and manage. Commercial cloud-native

platforms like AWS Step Functions and Azure Durable Functions simplify deployment and management

by abstracting state handling and orchestration, but they typically incur additional costs and are bound to

vendor-specific ecosystems. Runtime extensions such as Palette, Faa$T, and Lambdata tackle the core

inefficiencies of serverless platforms by enhancing data locality and reducing communication overhead.

Serverless workflow engines like PyWren, Unum, and WUKONG represent the most direct attempts

to build high-performance workflow execution on unmodified FaaS infrastructure. While PyWren demon-

strates the feasibility of large-scale embarrassingly parallel workloads, it struggles with complex work-

flows. Unum advances decentralization by embedding orchestration logic directly into functions, achiev-

ing portability and cost efficiency, but it remains limited in its support for dynamic control structures and

lacks optimizations for data locality. WUKONG achieves major improvements through decentralization

and data-aware heuristics such as Task Clustering and Delayed I/O, delivering great scalability and cost

efficiency. Taken together, these systems provided the most direct inspiration for our work, while also

highlighting key open challenges that our approach seeks to address.

20

3
Architecture

Contents

3.1 Workflow Definition Language . 22

3.2 Architecture . 24

3.3 Metadata Management . 26

3.4 Static Workflow Planning . 28

3.4.1 Workflow Simulation . 28

3.4.2 Planning Algorithms . 28

3.4.3 Optimizations . 35

3.5 Client . 39

3.6 Decentralized Workers . 42

In this chapter, we will present the architecture, as well as some implementation details of our de-

centralized serverless workflow execution engine. Here we will describe how a workflow is defined and

configured, we will then present an architecture overview of the solution, followed by a more in-depth

description of the main layers and components. We will go over how workflow plans are created, opti-

mizations they can apply, and how they are executed in a choreographed manner by FaaS workers.

21

3.1 Workflow Definition Language

We will now present the workflow language with which users can create tasks and compose them into

workflows. It is heavily inspired by WUKONG and Dask’s: the user can create workflows by composing

individual Python functions, as shown in Listing 3.1. In this example, we define two tasks, task_a and

task_b, and then compose them into a DAG by passing their results as arguments to the next task. The

resulting workflow structure is illustrated in Figure 3.1. Python’s simplicity, readability, and widespread

popularity, especially among data scientists and researchers, also motivated us to choose this language

for defining workflows, lowering the barrier to entry while enabling powerful parallel execution.

In Dask and WUKONG, tasks are also created by decorating 1 Python functions with a special

decorator, named @delayed (equivalent to our @DAGTask), and then composed into a DAG by calling

these decorated functions, similarly to our approach. The workflow execution is also triggered by calling

compute() on the last/sink task, as shown in Listing 3.2.

Listing 3.1: DAG definition example

1 # 1) Task definition

2 @DAGTask

3 def task_a(a: int) -> int:

4 # ... user code logic ...

5 return a + 1

6

7 @DAGTask(forced_optimizations=[PreLoadOptimization()])

8 def task_b(*args: int) -> int:

9 # ... user code logic ...

10 return sum(args)

11

12 # 2) Task composition (DAG/Workflow)

13 a1 = task_a(10)

14 a2 = task_a(a1)

15 a3 = task_a(a1)

16 b1 = task_b(a2, a3)

17 a4 = task_a(b1)

When task_a(a1) is invoked, it doesn’t actually run the user code. It instead creates a representation

of the task, which can be passed as argument to other tasks. The workflow planning and execution

only happens once .compute() is called on the last/sink task (a4), as shown in Listing 3.2. When

compute() is called, we can create a representation of the entire workflow structure by backtracking the

task dependencies.

1https://www.geeksforgeeks.org/python/decorators-in-python/

22

https://www.geeksforgeeks.org/python/decorators-in-python/

Figure 3.1: Simple DAG example

Calling task_a(10) generates a corresponding task representation, DAGTaskNode, which captures

essential information about the task. This includes a unique task identifier, the tasks’ dependencies,

which may be other tasks or “hardcoded” data. Hardcoded data refers to values that are known prior

to workflow execution; in this example, the value 10 is hardcoded. In a text processing workflow, for

instance, the bytes of a file to be analyzed would be considered hardcoded as long as they are available

before the workflow starts and are passed as arguments to a task. If a task function argument is itself

an instance of DAGTaskNode, as a1 is in task_a(a1), it is treated as a dependency of task_a. Once

a DAGTaskNode is created, its upstream tasks and dependencies are automatically discovered. This

enables constructing a representation of the entire workflow prior to its execution by backtracking the

task dependencies, starting from the sink node.

In serverless workflows, a common pattern is to pass storage references (e.g., cloud object storage

URLs) as arguments to tasks. This behavior is not currently supported by our workflow language,

as the proposed optimization and prediction mechanisms rely on analyzing the actual data produced

and consumed by functions rather than indirect references. In future iterations, this limitation could

be addressed through code instrumentation, wherein storage access APIs are intercepted to record

metrics such as the volume of data transferred and the corresponding I/O latency.

To ensure portability and eliminate the need to register each user-defined function in the cloud

provider’s function registry, the task’s executable code is directly embedded within its representation

as a Python Callable. Later, the DAGTaskNode is serialized, using cloudpickle 2, allowing it to be

transmitted to storage, and retrieved by workers for execution.

Listing 3.2: Setting up and launching workflow execution

1 result = a4.compute(

2 dag_name="simpledag",

3 config=Worker.Config(

4 faas_gateway_address=...,

5 intermediate_storage_config=(ip, port, password),

2https://github.com/cloudpipe/cloudpickle

23

https://github.com/cloudpipe/cloudpickle

6 metrics_storage_config=(ip, port, password),

7 planner_config=UniformPlanner.Config(

8 sla=sla,

9 worker_resource_configuration=TaskWorkerResourceConfiguration(memory_mb=1024),

10 optimizations=[PreLoadOptimization, PreWarmOptimization]

11)

12)

13)

One limitation of this DAG definition language is that it doesn’t support "dynamic fan-outs" (e.g., creating

a variable number of tasks depending on the result of another task) on a single workflow. This is a

powerful and expressive feature, but that is seldom supported in other DAG definition languages (e.g.,

Dask, WUKONG, Unum, Oozie [39] do not support it). These languages require the user to split the

workflow into multiple workflows, one for each dynamic fan-out : one workflow runs up to the task that

generates a list of results, while a second workflow starts with a number of tasks that depends on the

size or contents of that list.

Apache AirFlow 3 supports this feature through an extension to their DAG language, allowing a

variable number of tasks to be created at run-time depending on the number of results produced by

a previous task. Implementing similar functionality is possible, but it would reduce the accuracy of

predictions. This is because we would also need to predict the expected fan-out size, and any errors in

that prediction could amplify inaccuracies in the predictions for the rest of the workflow.

We will now present our solution architecture overview, highlighting the core layers of our decentral-

ized serverless workflow execution engine.

3.2 Architecture

The overall architecture and logical flow of our decentralized serverless workflow execution engine is

organized into 3 high-level layers. Figure 3.2 provides an overview of this architecture. The upper

part represents the components that run on the user’s machine, while the lower part represents the

components that run outside the user’s machine.

The user writes its workflows in Python (demonstrated in Section 3.1). First, a planning algorithm,

chosen by the user, will run locally to generate a static workflow plan. This plan defines a task-to-worker

mapping and other task-level optimization hints for FaaS workers. Once the plan is done, the client

launches the initial workers for the root tasks, kicking off workflow execution. The user program then

waits for a storage notification indicating workflow completion and then retrieves the final result from

storage.

3https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/dynamic-task-mapping.html

24

The following sections should provide a deeper understanding of each layer as well as how the user

interacts with the system.

Figure 3.2: Solution Architecture

1. Metadata Management: Responsible for collecting and storing task metadata from previous ex-

ecutions. It also uses this metadata to provide predictions regarding task execution times, data

transfer times, task output sizes, and worker startup times;

2. Static Workflow Planning: Receives the entire workflow, represented as a Directed Acyclic Graph

(DAG), and a "planner" (an algorithm chosen by the user). This planner will use the predictions

provided by Metadata Management to create a static plan/schedule to be followed by the workers;

3. Scheduling: This component is integrated into the workers, and it is responsible for executing the

plan generated by the Static Workflow Planning layer, applying optimizations and delegating tasks

as needed.

There are 3 distinct computational entities involved in this system:

25

• User Computer: Responsible for creating workflow plans, submitting them (triggering workflow

execution), and receiving its results. The planning phase also happens on this computer, right

before a workflow is submitted for execution;

• Workers: These are the FaaS workers (often running in containerized environments), that execute

one or more tasks. The decentralization of our solution is due to the fact that these workers are

responsible for scheduling of subsequent tasks, delegating tasks and launching new workers when

needed without requiring a central scheduler. Lastly, they are also responsible for collecting and

uploading metadata;

• Storage: Consists of an Intermediate Storage for intermediate outputs which may be needed

for subsequent tasks and a Metadata Storage for information crucial to workflow execution (e.g.,

notifications about task readiness and completion).

3.3 Metadata Management

The goal of the Metadata Management layer is to provide the most accurate task-wise predictions

to help the planner algorithm chosen by the user to make better decisions. To achieve this, while the

workflow is running we collect metrics about each task’s execution. These metrics are stored in Metadata

Storage: task execution time, data transfer size and time, task input and output sizes, and worker startup

time.

Storing these metrics powers a prediction API, shown in Listing 3.3. To improve accuracy, metrics

are kept separate for each workflow. As a result, even if two workflows use the same function or task

code, their metrics are stored independently. This design choice reflects our assumption that different

workflows may follow different execution patterns. To avoid introducing runtime overhead, metrics are

only uploaded before the worker shuts down.

The prediction methods take an additional parameter, SLA (Service-level Agreement), which is spec-

ified by the user and influences the selection of prediction samples. For example, SLA="average" will

use the average of the historical samples, whereas SLA=Percentile(80) will return a more conservative

estimate, where the 80th percentile of the historical samples is used, providing a higher estimate. This

parameter is provided by the user, and is used by the PredictionsProvider API to provide estimates

based on historical data.

Listing 3.3: Task Predictions API

1 class PredictionsProvider:

2 def predict_output_size(function_name, input_size, sla) -> int

26

3 def predict_worker_startup_time(state: 'cold' | 'warm', resource_config, sla) -> float

4 def predict_data_transfer_time(data_size_bytes, resource_config, sla) -> float

5 def predict_execution_time(task_name, input_size, resource_config, sla) -> float

When collecting metrics such as worker startup time, data transfer time, and task execution time,

we associate them with the worker resource configuration used to execute the task (e.g., memory and

CPU). To improve prediction accuracy, our method follows two strategies. If there are enough historical

samples for the exact resource configuration being predicted, we use only those samples. Otherwise,

when samples for the target configuration are insufficient, we apply a normalization approach: we ad-

just samples from other memory configurations to a baseline, use these normalized values to estimate

execution time, and then rescale the result to the target configuration.

