
VFC for Wikis and Web Caching

Carlos Manuel Santos Roque

Dissertation submitted to obtain the Master Degree in
Information Systems and Computer Engineering

Examination Committee

Chairperson: Prof. Ernesto José Marques Morgado
Supervisor: Prof. Luı́s Manuel Antunes Veiga

Co-Supervisor: Prof. Paulo Jorge Pires Ferreira
Member of the Committee: Prof. Ricardo Jorge Feliciano Lopes Pereira

May 2013

Acknowledgements

I would like to thank my advisors Prof. Luı́s Manuel Antunes Veiga and Prof. Paulo Jorge

Pires Ferreira for all their help along the course of this thesis, their comments contributed sig-

nificantly to what this thesis and the paper you are reading paper are today.

I also would like to thank the numerous other people that helped me, not only during this

thesis, but also along my graduation, as part of my success is also attributed to them.

Lisboa, June 24, 2013

Carlos Roque

To all that helped me along the way.

Resumo

Nos sistemas de cache web e de replicação distribuı́da (wikis) atuais, existe a necessidade de
minimizar a quantidade de dados transmitidos, porque no primeiro caso, existe um aumento
no tamanho dos objetos web que podem ser armazenados em cache, enquanto que no segundo
caso o crescente uso deste tipo de sistema, significa de que os dados ou páginas podem ser
alterados e vistos por muitas pessoas ao mesmo tempo. O que significa de que as modificações
numa página ou nos dados, tenham de ser propagados para várias pessoas, o que conduz ao
aumento da utilização da largura de banda da rede, independentemente do nı́vel de interesse
de cada um nestas modificações.

Nesta tese, é descrito como os sistemas atuais de cache web e sistemas de wiki, funcionam e
gerem a replicação e é oferecida uma alternativa que adota o algoritmo de Vector-Field Consis-
tency (Consistência Vetorial) e a utilização de algumas preferências do utilizador ao ambiente
da web e das wikis.

Abstract

In today’s caching and replicated distributed systems, there is the need to minimize the amount
of data transmitted because in the first case, there is an increase in the size of web objects that
can be cached, while in the second case, the continuous increase in usage of these systems,
makes that a page can be edited and viewed simultaneously by several people. This entails
that any modifications to data have to be propagated to a lot of people, and therefore increase
the use of the network, regardless of the level of interest each one has on those modifications.

In this paper, we describe how the current web and wiki systems perform caching and
manage replication, and offer an alternative approach by adopting Vector-Field Consistency
and the use of some preferences of the user, to the web and wiki environment.