After filtering the samples by their resource configuration, we apply the sample selection algorithm

shown in Algorithm 1, which identifies the most relevant historical samples for each prediction. Given

a reference value (the value for which to predict), the method first computes a baseline from all avail-

able samples (line 2). The baseline is determined using the user-specified SLA, thereby adapting the

prediction to user-defined expectations.

Next, the algorithm progressively searches for samples whose associated input sizes fall within in-

creasing proximity thresholds relative to the reference value. Each threshold increment expands the

acceptable distance range by 5% of the computed baseline, up to a maximum of 100%. Within each

iteration, samples are categorized as being below, above, or exactly matching the reference value (lines

8-19), allowing the algorithm to maintain a symmetric distribution of samples around the target.

Once enough samples are found within a given threshold (line 21), they are sorted by proximity to

the reference value (lines 23-24). The algorithm then selects up to a maximum number of samples

(max_samples), prioritizing those closest to the reference and ensuring balance between samples above

and below the target (lines 23-30). If the maximum capacity is not reached, the remaining slots are filled

with the next-closest available samples (lines 32-34).

If even after considering all thresholds (up to 100% of the established baseline) no sufficient number

of samples is found, the algorithm falls back to selecting the globally closest samples (lines 39-42). This

guarantees that a prediction can always be made, even when the historical data is sparse, though it may

not be as accurate.

In addition to using this algorithm to select the most relevant samples for each prediction, we restrict

the samples to the same workflow and planner. For instance, data collected while executing the Text

Analysis workflow with the Uniform planner will not be used to predict the execution time of the same

workflow under the Non-Uniform planner. By limiting the sample set in this way, we ensure that the se-

lected samples are directly comparable to the target scenario, reducing variability introduced by differing

workflow behaviors or planner strategies.

This procedure ensures that the prediction leverages historical samples most similar to the target

27

input, which tends to be very accurate when a workflow is executed multiple times with the same or

similar workloads, allowing the estimates to become accurate without requiring many previous workflow

instances.

3.4 Static Workflow Planning

This layer executes on the user side, and it receives the workflow representation and a workflow planning

algorithm chosen and parametrized by the user (as shown in Listing 3.2). Its job is to execute the

planning algorithm, providing it access to the predictions exposed by the Metadata Management layer

(Section 3.3).

3.4.1 Workflow Simulation

The availability of predicting task execution time, data transfer latency, function I/O, and worker startup

cost, exposed through the Metadata Management layer (Section 3.3), makes it possible to simulate the

execution of an entire workflow instance.

To this end, we implemented a dedicated simulation module. The module accepts a workflow repre-

sentation in which tasks are annotated with worker IDs, resource configurations, and optimizations. For

each task, the simulator estimates a number of metrics, such as whether the worker should be cold or

warm, the input and output sizes, execution time, time to download dependencies, time to upload output,

and both the earliest start time and the corresponding completion time, allowing it to derive the expected

overall makespan of the workflow as well as the critical path.

This simulation capability significantly facilitates the work of planning components. Planners can

experiment with alternative resource configurations, task placement policies, and co-location strategies

without executing the workflow in a live environment. The fidelity of the simulation results, however, is

directly dependent on the accuracy of the predictive models exposed through the Predictions API.

3.4.2 Planning Algorithms

For each task, the planner assigns both a worker_id and a resource configuration (vCPUs and memory).

The worker_id specifies the worker instance that must execute the task—analogous to the “colors” in

Palette Load Balancing [13], but in our case this assignment is mandatory rather than advisory, giving

strict control over execution locality. Two tasks assigned the same worker_id should be executed on the

same worker instance. If worker_id is not specified, workers will, at run-time, have to decide whether

to execute or delegate those tasks, similar to WUKONG’s [1] scheduling. We refer to these workers as

"flexible workers".

28

Algorithm 1 Select Relevant Samples for Predictions
Require: reference_value, all_samples, SLA, max_samples, min_samples
Ensure: Set of values from samples closest to reference_value
1: ▷ Compute baseline based on SLA percentile
2: baseline← PERCENTILE({comparabletoref | (value, comparabletoref) ∈ all_samples}, SLA)
3: ▷ Try increasing thresholds to find enough samples
4: for threshold_pct← 5 to 100 step 5 do
5: distance_threshold← baseline× (threshold_pct/100)
6: below_samples← ∅, above_samples← ∅, exact_samples← ∅
7: ▷ Categorize samples by their position relative to reference
8: for all (value, comparabletoref) ∈ all_samples do
9: signed_dist← comparabletoref − reference_value

10: if |signed_dist| ≤ distance_threshold then
11: if signed_dist < 0 then
12: below_samples.ADD((|signed_dist|, value))
13: else if signed_dist > 0 then
14: above_samples.ADD((|signed_dist|, value))
15: else
16: exact_samples.ADD(value)
17: end if
18: end if
19: end for
20: total_found← |below_samples|+ |above_samples|+ |exact_samples|
21: if total_found ≥ min_samples then
22: ▷ Sort by distance and select balanced samples
23: below_samples.SORTBYDISTANCE()
24: above_samples.SORTBYDISTANCE()
25: remaining ← max_samples− |exact_samples|
26: per_side← ⌊remaining/2⌋
27: ▷ Select closest samples from each side
28: selected← exact_samples
29: selected← selected ∪ below_samples[0 : min(per_side, |below_samples|)]
30: selected← selected ∪ above_samples[0 : min(per_side, |above_samples|)]
31: ▷ Fill remaining budget from available samples
32: if |selected| < max_samples then
33: FILLREMAINING(selected, below_samples, above_samples, max_samples)
34: end if
35: return {value | value ∈ selected}
36: end if
37: end for
38: ▷ Fallback: not enough samples even at 100% threshold
39: samples_with_dist ← {(|comparabletoref − reference_value|, value) | (value, comparabletoref) ∈

all_samples}
40: samples_with_dist.SORTBYDISTANCE()
41: return {value | (dist, value) ∈ samples_with_dist[0 : min_samples]}

29

In our planners and implementation, we primarily focus on fixed worker_ids, as this approach pro-

vides planners with finer-grained control over task execution locality. It also reduces network overhead,

since workers are aware of the specific tasks assigned to them and can simply subscribe to the corre-

sponding TASK_READY events, eliminating the need for broad or repeated coordination messages.

Users can select from three provided planners or implement their own planner by implementing an

interface. All planners have access to the predictions API as well as the workflow simulation. The

planners the user can choose from are the following:

1. WUKONG: All tasks will use the same worker configuration (specified by the user) and won’t

be assigned a worker_id, meaning they will be executed by "flexible workers". This is a more

dynamic scheduling approach, which tries to reproduce WUKONG’s behavior, where tasks aren’t

tied to specific workers;

2. Uniform: Tasks share a common worker configuration specified by the user, with each task as-

signed a worker_id to allow for co-location of tasks.

3. Non-Uniform: Tasks can use different worker configurations (list of available resources is specified

by the user). Each task is assigned a worker_id. This algorithm starts by assigning the best

available resources to all tasks. Then it runs a resource downgrading algorithm that attempts to

downgrade resources of workers outside the critical path as much as possible without introducing

a new critical path.

Both the Uniform and Non-Uniform planners follow a two-phase approach for task allocation: re-

source configuration assignment followed by worker ID assignment. The planners differ in their resource

allocation strategies. The Uniform planner applies a single, user-specified CPU and memory config-

uration to all tasks, while the Non-Uniform planner selects the most powerful configuration from the

user-specified options for each task. After resource configuration, both planners employ the logic de-

tailed in Algorithm 2 for worker ID assignment. This algorithm presents the worker assignment procedure

used by our planner to distribute workflow tasks across workers, trying to achieve a balance between

data locality and resource contention. The algorithm iterates over the DAG nodes in topological order,

ensuring that upstream tasks are always processed before their dependents. Each node is assigned to

a worker depending on the structure of its neighborhood (fan-in or fan-out pattern) and on predictions of

task execution time and output size.

In this algorithm, root nodes (those without upstream dependencies), are grouped together for as-

signment (lines 7-8). For simple linear dependencies (1�1 relationships), the downstream task inherits

the same worker as its upstream task, allowing direct data reuse without intermediate storage (lines 11-

12). When a node fans out to multiple downstream tasks (1�N), those downstream tasks are clustered

together and assigned as a group (lines 14-15). Conversely, for fan-in patterns (N�1), the algorithm

30

assigns the downstream node to the worker responsible for producing the largest upstream output (lines

18-20), maximizing data locality by placing the consumer task where the majority of input data already

resides.

The ASSIGNGROUP function, presented in Algorithm 3, is responsible for clustering tasks into exe-

cution groups and assigning them to workers. After retrieving the predicted execution times and output

sizes for each task (lines 4-5), the algorithm classifies tasks as either long or short depending on whether

their predicted execution time is above or below the median (lines 7-8). This categorization allows the

planner to balance worker load.

The function proceeds in four stages:

1. Local clustering (lines 10-14): If an upstream worker is available, a subset of short tasks with

larger output sizes (up to a predefined maximum cluster size) is assigned to the same worker. This

promotes data locality, reducing data transfer costs by executing tasks near their data sources;

2. Balanced pairing (lines 16-22): The algorithm pairs each remaining long task with a few short

ones, creating mixed groups, distributing workload more evenly;

3. Grouping remaining short tasks (lines 24-28): Any remaining unassigned short tasks are

grouped together and allocated to new workers, up to the maximum cluster size;

4. Grouping remaining long tasks (lines 30-35): This final phase is only reached when there are

more long tasks than short ones, meaning some long tasks could not be paired in the previous

phase. In such cases, the remaining long tasks are grouped into smaller clusters (half the normal

cluster size) to try reducing resource contention.

After this, the Non-Uniform planner runs an additional algorithm, shown in Algorithm 4, that attempts

to downgrade resources of workers outside the critical path as much as possible without introducing a

new critical path, by iteratively simulating the effect of downgrading resources of workers outside the

critical path with different configurations.

The algorithm begins by identifying workers whose tasks are outside the critical path (lines 3-9).

Then, for each of those workers, we attempt to downgrade its resources by iterating through the list of

use-provided resource configurations, simulating progressively weaker configurations (lines 11-41).

After a configuration is added to all tasks of the target worker (lines 17-21), the simulation layer

(explained in Subsection 3.4.1) is used to simulate the critical path duration (line 23). If the downgrade

does not increase the critical path time, it is accepted. This process repeats for each worker until no

more configurations are available to experiment or the critical path time is exceeded, in which case it

reverts to the previous acceptable resource configuration (line 35).

With the information they have access to, planners can estimate whether it is worthwhile to offload a

task to a more powerful worker. This involves weighing the overhead of uploading the input data, waiting

31

Algorithm 2 Worker Assignment Algorithm (used by Uniform and Non-Uniform planners)
Require: nodes, predictions, MAX_CLUSTERING
1: assigned← ∅

▷ nodes are topologically sorted
2: for all n ∈ nodes do
3: if n ∈ assigned then
4: continue
5: end if
6: if n.upstream = ∅ then ▷ root nodes
7: roots← {r ∈ nodes | r.upstream = ∅ ∧ r /∈ assigned}
8: ASSIGNGROUP(null, roots)
9: else if |n.upstream| = 1 then ▷ 1→1 or 1→N

10: u← n.upstream[0]
11: if |u.downstream| = 1 then
12: ASSIGNWORKER([n], u.worker) ▷ reuse worker
13: else ▷ 1→N
14: fanout← {d ∈ u.downstream | d /∈ assigned}
15: ASSIGNGROUP(u.worker, fanout)
16: end if
17: else ▷ N→1 (assign to worker of upstream task with the largest total output)
18: outputs← {u.worker : predictions.output_size(u) | u ∈ n.upstream}
19: worker_w_greatest_acc_output← argmaxw∈outputs outputs[w]
20: ASSIGNWORKER([n], worker_w_greatest_acc_output)
21: end if
22: end for

for the worker to be provisioned, and then executing the task, against the alternative of simply executing

the task on the current, less powerful worker.

To facilitate the implementation of new planners, the Python class AbstractDAGPlanner, from which

all planners must inherit, provides a set of utility methods: a method to perform a topological sort of

the DAG nodes, ensuring that we don’t iterate on a node without first iterating on its upstream nodes; a

method to estimate the input size of a task by summing the sizes of its hardcoded inputs and the pre-

dicted outputs of its upstream tasks; a method to simulate the execution of an entire workflow, returning

predicted metrics for all tasks; and a method to compute the critical path of the workflow using the results

of the simulation.

One of these validations ensures that all tasks assigned to the same worker form a continuous, un-

interrupted branch within the workflow graph. In other words, a worker cannot be assigned to a group of

tasks, skipped for intermediate ones along the dependency chain, and later reassigned to a downstream

task. This rule introduces structural predictability, ensuring that task assignments for a given worker re-

main contiguous in the DAG. As a result, when delegating tasks, the system can determine whether

a worker is already running and can simply receive a TASK_READY event (as described in Section 3.6),

or whether a new worker launch is required. This constraint implicitly encourages planners to allocate

tasks in ways that minimize worker idle time.

32

Algorithm 3 AssignGroup Procedure
1: function ASSIGNGROUP(up_worker, tasks)
2: if tasks = ∅ then return
3: end if
4: exec_t← {t : predictions.exec_time(t) | t ∈ tasks}
5: out_sz ← {t : predictions.output_size(t) | t ∈ tasks}
6: median← MEDIAN(exec_t.values())
7: longs← {t ∈ tasks | exec_t[t] > median}
8: shorts← SORTLARGEROUTPUTFIRST({t ∈ tasks | exec_t[t] ≤ median})

9: ▷ 1) cluster short tasks with bigger outputs on upstream worker
10: if up_worker ̸= null ∧ shorts ̸= ∅ then
11: cluster ← shorts[0 : MAX_CLUSTERING]
12: ASSIGNWORKER(cluster, up_worker)
13: shorts← shorts[MAX_CLUSTERING :]
14: end if

15: ▷ 2) pair long tasks with remaining short tasks (1 long per group)
16: while longs ̸= ∅ ∧ shorts ̸= ∅ do
17: cluster ← [longs[0]] + shorts[0 : MAX_CLUSTERING− 1]
18: worker_id← NEWWORKERID
19: ASSIGNWORKER(cluster, worker_id)
20: longs← longs[1 :]
21: shorts← shorts[MAX_CLUSTERING− 1 :]
22: end while

23: ▷ 3) group remaining short tasks
24: while shorts ̸= ∅ do
25: worker_id← NEWWORKERID
26: ASSIGNWORKER(shorts[0 : MAX_CLUSTERING], worker_id)
27: shorts← shorts[MAX_CLUSTERING :]
28: end while

29: ▷ 4) group remaining longs (half-size)
30: half ← max(1, ⌊MAX_CLUSTERING/2⌋)
31: while longs ̸= ∅ do
32: worker_id← NEWWORKERID
33: ASSIGNWORKER(longs[0 : half], worker_id)
34: longs← longs[half :]
35: end while
36: end function

33

Algorithm 4 Resource Downgrading Algorithm (used by Non-Uniform planner)
Require: dag, nodes, critical_path_ids, original_cp_time, configs, predictions
1: workers_outside← ∅

2: ▷ 1) Identify workers outside the critical path
3: for all n ∈ nodes do ▷ nodes are topologically sorted
4: wid← n.worker_id
5: if n.id /∈ critical_path_ids ∧ ∀cp ∈ dag.critical_path_nodes : wid ̸= cp.worker_id then
6: workers_outside← workers_outside ∪ {wid}
7: end if
8: end for
9: nodes_outside_cp← {n ∈ nodes | n.id /∈ critical_path_ids}

10: ▷ 2) Attempt downgrade for each worker outside critical path
11: for all wid ∈ workers_outside do
12: last_acceptable_rc← {n.id : n.config | n ∈ nodes_outside_cp ∧ n.worker_id = wid}

13: ▷ Iterate through weaker configurations (skip strongest at index 0)
14: for i← 1 to |configs| − 1 do
15: trial← configs[i].CLONE(wid)

16: ▷ Apply trial configuration to all nodes of this worker
17: for all n ∈ nodes_outside_cp do
18: if n.worker_id = wid then
19: n.config ← trial
20: end if
21: end for

22: ▷ Recompute workflow timing with predictions
23: cp_time← SIMULATECRITICALPATHTIME(dag)

24: if cp_time = original_cp_time then
25: ▷ Downgrade acceptable, record as last acceptable state
26: for all n ∈ nodes_outside_cp do
27: if n.worker_id = wid then
28: last_acceptable_rc[n.id]← n.config
29: end if
30: end for
31: else
32: ▷ Downgrade increases critical path, revert and move on to the next worker
33: for all n ∈ nodes_outside_cp do
34: if n.worker_id = wid then
35: n.config ← last_acceptable_rc[n.id]
36: end if
37: end for
38: break ▷ move to next worker
39: end if
40: end for
41: end for

34

3.4.3 Optimizations

Aside from worker_id and resource assignments, planners can also apply different optimizations to

further improve the workflow execution. The optimizations a planner can use are selected by the user,

as shown in Listing 3.2. We provide two optimizations: pre-warm and pre-load, but it is also possible to

create new optimizations and define how workers should react to them. Now, we will describe the two

base optimizations and how they are assigned to tasks:

1. pre-warm(worker_config, delay_s) [Pre-warming Workers]:

• Interpretation: Tasks/Nodes with this optimization should perform a special invocation to the

FaaS gateway that forces it to launch a new worker with the specified resource configuration

worker_config. This can be used to warm up workers ahead of time and mask cold start

latencies.

• Assignment Logic: For workers that are predicted to experience a cold start, the algorithm

identifies an optimal worker to perform the pre-warming action. It searches for a task whose

execution window aligns with a calculated pre-warming interval. This process balances two

objectives: ensuring the pre-warmed worker does not go cold before it is required, while also

not being warmed too late to be effective.

• Integration with Task Handling Logic: The optimization is attached to the identified optimal

worker’s task and includes a delay_s parameter. As soon as this optimal worker begins

its own execution, it launches a concurrent Python coroutine. This coroutine waits for the

specified delay before making a special “empty invocation” to the FaaS gateway, which in turn

initializes the target worker.

2. pre-load [Pre-Loading Dependencies]:

• Interpretation: Workers assigned to a task with this optimization will proactively download

the task’s dependencies as soon as they become available. This is achieved by subscribing

to completion notifications from the Metadata Storage for the task’s upstream dependencies.

When an upstream task finishes, the worker is notified and can immediately start downloading

the result in the background, parallel to other ongoing computations. This strategy aims

to reduce data-fetching latency when the task is finally ready to execute, as its inputs may

already be present locally;

• Assignment Logic: The optimization is applied using a simple, single-pass heuristic. The

logic iterates through the tasks and assigns the pre-load optimization to tasks that depend

on at least two upstream tasks that are assigned to a different worker;

35

• Integration with Task Handling Logic: Before a worker starts fetching a task dependencies,

it prevents any new pre-loads from starting, and gathers a list of all ongoing pre-loads. It

then fetches all other dependencies from storage and waits for all preloads to complete before

executing the task.

Because planners may sometimes lack sufficient information to make optimal decisions about opti-

mization assignments, it is important to not only allow the user to select optimizations at the workflow-

level, but also allow them the flexibility to specify optimizations at the task-level. An example of this

feature is shown in Listing 3.1, where the user requests that task_b attempt to use the pre-load opti-

mization.

Once these optimizations are assigned, workflow planning is complete, and workers can begin ex-

ecution. Because planning occurs on the user’s machine (i.e., the machine launching the workflow), it

is responsible for initiating the workflow by starting the initial workers. From that point onward, workers

dynamically invoke additional workers as needed, following a choreographed, decentralized execution

model.

Figure 3.3: Planned Workflow Execution Example

To illustrate this execution model, Figure 3.3 provides a visual trace of how a planned workflow would

be executed. The diagram depicts the workflow with the optimizations and worker_id assignments for

each task. The non-dashed arrows represent task dependencies, while the dashed arrows represent

interactions with the Intermediate Storage to either upload or download task data. We can see that task

outputs are only uploaded to storage when there is at least one downstream task that depends on it and

36

is assigned to another worker.

It is also worth noting that the planner assigned Task 6 to Worker 2. This decision might be due to

Worker 2 being more powerful than Worker 1, and because the output of Task 5 is larger than that of

Tasks 4 and 5. Therefore, even if the task were executed on a more powerful worker (such as Worker 3,

which handled Task 3), the potential performance gain would not offset the additional time or resources

required. This is an example of a planner deciding to co-locate Tasks 5 and 6 on the same worker to

reduce data movement.

Regarding optimizations, we can see Task 1 pre-warming Worker 3, by making a dummy invo-

cation to the FaaS gateway, in an attempt to make it available before Task 3 needs it. The pre-load

optimization is used in Task 5, where the planner decided that Worker 2 should start downloading the

external dependencies for Task 6 (Task 3 and Task 4) as soon as they are available. This pre-loading

can begin as soon as Task 6’s dependencies are ready in storage, potentially overlapping with Task 2’s

execution instead of Task 5, as shown in the figure.

Optimizations are implemented by re-defining worker execution logic at certain stages. The methods

that a planner can implement in order to override default worker execution logic are shown in List-

ing 3.4: wel_on_worker_ready method is called once the worker starts executing, and the provided

optimizations use it to subscribe to TASK_READY and TASK_COMPLETED events for specific tasks, and

schedule pre-warm coroutines; wel_before_task_handling is called before task’s dependencies are

downloaded; wel_override_handle_inputs is called after discovering which tasks dependencies are

not yet present locally and need fetching; wel_before_task_execution is called after all dependen-

cies have been gathered and right before task’s execution. wel_override_should_upload_output is

called before task’s execution and its output determines whether the task output should be uploaded to

storage; wel_update_dependency_counters is called after a task’s output is handled and the default be-

havior updates the Dependency Counters (explained in the next Section 3.6) of the downstream tasks;

lastly, wel_override_handle_downstream is called, and the objective of the default implementation is to

decide which of the downstream tasks that became ready should this worker execute, and which tasks

should be delegated to other workers.

Listing 3.4: Overridable worker execution logic stages

1 async def wel_on_worker_ready(planner , storage , dag , this_worker)

2

3 async def wel_before_task_handling(planner , storage , dag , this_worker ,

current_task)

4

5 async def wel_override_handle_inputs(

6 planner , storage , dag , this_worker , current_task ,

37

upstream_tasks_without_cached_results , worker_resource_config ,

task_dependencies: dict

7) -> tuple[list , list[str], CoroutineType | None] | None

8

9 async def wel_before_task_execution(planner , storage , dag , this_worker ,

current_task)

10

11 async def wel_override_should_upload_output(

12 planner , storage , dag , this_worker , current_task

13) -> bool | None

14

15 async def wel_update_dependency_counters(

16 planner , storage , dag , this_worker , current_task

17) -> list | None

18

19 async def wel_override_handle_downstream(

20 planner , storage , dag , this_worker , current_task , downstream_tasks_ready

21) -> list | None

After a plan is created and validated, the workflow representation is serialized using cloudpickle (as

mentioned before) and uploaded to storage. The plan is embedded directly within this representation, al-

lowing each worker to identify both the tasks it is responsible for executing and the ones it must delegate

to other workers. When a plan is created, visual plan data is stored on the client machine, as illustrated

in Figure 3.4, to help the user interpret scheduling decisions and identify potential inefficiencies. In this

example, the visualization highlights the critical path through tasks outlined in bold, along with worker

assignments, resource configurations (color-coded), applied optimizations, and predictive metrics such

as earliest start time, estimated completion time, and I/O characteristics. The visualization also indicates

each worker’s state (warm or cold), providing an intuitive overview of the planned execution, which was

very useful while developing and testing the system.

38

Figure 3.4: Real Workflow Plan Visualization

Now, we will explain the process of submitting the workflow and initiating its execution.

3.5 Client

In this section we will cover the role of the client application, which is where the workflow tasks are

created and composed, as well as where the workflow execution is parametrized and initiated.

The .compute(configuration) method, which can be called on any DAGTaskNode reference, re-

39

ceives the configuration object, which contains information on how to connect to both Intermediate Stor-

age and Metadata Storage, as well as the planner to be used, along with its configuration. The planner

configuration includes the SLA, which will be used for the predictions made by the Predictions API

(described in Section 3.3), the resource configurations that the planner is allowed to assign workers,

and the list of optimizations that the planner should try to apply.

Figure 3.5: DAG Visualization Feature for a Text Analysis Workflow

Before the client calls compute(), it can first generate a visualization of the DAG structure. Figure 3.5

shows an example of what this visualization looks like for a Text Analysis workflow. Nodes in the graph

are connected to its dependencies and each node contains the task name and its hardcoded arguments.

This feature allows users to inspect and verify the workflow’s dependencies and overall structure in

advance, before submitting it for execution.

When the client calls compute(), there are a couple of steps before the initial serverless workers are

invoked. First, since compute is called on the sink node of the workflow, we discover the entire workflow

by backtracking until we find the root nodes. Then, some basic validation happens to check if there are

no other nodes without downstream nodes, ensuring there’s only one sink node. At this stage, a few

optimizations are made in order to reduce the size of the workflow representation. This is important

because if the workflow representation is below a threshold we can send it in the invocation to FaaS

workers without having to rely on storage, saving on both performance and storage costs.

One of these optimizations involves special handling of large hardcoded inputs. When a task receives

a large input that is already known before workflow execution begins, this input would normally be

embedded directly within the DAGTaskNode representation. However, because workers exchange this

representation among themselves, embedding large inputs would lead to unnecessary data transfers

and inefficiency. To address this, we detect all large hardcoded input objects and replace them with

unique references. During execution, workers can use these references to retrieve the corresponding

inputs from storage only when needed. The client is responsible for uploading these large input objects

40

to Intermediate Storage prior to workflow execution.

Before uploading hardcoded data, the client first loads all relevant metrics required for workflow

prediction and then invokes the selected planner algorithm. This process updates the workflow repre-

sentation with worker assignment information and optimization details. As mentioned earlier, predictions

are based on samples collected from the same type of workflow and planner to improve their accuracy.

To determine which samples correspond to which workflow, we differentiate workflows by appending

a hash of their graph composition, defined by the task names and their dependency relationships, to

the workflow’s unique identifier. Workflow identifiers sharing the same hash are thus considered to

represent the same workflow type. After a plan is created, an image of the predicted metrics, worker

assignments and optimizations is generated and stored on the client machine, which can help the user

to better understand the plan created by the planner.

After a plan is created and embedded in the DAG representation, the client invokes the workers

assigned to the root nodes. It provides each worker with the corresponding task identifiers, enabling

them to begin executing their respective branches of the workflow. Afterward, the client uses Pub/Sub

to subscribe to the TASK_COMPLETED event associated with the workflow’s final task. Once this event is

received, the client retrieves the result from Intermediate Storage and returns it to the user. From the

user’s perspective, invoking compute() behaves like calling a regular function, returning the expected

result, while the actual execution is transparently handled by serverless workers.

During workflow execution, the client can monitor the workflow’s progress through a simple web

dashboard, showcased in Figure 3.6, implemented with Streamlit 4. This dashboard can be used to

visualize the workflow graph in real-time, as it indicates which tasks have been completed (in green) and

which remain pending (in gray).

Figure 3.6: Workflow Real-time Dashboard

4https://streamlit.io/

41

https://streamlit.io/

In the following section, we describe in detail how workers operate, including how they follow the plan,

handle task dependencies, and coordinate through event-based communication to achieve decentralized

workflow execution.

3.6 Decentralized Workers

Since our target execution platform is FaaS, each worker is implemented as a FaaS handler. Owing to

the decentralized design, workers are responsible not only for executing tasks but also for coordinating

scheduling decisions in a choreographed manner. Upon invocation by the FaaS gateway, a worker

receives a configuration containing connection details for storage and the gateway, along with SLA

parameters and related metadata. It also receives a list of immediate task identifiers that define the

workflow branches it should manage (executing its own tasks and delegating the rest to other workers) as

well as the corresponding upstream outputs, which may be complete or partial depending on whether

the worker that spawned this worker already had this data available locally or not. Finally, the invocation

includes either the workflow representation itself or a workflow instance identifier used to fetch it

from Metadata Storage if it exceeds a size threshold (300KB in our setup).

In this initial stage, the worker calls the wel_on_worker_ready method on all optimizations. Then,

it subscribes to TASK_READY events for all tasks assigned to it that depend on tasks assigned to other

workers. To begin executing tasks, the worker launches a Python asyncio 5 coroutine for each branch,

starting from the provided immediate task identifiers. From this point, the main coroutine simply waits

for all assigned tasks to complete, and then runs the cleanup logic, which deletes intermediate data from

storage, flushes metrics and metadata to Metadata Storage, and closes storage connections.

Each branch of task handling runs concurrently in its own coroutine, and follows these sequential

phases when running without optimizations:

1. Gathering Dependencies: Check which dependencies are missing (not downloaded yet) and

download them from storage. Some dependencies might be present in the local representation

of the DAG if pre-loading happened, if the same worker executed some of the upstream tasks,

or if the worker already downloaded large hardcoded data (explained previously in Section 3.5)

because previous tasks needed it;

2. Executing Task: After gathering all task dependencies (upstream task outputs and hardcoded

data), it executes the task’s code. Its function code is embedded within the workflow representation

so it can be easily executed by the workers, similarly to WUKONG. This enables the worker to

remain generic, capable of receiving and executing arbitrary task code (excluding async functions,

since cloudpickle can’t serialize them). Tasks’ code execute on a separate thread, to avoid slowing
5https://docs.python.org/3/library/asyncio.html

42

https://docs.python.org/3/library/asyncio.html

down or even blocking (e.g., if the task code calls time.sleep()) the main thread, where the

other coroutines are running: both task branch execution and other internal coroutines (i.e., Redis

pub/sub listener, and delayed pre-warm requests);

3. Handling Output: This phase is responsible for evaluating whether it’s necessary to upload the

task’s output to storage and emitting a TASK_COMPLETED event. A tasks’ output is uploaded if there

is at least one downstream task assigned to a different worker, or if it’s the sink/last task of the

workflow;

4. Updating Dependency Counters: For each downstream task, the worker performs an atomic

increment and get operation on a "Dependency Counter" (inspired by WUKONG [1]) stored in

Metadata Storage, which tracks how many dependencies of a task have been satisfied. If the

counter sees that the value returned is the same as the number of dependencies for a downstream

task, the worker emits a TASK_READY event for that task, signaling other workers or workers that

aren’t active yet that the task became ready to execute;

5. Delegating Downstream Tasks: After updating dependency counters, the worker knows which

tasks became ready. The worker then consults the execution plan to determine how to proceed

for each of those tasks: for tasks assigned to the same worker and has no remaining unfulfilled

dependencies, the worker will execute it (one coroutine for each task); for tasks assigned to another

worker that is already active, a TASK_READY event is emitted; for tasks assigned to another worker

that is not active, this worker launches the target worker, indicating the branches (immediate task

identifiers) it should execute. Because of the planner validation mentioned in Section 3.4.2, it is

possible for a worker to know, at any point in time, whether another worker is already active or not

just by looking at the workflow representation and respective plan.

For exchanging events among workers, we use Redis’s Pub/Sub 6. Both Intermediate Storage

and Metadata Storage are also implemented in Redis for deployment simplicity. These events are

TASK_READY and TASK_COMPLETED, and are implemented as Pub/Sub channels, where the channel name

is a composition of "notification-task-ready-" and the unique Task ID. Since the same worker can

subscribe to the same event multiple times, we assign unique subscription identifiers that are local to

each worker. This allows the worker to unsubscribe from individual event subscriptions safely, without

inadvertently removing other listeners that might depend on the same event.

We will now go over a practical example of how we use these events are used to coordinate decen-

tralized scheduling. Figure 3.7 presents an example of a workflow with four workers (A, B, C, and D) and

eight tasks (T1-T8).

6https://redis.io/glossary/pub-sub/

43

https://redis.io/glossary/pub-sub/

In this example, tasks complete in the following order: T1, T2, T3, T4, T5, T6, T7, and T8. The

text in the arrows represent the order of actions performed by the worker who executed the task from

which the arrow starts, where each action is separated by a semicolon. When T1 finishes, its worker will

increment the dependency counter of T5 because it knows, by looking at the workflow representation,

that T5 depends on other tasks from another worker. This storage operation returns "1", but T5 has 2

dependencies (T1 and T2) and as such, it isn’t READY to execute. Then T1’s worker sees T4 and since

it’s assigned to it, and it doesn’t have any other dependencies, it schedules it for execution locally. Lastly

T1 will see that T3 doesn’t depend on any other tasks, meaning it is also ready for execution and, since

it is assigned to another worker (Worker C), it sends a request to the FaaS gateway to launch Worker C,

providing the branches it should execute.

Then, when T3 finishes execution, its worker will see that T7 depends on external tasks, so it updates

the dependency counter of T7 and remains idle waiting for the TASK_READY event for T7. Later, T4

finishes, realizes that T7 is meant to execute on another worker, increments its dependency counter,

realizes all dependencies are met, and emits a TASK_READY event for T7, to which Worker C will react

to by start executing T7. Once T5 finishes execution, it realizes that T6 depends on external tasks,

increments its dependency counter, realizes all dependencies are met, and since it’s assigned to itself,

it schedules it for execution locally.

Finally, T6 finishes, increments the dependency counter of T8 (because it has other dependencies),

but since it’s still missing 1 dependency, it exits. Later, then T7 finishes, it increments the dependency

counter of T8 and realizes all dependencies are met and that the worker assigned to T8 (Worker D) isn’t

active yet, so it makes a request to the FaaS gateway to invoke this worker. Once T8 finishes, it emits a

TASK_COMPLETED event which is received by the client, who then downloads the result from Intermediate

Storage.

Figure 3.7: Choreographed Scheduling Example

A workflow is considered complete once the output of the final (sink) task is available in storage. The

worker that uploads this final result is also responsible for cleaning up all intermediate results before

44

shutting down. This worker emits a TASK_COMPLETED event for the sink task, triggering the client to

retrieve the final result from Intermediate Storage.

By delegating downstream tasks to workers, our approach eliminates the need for a central sched-

uler, a common component in many existing FaaS-based workflow engines. This decentralized ap-

proach presents several key advantages over traditional centralized scheduling systems. By allowing

each worker to dynamically schedule downstream tasks, the system avoids the need for a continuously

active central scheduler during workflow execution, reducing coordination overhead and eliminating the

potential bottleneck of a single point of failure. Additionally, workers can make scheduling decisions

immediately after completing their tasks, minimizing additional round-trip delays that would occur if a

central scheduler were responsible for assigning subsequent tasks. This model also improves scalabil-

ity, which mostly depends on the capability of both the FaaS platform and storage to scale horizontally.

However, this design relies on the client to initiate the first set of workers, requires workers to have

knowledge of the workflow structure to properly follow the scheduling plan (including optimizations), and

still involves a minimal level of coordination among workers to ensure that every task in the workflow is

eventually executed.

Having described the design and implementation of the system, we now turn to its evaluation. The

next section presents the experimental setup, results, and analysis used to assess the strengths and

weaknesses of our approach.

45

46

4
Evaluation

Contents

4.1 Emulating FaaS environment . 47

4.2 Research Questions . 49

4.3 Experimental Setup . 51

4.4 Results . 53

4.4.1 Predictions Accuracy and SLA fulfillment . 53

4.4.2 Overall Performance . 54

4.4.3 Optimizations . 56

4.4.4 Resource Usage . 57

4.5 Analysis . 61

4.1 Emulating FaaS environment

To develop, test and evaluate the proposed solution under realistic and controlled execution conditions,

a simple and lightweight Function-as-a-Service (FaaS) platform was developed in ~300 LOC of Python.

47

This setup reproduces the fundamental behavior of a typical serverless platform, such as those men-

tioned in Chapter 2, while remaining simple and fully controllable for testing purposes. This emulation

consists of two main components: a gateway service implemented as an HTTP server that receives

invocations and manages containers, dynamically provisioning and reusing Docker 1 containers with

the requested resource configuration to execute arbitrary code, and the worker code itself, which is

packaged into a docker image.

The Dockerfile of the worker is packaged with the worker logic code, and it simply remains alive

forever, running a simple bash script that prevents the container from exiting. The gateway is then able

to launch containers with this image and invoke the worker code at any time to execute the desired

tasks. Both the client and the workers can make requests to a /job endpoint to launch new workers,

as shown in Listing 4.1, where the caller specifies the required resource configuration for the workers’

container. If there are no idle containers with the desired resource configuration and the maximum

amount of concurrent containers has been reached, this request will wait until there are conditions to

run the worker code. To enforce resource configurations, we use Docker’s built-in support for CPU and

memory limits 2.

Listing 4.1: Example of Delegating Tasks to Gateway

1 async with await session.post(

2 gateway_address + "/job",

3 data=json.dumps({

4 "resource_configuration": ...,

5 "dag_id": ...,

6 "fulldag": optimized_dag if optimized_dag and fulldag_size_below_threshold else None,

7 "task_ids": [...],

8 "relevant_cached_results": {...},

9 "config": ...,

10 })

11)

To provide isolation and avoid resource contention, each Docker container can only run one instance

of the worker code at a time. This is enforced using a file-based locking mechanism that prevents

concurrent execution within the same container, ensuring exclusive access to container resources and

maintaining predictable performance characteristics. However, since the Gateway keeps track of which

containers exist, which are being used, and which are idle, it shouldn’t invoke worker commands on a

container that is already executing another command.

The Gateway limits the maximum worker concurrency to 32, meaning there can only be 32 active

1https://www.docker.com/
2https://docs.docker.com/engine/containers/resource_constraints/

48

https://www.docker.com/
https://docs.docker.com/engine/containers/resource_constraints/

workers at a time. This is because this FaaS platform emulator is designed to run on a single host, but

this value can be increased on more capable hosts. This is also a simple implementation, but it would be

possible to implement a distributed version by using something like Kubernetes [48] that would provide

a more realistic environment. The Gateway also has a background job that removes containers that

are idle for more than a configurable amount of time (we used 7 seconds in our experiments because it

allowed to test pre-warming without making workflows too long). A container is considered idle once no

worker code is running on it.

For simplicity, the Gateway also contains an HTTP endpoint for pre-warming (/warmup), which re-

ceives a worker configuration list and creates one container for each resource configuration specified

without executing any commands on it, leaving them available for future /job invocations to use. Simi-

larly to other containers, these containers are also subject to the idle timeout and will be removed if they

are idle for too long.

To improve observability and allow for easier debugging, the worker standard output and standard

error are streamed to the Gateway process, where they are captured and logged in real time. This

design enables detailed inspection of function execution without accessing the containers directly.

The worker code packaged in the Docker image is designed to work specifically with this simplified

FaaS emulator and implementing worker logic for platforms like AWS Lambda [2] or OpenFaaS [24]

would require implementing a Worker abstract class, defining how to delegate tasks to the FaaS platform,

as well as re-write parts of the worker code logic. This would include grabbing invocation data differently

(from HTTP request instead of process standard input). Detecting whether the worker code is running

on a cold or warm container would also be different. Instead of using a file-system file, as our emulator

does, we would simply use a global variable, since their values are persisted across different invocations

on the same container/underlying runtime. The remaining worker logic should work as intended.

4.2 Research Questions

With the evaluation of this work, we aim to address the following research questions:

• RQ1: To what extent can historical metrics from previous workflow executions improve the accu-

racy of predicting serverless workflow behavior, specifically regarding execution time, container

startup latency, data transfer performance, and function I/O characteristics?

• RQ2: What are the main advantages and limitations of applying prediction-based scheduling

strategies in serverless workflow environments, compared to traditional reactive or static schedul-

ing approaches? Can the proposed system achieve a lower makespan and reduced overall re-

source consumption compared to WUKONG [1], a decentralized serverless workflow engine that

employs its own set of data-locality optimizations?

49

• RQ3: How effective are the proposed optimizations in practice? In particular, how much does

pre-load contribute to hiding latency and enabling earlier task execution, and how beneficial is

pre-warming in reducing cold-start delays and improving overall workflow performance?

• RQ4: How much performance improvement can be achieved by adopting a non-uniform worker

resource allocation strategy, compared to a uniform scheduling approach that assigns identical

resource configurations to all tasks? And what is the trade-off between the achieved performance

gains and the additional resource consumption introduced by this adaptive allocation strategy?

To help answer these questions we had to collect a wide range of metrics:

• For each task:

– Timestamp of when it started being handled (before executing its tasks);

– Time to download all dependencies;

– Size and time to download each of the dependencies;

– Task execution time;

– Size and time to upload output;

– Optimization-specific metrics of all optimizations applied to a given task on a particular work-

flow instance.

• For each workflow instance:

– Entire workflow plan, with worker resource and ID assignments, as well as optimizations;

– Time at which user submitted the workflow;

– Monitor Docker containers during the workflow, recording total run-time and memory alloca-

tion in GB-seconds, similar to AWS Lambda’s cost calculation, which is based on memory

(GB) * run-time (seconds).

• For each worker:

– Resource Configuration (CPUs and Memory);

– Time at which a worker invocation was made to the FaaS Gateway and time at which the

worker script started executing (used to calculate worker startup latency);

– Worker state, indicating whether the worker script was executed in a cold or warm environ-

ment. A cold start occurs when a new container must be created to run the worker, while a

warm start reuses an existing, previously initialized container. The system determines this

state using a file-based locking mechanism: during startup, the worker attempts an atomic

50

“create-if-not-exists” operation on the file /tmp/worker_startup.atomic. If the file already

exists, it implies that the container has been used before, and the current execution is there-

fore a warm start; otherwise, it is a cold start. When a container is pre-warmed, this file is

proactively created during initialization, even though the worker script itself is not yet exe-

cuted.

In the following section, we describe the experimental setup used to evaluate the proposed system.

4.3 Experimental Setup

To evaluate our proposed solution, we deployed the FaaS emulator described in Section 4.1 on an AMD

EPYC 7282 16-Core (32 logical threads, via AMD SMT) processor with 125GiB of RAM, running Ubuntu

22.04.5 LTS. Both Metadata Storage and Intermediate Storage were deployed as Redis Docker contain-

ers. The client, responsible for submitting the workflow and uploading hardcoded dependencies, was

also run on the same machine. We added some artificial delay in both storage and gateway interactions,

to try simulating a more realistic environment. This delay is applied before requests are made and the

value we used was 30ms of round-trip time. This value was chosen based on observations of median

latency between AWS Europe data centers in the same region being around 8ms and around 15ms

across different data centers 3.

We tested four different workflows, three SLAs, six planners, and two optimization strategies. To limit

the number of experimental combinations, the optimizations were not evaluated in isolation; instead,

both pre-load and pre-warm optimizations were applied together.

The planners that used uniform worker resource configurations (Uniform, Uniform w/ optimizations,

WUKONG, and WUKONG w/ optimizations) used 2GB memory and the vCPUs were calculated similarly

to AWS Lambda, proportionally to the function’s memory size 4 (1 vCPU per 1,769 MB).

The workflows used for evaluating our solution were the following:

• Matrix Multiplication: A workflow with a straightforward structure, shown in Figure A.1 (partially),

that performs distributed matrix multiplication. The input matrices are first divided into smaller

chunks, and each pair of compatible chunks is multiplied independently in parallel. The result-

ing partial products are then aggregated by a final task, which reconstructs the full matrix from

the computed blocks, producing the complete multiplication result. WUKONG’s evaluation also

includes a comparable workflow that follows the same computational pattern;

• Tree Reduction: A workflow that performs a hierarchical reduction over a list of numeric values,

depicted in Figure A.2 (partially). In each stage, pairs of elements are summed in parallel, forming
3https://www.cloudping.co/
4https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html

51

https://www.cloudping.co/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html

a binary reduction tree where the number of active tasks halves at each level. This process contin-

ues recursively until a single task (the sink) produces the final aggregated result. This workflow is

useful for evaluating how well the system handles iterative task dependencies and parallel aggre-

gation. WUKONG’s evaluation includes an identical workflow, featuring the exact same structure;

• Text Analysis: A workflow with a more complex structure, shown in Figure A.3 (partially), designed

to simulate a multi-stage text processing pipeline, combining both fan-out and fan-in patterns. It

includes several interdependent analytical tasks that operate on an input text (a 750,000 lines text

file). This workflow aims to highlight scenarios where our decentralized execution model can better

exploit task parallelism and reduce scheduling overhead compared to WUKONG;

• Image Transformation: A complex, highly parallel workflow that applies multiple transformations

to an input image, shown in Figure A.4 (partially). The image is first divided into chunks, each

processed independently through two parallel transformation branches of differing complexity: one

performing color-based operations such as resizing, blurring, normalization, and sepia filtering,

and another applying edge detection and sharpening. The results from both branches are then

combined and merged back into a complete image. This workflow is bigger, composed of 130 tasks

large fan-outs and heterogeneous task execution times, making it ideal for evaluating our solutions’

efficiency. We also expect better performance compared to WUKONG, as our scheduling model

requires fewer worker launches and thus less downstream coordination overhead.

As mentioned in Section 3.3, the client specifies an SLA which determines how conservative the

predictions are. We ran our experiments with three different SLAs: median (50th percentile), 75th

percentile, and 90th percentile. We will then analyze the fulfillment success rates of each SLA, the

prediction’s accuracy and whether different SLAs yield different performance and resource usage results.

To assess our research questions, we implemented three core planners: our proposed Uniform and

Non-Uniform models, and a replication of the WUKONG scheduling model. We evaluated six total

configurations by testing baseline versions against optimized versions.

Specifically, our Uniform and Non-Uniform planners were optimized with our proposed pre-load

and pre-warm optimizations. For comparison, the WUKONG planner was enhanced with its own native

optimizations (Task Clustering and Delayed I/O, explained in Chapter 2). The six evaluated variations

were:

• Uniform (baseline)

• Optimized Uniform (with Pre-Load and Pre-Warm)

• Non-Uniform (baseline)

• Optimized Non-Uniform (with Pre-Load and Pre-Warm)

52

• WUKONG (baseline)

• Optimized WUKONG (with Task Clustering and Delayed I/O)

The experimental process was automated with a script that iterated through every combination of

planner variation, SLA, and workflow. Each unique configuration was executed ten times to account for

performance variability, resulting in 720 total experiments for analysis. Before starting a new workflow

instance, this script waits for all FaaS gateway containers to become idle and then removed, causing the

workers of the root nodes of the next workflow to experience cold starts. This ensures consistency in

the experimental process.

4.4 Results

This section presents the evaluation results of all proposed planners, including their optimized (“-opt”)

versions. We analyze prediction accuracy, SLA fulfillment rates, overall execution metrics, and resource

efficiency, while also highlighting how the two proposed optimizations impact workflow execution and

cost.

4.4.1 Predictions Accuracy and SLA fulfillment

Figure 4.1: Predictions Accuracy across all planners and SLA fulfillment rates

The chart in Figure 4.1 evaluates the model’s predictive performance across various metrics for all

tested workflows and all planners (excluding WUKONG, which doesn’t use predictions). It displays two

key indicators:

53

• Prediction Accuracy: This measures the error, or deviation, between the model’s predictions and

the actual measured outcomes;

• SLA Fulfillment Rate: This represents how consistent the workflow performance was with respect

to the chosen SLA.

Regarding prediction accuracy, we observe that (except for execution and upload times) higher

SLAs lead to larger prediction errors. This outcome is expected, as higher SLA levels adopt a more

conservative approach, which tends to overestimate values. The median relative error for input and

output sizes is 0%, since identical workloads were used throughout the experiments, making these

metrics easier to predict.

Across all four workflows tested, execution time predictions were the most accurate, with median

relative errors below 9.3%. In contrast, data transfer times (upload and download) were less precise,

showing median relative errors of around 35%.

When examining SLA fulfillment rates, we find that they remained stable and aligned with expec-

tations across all SLA levels. Specifically, P50, P75, and P90 SLAs achieved fulfillment rates in the

ranges of 41.9–71.5%, 66.7–89.7%, and 86.9–100%, respectively.

4.4.2 Overall Performance

The box plot shown in Figure 4.2 compares the makespan distribution between planners. All versions

of our planners performed slightly better than both versions of the WUKONG planner when it comes

to makespan, with the non-optimized version of our Uniform planner performing 12.6% faster when

compared with the optimized version of WUKONG. We can also see a clear improvement from the Non-

Uniform to Non-Uniform w/ optimizations (with the best makespan observed), but the same doesn’t

happen when comparing the Uniform planner against it’s optimized version. This could be due to the

Uniform planner using less resources per worker, leading to higher resource contention when pre-

loading dependencies. This could also explain higher times waiting for dependencies, in the plot shown

in Figure 4.3.

In Figure 4.3, we can also observe that pre-loading had a significant impact on the Non-Uniform

planner, resulting in a difference of 1.34 seconds. A notable contrast is also evident between WUKONG

and WUKONG w/ optimizations, with the latter exhibiting a substantial reduction in waiting times for

dependencies. This behavior is expected, as WUKONG’s optimizations (Task Clustering for Fan-ins and

Fan-outs, and Delayed I/O) prioritize locality for large dependencies, consistently attempting to execute

tasks where the required inputs are already available.

The chart in Figure 4.4 compares the worker startup time distribution across planners, clearly show-

ing higher values for WUKONG. This is expected, as WUKONG’s scheduling strategy launches more

54

Figure 4.2: Makespan distribution

Figure 4.3: Waiting for dependencies distribution

55

Figure 4.4: Worker startup time distribution

workers than our planners. For fan-outs of size N, WUKONG launches N-1 workers (except in the opti-

mized version, which attempts to avoid launching workers when the output is large). In our experiments,

WUKONG launched a median of 32 workers (with optimizations, a median of 24), while our planners

launched a median of only 13 workers.

4.4.3 Optimizations

The stacked bar chart in Figure 4.5 shows a time breakdown analysis between planners. It shows

the median of how much time each planner spent on different tasks: waiting for workers to start, time

downloading dependencies, task execution time, and time uploading results. Here, we can see that

WUKONG has the highest time spent waiting for workers to start, as it launches more workers than

our planners. The optimized version of WUKONG spends less time waiting for dependencies than the

non-optimized version, showing that, for the tested workflows, it compensates to delay large task output

uploads to try and execute downstream tasks locally.

WUKONG’s execution time is slightly lower than our Uniform planner (~12.5s vs ~20s) which shows

the slowdown caused by resource contention, as Uniform can execute multiple tasks in parallel, whereas

WUKONG workers execute only one task at a time. Despite using more capable workers, our Non-

56

Figure 4.5: Time breakdown analysis

Uniform planner shows an execution time similar to WUKONG, a result that probably can also be

attributed to resource contention.

Similarly to Figure 4.3, we can see the positive impact of pre-loading on the Non-Uniform planner, as

well as the positive impact of pre-warming on both "optimized" versions of our planners, saving between

2 to 6 seconds.

The chart in Figure 4.6 illustrates the impact of the pre-warm optimization, supporting the findings

in Figure 4.5 regarding worker startup times. The optimized versions of our algorithms achieve, on

average, 25% more warm starts compared to their respective base versions.

4.4.4 Resource Usage

The chart in Figure 4.7 shows the resource usage distributions in GB-seconds (used by AWS Lambda

to charge users 5) across all planners. The optimized version of WUKONG clearly uses fewer resources

than the non-optimized version, which is attributable to its reduced worker count. Once again, we believe

that the reason for the optimized version of the Uniform planner to be using more resources than its base

version is due to resource contention, which increases task execution time, consequently increasing

overall resource usage. Despite this, if we compare the baseline Uniform planner implementation, it

consumes 36% less resources than the optimized version of WUKONG.

5https://aws.amazon.com/lambda/pricing/

57

https://aws.amazon.com/lambda/pricing/

Figure 4.6: Warm vs cold starts

Figure 4.7: Resource usage distribution (in GB-seconds)

58

In contrast, the Non-Uniform planner shows a substantial improvement: the optimized version con-

sumes slightly more than half the resources of the non-optimized version and nearly matches the re-

sources used by WUKONG, despite using workers up to four times more powerful (2GB memory versus

up to 8GB per worker). This highlights the effectiveness of the pre-load and pre-warm optimizations.

Figure 4.8: Makespan comparison

The charts presented in Figures 4.8 and 4.9 highlight the trade-off between workflow execution speed

(makespan) and resource efficiency (GB-seconds), respectively, of the evaluated algorithms. Choosing

the Non-Uniform planner over the Uniform planner yields an 8.8% performance gain (i.e., a shorter

makespan), but this speed comes at a significant cost: a 290% increase in memory resource consump-

tion (GB-seconds).

The WUKONG planner represents a less favorable option in this comparison. It is 14.9% slower

than the Uniform planner while also consuming 108% more memory resources, making the Uniform

planner the most resource-efficient of the three.

The introduction of optimized planners dramatically alters the performance landscape. The opti-

mized Non-Uniform planner emerges as the clear frontrunner in execution speed, achieving a median

59

Figure 4.9: Resource usage comparison

60

makespan of just 4.31s. This represents a 53% reduction in makespan and a 45% decrease in memory

usage compared to its non-optimized version.

A new trade-off becomes evident among the optimized planners. While the Non-Uniform planner

is the fastest, the optimized Uniform planner is the most memory-efficient, consuming only 174.5 GB-

seconds. To achieve its superior speed, the optimized Non-Uniform planner is 60% faster than the

optimized Uniform planner but requires 54% more memory resources to do so.

The optimization had mixed results for the other planners. The optimized WUKONG planner saw a

modest 2.7% improvement in makespan and a significant 25% reduction in memory usage. However,

it remains a less efficient choice, as it is both slower and more memory-intensive than the Uniform

planner.

4.5 Analysis

In summary, our results demonstrate that our proposed planners, by managing the trade-off between

data locality and resource contention, achieved better performance than both versions of the WUKONG

planner, with the optimizations significantly enhancing both performance and resource usage.

The Non-Uniform planner consistently delivers the shortest makespan, particularly in its optimized

form, which achieves over 50% faster execution while reducing resource consumption by 45% compared

to its base version. The Uniform planner, while slightly slower, remains the most resource-efficient,

achieving the lowest median GB-seconds usage among all tested approaches, while keeping workflow

execution times lower than both WUKONG implementations (non-optimized and optimized).

With its task assignment policy on fan-outs, WUKONG’s scheduling strategy reduces resource con-

tention but suffers on worker startup times and worker synchronization, leading to higher resource con-

sumption and making it less suitable for workflows with big fan-outs.

Our optimizations, pre-loading and pre-warming, proved highly effective in reducing both makespan

and resource consumption, making them valuable additions to the proposed planners. Resource con-

tention, however, remained a challenge for the Uniform planner, which can execute multiple tasks in

parallel, often causing different tasks to compete for the same resources. Although the Non-Uniform

planner follows a similar scheduling approach, its use of more powerful workers mitigated the effects

of contention. In our experiments, we limited the number of fan-out tasks assigned to a single worker

to 3, though in practice a worker may execute more tasks from other branches simultaneously. Future

work could include a deeper analysis of the impact of resource contention and potentially incorporating

contention modeling into the simulation and prediction layers.

The analysis of our results on Service-Level Agreement (SLA) fulfillment reinforces its importance

as a cornerstone of our predictive planning engine. This parameter proved to be a highly effective and

61

practical mechanism for managing user expectations. As demonstrated by the results, by allowing users

to select their desired tolerance for performance variability, ranging from a "median" (P50) to a more con-

servative (P90) estimate, the system consistently delivered accurate predictions. This directly contrasts

with other works, which often use complex prediction models [55–58], which would introduce significant

computational overhead if used in our solution. This approach would increase prediction times and scale

badly, especially as the research configuration space expands with more potential configurations to eval-

uate. Our lightweight, SLA-driven approach avoids this trade-off, providing decent predictions without

compromising the engine’s agility. This low overhead is also a key enabler for a potential evolution to-

wards a more dynamic scheduling model, where workers themselves could feasibly make predictions

and adjust scheduling decisions on-the-fly as the workflow executes, rather than adhering to a purely

static plan.

Overall, the results validate the design goals of our proposed planners: improving execution ef-

ficiency through smarter task placement and resource utilization, while the introduced optimizations

further enhance performance and cost-effectiveness.

62

5
Conclusion

Contents

5.1 Achievements . 63

5.2 Limitations and Future Work . 64

5.1 Achievements

We believe this work successfully addressed some of the key inefficiencies of executing complex work-

flows in serverless environments identified in other similar works which use uniform worker resources

for all tasks and don’t take into account a global-view of the workflow structure. The central achievement

of this thesis was to answer its primary research question: whether historical metrics could be leveraged

to make smarter scheduling decisions that minimize makespan and maximize resource efficiency. We

demonstrated this by designing, implementing, and evaluating a decentralized serverless workflow en-

gine that utilizes predictive planning. This approach successfully overcomes the limitations of prior work,

such as "one-step scheduling," by leveraging global knowledge of the workflow structure to inform task

placement and resource allocation.

63

Our evaluation demonstrated the clear benefits of a predictive scheduling approach. In direct compar-

ison, our planners consistently outperformed the scheduling model of WUKONG, a state-of-the-art de-

centralized engine, across four different workflows. The results highlighted a combination of speed and

efficiency: our optimized Non-Uniform planner delivered the fastest execution, achieving a makespan

approximately 63% shorter than the optimized WUKONG implementation. Simultaneously, our Uniform

planner proved to be the most resource-efficient, consuming 36% fewer resources than WUKONG’s opti-

mized version. These substantial performance gains are a direct result of our task co-location strategies,

which led to a significant reduction in the number of worker invocations compared to WUKONG. This

advantage was further amplified by our novel pre-warming and pre-loading optimizations, which suc-

cessfully mitigated cold-start latency and halved the time spent waiting for data compared to WUKONG’s

model.

Beyond these specific results, this thesis also contributes a flexible and extensible framework for

future research. The solution’s modular architecture, with its clear separation between the prediction,

planning, and decentralized execution layers, should allow other researchers to easily implement and

comparatively evaluate novel scheduling strategies and prediction models. The project code is available

on GitHub, at https://github.com/48302-DiogoJesus/octoflows.

5.2 Limitations and Future Work

While this thesis successfully presents and validates a novel solution for efficiently scheduling serverless

workflows using prediction-based scheduling strategies, it also has several limitations, which opens

opportunities for future research. Such opportunities can be broadly categorized into core solution

improvements, usability enhancements, and further experimentation.

The current architecture, though functional, can be refined. A main limitation is the unbounded growth

of stored prediction samples. Implementing a data summarization or downsampling strategy would

condense historical data while preserving key statistics, improving both scalability and prediction speed.

The optimization system could also benefit from a stronger abstraction layer to handle conflicting

optimizations that override the same execution phases. Finally, adding robust error handling, including

exponential backoff retries and clearer client-side error reporting, would improve reliability and move

the system closer to production readiness.

Another promising direction for improvement lies in encouraging FaaS platforms to support decou-

pled memory and CPU configurations. Allowing these resources to be configured independently

would enable a more precise alignment between task requirements and allocated resources, thereby

enhancing efficiency, adaptability, and enabling finer-grained pricing models. However, introducing

such flexibility would also considerably increase the complexity of scheduling, resource allocation,

64

https://github.com/48302-DiogoJesus/octoflows

and locality optimization from the provider’s perspective. If this were to be implemented in existing

cloud providers, our solution would naturally extend to such environments, as its design is not con-

strained by specific resource coupling assumptions. Nevertheless, the increased dimensionality of pos-

sible resource configurations would significantly expand the prediction search space, potentially leading

to slower planning times.

More aggressive optimizations could also be explored. For instance, task duplication [59], represents

a different class of optimization from those currently implemented, as it intentionally increases resource

usage. Such an approach could be used to hide latency and enable earlier task execution, at the cost of

higher resource consumption. Evaluating this trade-off would provide valuable insight into the balance

between performance gains and resource efficiency.

Enhancing user control and interaction would broaden the solution’s applicability and appeal. The

system’s expressiveness could be enhanced by incorporating support for dynamic fan-outs. Despite

hurting predictions accuracy, this would enable more complex and adaptive workflow patterns by allow-

ing workflows to generate a variable number of parallel tasks based on runtime data. Additionally, the

DAG definition language could also be extended to allow users to specify a minimum resource con-

figurations for specific tasks. This is important, as some tasks may not be able to run on a run-time

with less resources than required. The real-time dashboard could also be transformed it into a fully

interactive control panel that would provide greater observability over the workflow executions. This in-

cludes making it more informative with richer visualizations and adding capabilities for users to manage,

launch, and even simulate workflows directly from the user interface.

To better understand the solutions’ performance generalizability, future work could include a com-

prehensive comparative analysis of alternative prediction strategies. Evaluating their accuracy,

efficiency, and overhead across diverse scenarios would help identify the most effective approaches for

different use cases. Additionally, with more time and detailed metrics, it would be valuable to quantify

the individual contribution of each optimization to overall performance improvements. The current

solution was validated in a controlled, semi-predictable environment; therefore, a key next step is to de-

ploy and assess the worker logic on commercial Function-as-a-Service (FaaS) platforms (e.g., AWS

Lambda, Google Cloud Functions). This would test its robustness and scalability under the variable and

unpredictable conditions of real cloud environments, or even on edge computing environments [60,61].

Finally, evaluating the system on a broader set of real-world workflows, with more complex depen-

dency graphs and longer execution chains, would provide deeper insights into its strengths, limitations,

and potential areas for improvement.

65

66

Bibliography

[1] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng, “Wukong: A scalable and locality-

enhanced framework for serverless parallel computing,” in Proceedings of the 11th ACM sympo-

sium on cloud computing, 2020, pp. 1–15.

[2] Aws lambda. [Online]. Available: https://aws.amazon.com/pt/lambda/

[3] Azure functions. [Online]. Available: https://azure.microsoft.com/en-us/products/functions

[4] Google cloud run functions. [Online]. Available: https://cloud.google.com/functions

[5] R. Graves, T. H. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve, C. Kesselman, P. Maechling,

G. Mehta, K. Milner, D. Okaya, P. Small, and K. Vahi, “Cybershake: A physics-based seismic

hazard model for southern california,” Pure and Applied Geophysics, vol. 168, no. 3, pp. 367–381,

2011. [Online]. Available: https://doi.org/10.1007/s00024-010-0161-6

[6] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. Laity, E. Deelman, C. Kesselman, G. Singh,

M.-H. Su, T. Prince, and R. Williams, “Montage: A grid portal and software toolkit for science-grade

astronomical image mosaicking,” International Journal of Computational Science and Engineering,

vol. 4, no. 2, pp. 73–87, 2009. [Online]. Available: https://doi.org/10.1504/IJCSE.2009.026999

[7] M. Golec, G. K. Walia, M. Kumar, F. Cuadrado, S. S. Gill, and S. Uhlig, “Cold start latency in server-

less computing: A systematic review, taxonomy, and future directions,” ACM Computing Surveys,

vol. 57, no. 3, pp. 1–36, 2024.

[8] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov, and C. Wu,

“Serverless computing: One step forward, two steps back,” arXiv preprint arXiv:1812.03651, 2018.

[9] Aws step functions. [Online]. Available: https://aws.amazon.com/en/step-functions/

[10] Azure durable functions. [Online]. Available: https://learn.microsoft.com/en-us/azure/

azure-functions/durable/durable-functions-overview

[11] Google cloud workflows. [Online]. Available: https://cloud.google.com/workflows

67

https://aws.amazon.com/pt/lambda/
https://azure.microsoft.com/en-us/products/functions
https://cloud.google.com/functions
https://doi.org/10.1007/s00024-010-0161-6
https://doi.org/10.1504/IJCSE.2009.026999
https://aws.amazon.com/en/step-functions/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://cloud.google.com/workflows

[12] F. Romero, G. I. Chaudhry, I. n. Goiri, P. Gopa, P. Batum, N. J. Yadwadkar, R. Fonseca,

C. Kozyrakis, and R. Bianchini, “Faa$t: A transparent auto-scaling cache for serverless

applications,” in Proceedings of the ACM Symposium on Cloud Computing, ser. SoCC ’21. New

York, NY, USA: Association for Computing Machinery, 2021, p. 122–137. [Online]. Available:

https://doi.org/10.1145/3472883.3486974

[13] M. Abdi, S. Ginzburg, C. Lin, J. M. Faleiro, I. Goiri, G. I. Chaudhry, R. Bianchini, D. S.

Berger, and R. Fonseca, “Palette load balancing: Locality hints for serverless functions,”

in EuroSys. ACM, May 2023. [Online]. Available: https://www.microsoft.com/en-us/research/

publication/palette-load-balancing-locality-hints-for-serverless-functions/

[14] Y. Tang and J. Yang, “Lambdata: Optimizing serverless computing by making data intents explicit,”

in 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). IEEE, 2020, pp.

294–303.

[15] Apache openwhisk. [Online]. Available: https://openwhisk.apache.org/

[16] D. Moyer and D. S. Nikolopoulos, “Punching holes in the cloud: Direct communication between

serverless functions,” in Serverless Computing: Principles and Paradigms. Springer, 2023, pp.

15–41.

[17] M. Yu, T. Cao, W. Wang, and R. Chen, “Pheromone: Restructuring serverless computing with

data-centric function orchestration,” IEEE Transactions on Networking, vol. 33, no. 1, pp. 226–240,

2025.

[18] P. G. López, A. Arjona, J. Sampé, A. Slominski, and L. Villard, “Triggerflow: trigger-

based orchestration of serverless workflows,” in Proceedings of the 14th ACM International

Conference on Distributed and Event-Based Systems, ser. DEBS ’20. New York, NY,

USA: Association for Computing Machinery, 2020, pp. 3–14. [Online]. Available: https:

//doi.org/10.1145/3401025.3401731

[19] C. P. Smith, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict, “Fado: Faas functions and data

orchestrator for multiple serverless edge-cloud clusters,” in 2022 IEEE 6th International Conference

on Fog and Edge Computing (ICFEC), 2022, pp. 17–25.

[20] M. Copik, R. Böhringer, A. Calotoiu, and T. Hoefler, “Fmi: Fast and cheap message

passing for serverless functions,” in Proceedings of the 37th ACM International Conference on

Supercomputing, ser. ICS ’23. New York, NY, USA: Association for Computing Machinery, 2023,

p. 373–385. [Online]. Available: https://doi.org/10.1145/3577193.3593718

68

https://doi.org/10.1145/3472883.3486974
https://www.microsoft.com/en-us/research/publication/palette-load-balancing-locality-hints-for-serverless-functions/
https://www.microsoft.com/en-us/research/publication/palette-load-balancing-locality-hints-for-serverless-functions/
https://openwhisk.apache.org/
https://doi.org/10.1145/3401025.3401731
https://doi.org/10.1145/3401025.3401731
https://doi.org/10.1145/3577193.3593718

[21] D. H. Liu, A. Levy, S. Noghabi, and S. Burckhardt, “Doing more with less: Orchestrating serverless

applications without an orchestrator,” in 20th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 23), 2023, pp. 1505–1519.

[22] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of scientific workflows,” in International

Conference on Service-Oriented Computing. Springer, 2017, pp. 706–721.

[23] Cloudflare workers. [Online]. Available: https://workers.cloudflare.com/

[24] Openfaas. [Online]. Available: https://www.openfaas.com/

[25] Knative. [Online]. Available: https://knative.dev/docs/

[26] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-

man, G. Porter, and K. Winstein, “Encoding, fast and slow:{Low-Latency} video processing using

thousands of tiny threads,” in 14th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 17), 2017, pp. 363–376.

[27] Y. Li, Y. Lin, Y. Wang, K. Ye, and C. Xu, “Serverless computing: State-of-the-art, challenges and

opportunities,” IEEE Transactions on Services Computing, vol. 16, no. 2, pp. 1522–1539, 2023.

[28] A. Casalboni, “AWS Lambda Power Tuning,” https://github.com/alexcasalboni/

aws-lambda-power-tuning, 2024.

[29] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: Elastic

ephemeral storage for serverless analytics,” in 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18). Carlsbad, CA: USENIX Association, Oct. 2018, pp.

427–444. [Online]. Available: https://www.usenix.org/conference/osdi18/presentation/klimovic

[30] Apache airflow. [Online]. Available: https://airflow.apache.org/

[31] Dask - python parallel computing framework. [Online]. Available: https://www.dask.org/

[32] Dagman. [Online]. Available: https://htcondor.readthedocs.io/en/latest/automated-workflows/

dagman-introduction.html

[33] Htcondor. [Online]. Available: https://htcondor.org/

[34] W. M. Van Der Aalst and A. H. Ter Hofstede, “Yawl: yet another workflow language,” Information

systems, vol. 30, no. 4, pp. 245–275, 2005.

[35] Petri nets. [Online]. Available: https://en.wikipedia.org/wiki/Petri_net

[36] Apache spark. [Online]. Available: https://spark.apache.org/

69

https://workers.cloudflare.com/
https://www.openfaas.com/
https://knative.dev/docs/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://airflow.apache.org/
https://www.dask.org/
https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-introduction.html
https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-introduction.html
https://htcondor.org/
https://en.wikipedia.org/wiki/Petri_net
https://spark.apache.org/

[37] Apache flink. [Online]. Available: https://flink.apache.org/

[38] Apache hadoop. [Online]. Available: https://hadoop.apache.org/

[39] Apache oozie. [Online]. Available: https://oozie.apache.org/

[40] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” vol. 51,

no. 1. New York, NY, USA: Association for Computing Machinery, Jan. 2008, pp. 107–113.

[Online]. Available: https://doi.org/10.1145/1327452.1327492

[41] Hadoop yarn. [Online]. Available: https://hadoop.apache.org/docs/current/hadoop-yarn/

hadoop-yarn-site/YARN.html

[42] S. Esteves and L. Veiga, “Waas: Workflow-as-a-service for the cloud with scheduling of continuous

and data-intensive workflows,” Comput. J., vol. 59, no. 3, pp. 371–383, 2016. [Online]. Available:

https://doi.org/10.1093/comjnl/bxu158

[43] S. Esteves, H. Galhardas, and L. Veiga, “Adaptive execution of continuous and data-intensive

workflows with machine learning,” in Proceedings of the 19th International Middleware Conference,

Middleware 2018, Rennes, France, December 10-14, 2018, P. Ferreira and L. Shrira, Eds. ACM,

2018, pp. 239–252. [Online]. Available: https://doi.org/10.1145/3274808.3274827

[44] Dask distributed. [Online]. Available: https://distributed.dask.org/en/stable/

[45] Prefect. [Online]. Available: https://www.prefect.io/

[46] Dagster. [Online]. Available: https://dagster.io/

[47] Argo workflows. [Online]. Available: https://argoproj.github.io/workflows/

[48] Kubernetes. [Online]. Available: https://kubernetes.io/

[49] Google dataflow. [Online]. Available: https://cloud.google.com/products/dataflow?hl=en

[50] Cloudflare workflows. [Online]. Available: https://www.cloudflare.com/developer-platform/products/

workflows/

[51] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed Computing Column) 32, 4

(Whole Number 121, December 2001), pp. 51–58, 2001.

[52] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in Proceed-

ings of the 2014 USENIX Conference on USENIX Annual Technical Conference, ser. USENIX

ATC’14. USA: USENIX Association, 2014, p. 305–320.

70

https://flink.apache.org/
https://hadoop.apache.org/
https://oozie.apache.org/
https://doi.org/10.1145/1327452.1327492
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://doi.org/10.1093/comjnl/bxu158
https://doi.org/10.1145/3274808.3274827
https://distributed.dask.org/en/stable/
https://www.prefect.io/
https://dagster.io/
https://argoproj.github.io/workflows/
https://kubernetes.io/
https://cloud.google.com/products/dataflow?hl=en
https://www.cloudflare.com/developer-platform/products/workflows/
https://www.cloudflare.com/developer-platform/products/workflows/

[53] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “{ZooKeeper}: Wait-free coordination for internet-

scale systems,” in 2010 USENIX Annual Technical Conference (USENIX ATC 10), 2010.

[54] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: Distributed comput-

ing for the 99%,” in Proceedings of the 2017 symposium on cloud computing, 2017, pp. 445–451.

[55] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “Cose: Configuring serverless functions using statis-

tical learning,” in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, 2020,

pp. 129–138.

[56] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and S. Bagchi, “{ORION} and the three

rights: Sizing, bundling, and prewarming for serverless {DAGs},” in 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 22), 2022, pp. 303–320.

[57] Z. Zhang, C. Jin, and X. Jin, “Jolteon: Unleashing the promise of serverless for serverless work-

flows,” in 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24),

2024, pp. 167–183.

[58] S. K. Koney, “Predictive and adaptive scheduling of serverless ml pipelines for cost-efficient and

low-latency execution,” Journal Of Engineering And Computer Sciences, vol. 4, no. 7, pp. 620–629,

2025.

[59] F. Yao, C. Pu, and Z. Zhang, “Task duplication-based scheduling algorithm for budget-constrained

workflows in cloud computing,” IEEE Access, vol. 9, pp. 37 262–37 272, 2021.

[60] P. Kathiravelu, P. V. Roy, and L. Veiga, “SD-CPS: software-defined cyber-physical systems. taming

the challenges of CPS with workflows at the edge,” Clust. Comput., vol. 22, no. 3, pp. 661–677,

2019. [Online]. Available: https://doi.org/10.1007/s10586-018-2874-8

[61] P. Kathiravelu, Z. Zaiman, J. Gichoya, L. Veiga, and I. Banerjee, “Towards an internet-scale overlay

network for latency-aware decentralized workflows at the edge,” Comput. Networks, vol. 203, p.

108654, 2022. [Online]. Available: https://doi.org/10.1016/j.comnet.2021.108654

71

https://doi.org/10.1007/s10586-018-2874-8
https://doi.org/10.1016/j.comnet.2021.108654

72

A
Structure of Workflows used for

Evaluation

73

Figure A.1: Matrix Multiplication Workflow (Partial)

74

Figure A.2: Tree Reduction Workflow (Partial)

75

Figure A.3: Text Analysis Workflow (Partial)

Figure A.4: Image Transformation Workflow (Partial)

76

77

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Algorithms
	Listings
	Glossary

	1 Introduction
	1.1 Problem/Motivation
	1.2 Gaps in prior work
	1.3 Proposed Solution
	1.4 Document Organization

	2 Related Work
	2.1 Serverless Computing
	2.1.1 Advantages
	2.1.2 Limitations
	2.1.3 Research Efforts

	2.2 Workflows
	2.2.1 Workflow Definition Languages
	2.2.2 Traditional Workflow Scheduling
	2.2.3 Modern Workflow Scheduling
	2.2.3.A Stateful Serverless Functions

	2.2.4 Serverless Workflow Scheduling
	2.2.4.A Workflow Scheduling Approaches
	2.2.4.B Relevant Workflow Schedulers
	A – DEWE v3
	B – PyWren
	C – Unum
	D – WUKONG

	2.3 Discussion/Analysis

	3 Architecture
	3.1 Workflow Definition Language
	3.2 Architecture
	3.3 Metadata Management
	3.4 Static Workflow Planning
	3.4.1 Workflow Simulation
	3.4.2 Planning Algorithms
	3.4.3 Optimizations

	3.5 Client
	3.6 Decentralized Workers

	4 Evaluation
	4.1 Emulating FaaS environment
	4.2 Research Questions
	4.3 Experimental Setup
	4.4 Results
	4.4.1 Predictions Accuracy and SLA fulfillment
	4.4.2 Overall Performance
	4.4.3 Optimizations
	4.4.4 Resource Usage

	4.5 Analysis

	5 Conclusion
	5.1 Achievements
	5.2 Limitations and Future Work

	Bibliography
	A Structure of Workflows used for Evaluation