Palavras Chave

Keywords

Palavras Chave

Cache Web

Consistência Vetorial

Wikis

Preferências do Utilizador

HTTP

Páginas Relacionadas

Keywords

Web Cache

Vector-Field Consistency

Wikis

User Preferences

HTTP

Linked Pages

�Indice

1 Introduction 1

1.1 Shortcomings of current solutions . 2

1.2 Proposed Solution . 2

1.2.1 Web Caching . 3

1.2.2 Wiki Replication . 3

1.2.3 Browser Extension . 3

1.3 Contribution and Goals . 4

1.4 Document Roadmap . 4

2 Related Work 5

2.1 Web Caching . 5

2.1.1 Web Cache Architecture . 5

2.1.1.1 Centralized Architecture . 5

2.1.1.2 Hierarchical Architecture . 6

2.1.1.3 Cooperative Distributed Architecture 6

2.1.1.4 Hybrid Architecture . 7

2.1.1.5 Comparison of Architectures . 8

2.1.2 Models of Web Proxies . 9

2.1.2.1 Forward Proxy . 9

2.1.2.2 Reverse Proxy . 9

2.1.2.3 Comparison of Proxy Models . 10

2.1.3 Cache Consistency . 11

2.1.3.1 Consistency by Validation . 11

2.1.3.2 Consistency by Invalidation . 13

2.1.3.2.1 Version 2.1 . 13

2.1.3.2.2 Version 2.2 . 13

2.1.3.2.3 Version 3 . 14

i

2.1.3.3 Analysis . 14

2.1.4 Cache Replacement Strategies . 15

2.1.4.1 Recency Based Strategies . 16

2.1.4.1.1 Pyramidal Selection Scheme 16

2.1.4.1.2 LRU-Min . 16

2.1.4.2 Frequency Based Strategies . 17

2.1.4.2.1 LFU-DA . 17

2.1.4.2.2 α-aging . 17

2.1.4.3 Frequency-Recency Based Strategies 17

2.1.4.3.1 LRU* . 17

2.1.4.3.2 Hyper-G . 18

2.1.4.4 Function Based Strategies . 18

2.1.4.4.1 GD-Size . 18

2.1.4.4.2 GDSF . 18

2.1.4.5 Random Based Strategies . 19

2.1.4.5.1 Harmonic . 19

2.1.4.6 Machine Learning Based Strategies 19

2.1.4.6.1 NNPCR . 19

2.1.4.6.2 SVM-GDSF . 19

2.1.4.6.3 C4.5-GDS . 19

2.1.4.7 Analysis . 20

2.1.5 Commercial Cache Servers . 22

2.1.5.1 Squid . 22

2.1.5.2 Polipo . 23

2.1.5.3 Nginx . 24

2.1.5.4 Varnish . 24

2.2 Wiki Systems . 24

2.2.1 Classifying Wikis . 24

2.2.2 Classifying Wiki Users . 25

2.2.3 Classifying Wikis by Architecture . 26

2.2.3.1 Centralized Architecture . 26

2.2.3.2 Peer-to-Peer Architecture . 26

ii

2.2.3.3 Hybrid Architecture . 27

2.2.3.4 Discussion of Use Cases . 29

2.3 Vector-Field Consistency . 29

2.4 Summary . 31

3 Architecture 33

3.1 Web Cache . 33

3.1.1 VFC Model Adaptation . 33

3.1.2 Cache Replacement Strategy . 34

3.1.3 Web Cache Deployment Model . 35

3.1.4 Base Component Model . 36

3.1.4.1 Server Side . 36

3.1.4.1.1 Port Management . 36

3.1.4.1.2 Request Processor . 37

3.1.4.1.3 Storage Component . 37

3.1.4.2 Client Side . 38

3.1.4.2.1 Plugin Views . 38

3.1.4.2.2 Plugin Controllers . 39

3.1.4.2.3 Plugin Store . 39

3.1.5 Use Cases . 39

3.1.5.1 HTTP Request - Use Case . 39

3.1.5.2 VFC User Registration - Use Case 40

3.1.5.3 VFC Request - Use Case . 42

3.2 VFC-Wiki . 43

3.2.1 VFC Adaptations . 43

3.2.2 VFC-Wiki Deployment Model . 43

3.2.3 VFC-Wiki Architecture . 43

3.2.4 Use Cases . 45

3.2.4.1 Add Watched Page - Use Case 45

3.2.4.2 Remove Watched Page - Use Case 45

3.2.4.3 Get Updated Pages - Use Case 46

3.2.4.4 Notes . 46

3.3 Summary . 46

iii

4 Implementation 47

4.1 VFC-Cache . 47

4.1.1 Relevant Libraries . 47

4.1.2 Domain Classes . 48

4.1.3 Request Processing and User Registration 48

4.1.3.1 Request Processing . 50

4.1.3.2 Page Replacement Algorithm . 52

4.1.3.3 User registration . 52

4.2 VFC-Wiki . 53

4.2.1 VFC-Wiki Model . 53

4.2.2 VFC-Wiki Operations . 53

4.2.2.1 Document created . 55

4.2.2.2 Deleting Document . 55

4.2.2.3 Updating Document . 56

4.2.2.3.1 Document Updated . 56

4.3 Summary . 57

5 Evaluation 59

5.1 Qualitative Evaluation . 59

5.2 Quantitative Evaluation . 63

5.2.1 Automated Tests . 63

5.2.2 Fifa 1998 tests . 66

5.3 Comparative Evaluation . 68

5.4 Summary . 70

6 Conclusions 71

.1 Figures and Graphics . 77

.2 List of Pages Used In the Test . 88

.3 List of Bookmarks . 100

iv

List of Figures

2.1 Diagram of a centralized cache . 6

2.2 Diagram of an hierarchical cache . 7

2.3 Diagram of a cooperative distributed cache . 7

2.4 Diagram of a hybrid cache . 8

2.5 Diagram of the forward proxy model . 9

2.6 Diagram of the reverse proxy model . 10

2.7 Hybrid Wiki . 28

2.8 Example of a consistency zone . 30

2.9 Example of multiple views . 30

3.1 Deployment diagram of the web cache and all involved machines 35

3.2 Architecture of the web proxy/cache server . 36

3.3 Architecture of the web proxy/cache client plugin 38

3.4 Use case involving a HTTP request. 39

3.5 Use case involving a user registration. 41

3.6 Deployment diagram of the wiki and all involved machines 44

3.7 Architecture of a XWiki request. 44

3.8 Blocks of XWiki. 44

4.1 Classes implementing the processing . 49

4.2 Classes implementing the VFC-Wiki plugin . 54

5.1 Initial aspect of the VFC-Cache client plugin . 60

5.2 General section of the VFC-Cache client plugin . 60

5.3 VFC-Cache server, dealing with a request for the first time, meaning that since it
does not have it, the request has to go to the server. 61

5.4 VFC-Cache server, dealing with a request for the subsequent time, meaning that
since the cache page is fresh, the web cache can imeadiatly send the cached page
and therefore our processor prints “The cached page is fresh” on its log. 62

v

5.5 Number of cached pages, VFC on the left and standard http on the right 63

5.6 Memory usage of the VFC cache. 64

5.7 Memory usage of the standard cache. 64

5.8 CPU usage of the VFC cache. 64

5.9 CPU usage of the standard cache. 65

5.10 Latency of page loading, using a direct connection, a standard connection and
the VFC algorithm . 65

5.11 Number of DOM nodes . 66

5.12 Results of the fifa 1998 test in bytes . 67

5.13 Results of the fifa 1998 test in number of pages . 67

5.14 Cached pages of the other caches, where a) is Squid2 with GDSF, b) is Squid2
with LRU Heap, c) is Squid2 with LFU-DA, d) is Squid2 with LRU, e) is Squid3
with GDSF, f) is Squid3 with LRU Heap, g) is Squid3 with LFU-DA and h) is
Squid 3 with LRU . 69

5.15 Latency of all caches. 70

1 CPU usage of the polipo cache. 77

2 Memory usage of the polipo cache. 78

3 CPU usage of the Squid v2 using GDSF. 78

4 Memory usage of the Squid v2 using GDSF. 78

5 CPU usage of the Squid v2 using an Heap LRU. 78

6 Memory usage of the Squid v2 using an Heap LRU. 79

7 CPU usage of the Squid v2 using LFU-DA. 79

8 Memory usage of the Squid v2 using LFU-DA. 79

9 CPU usage of the Squid v2 using LRU. 80

10 Memory usage of the Squid v2 using LRU. 80

11 CPU usage of the Squid v3 using GDSF. 80

12 Memory usage of the Squid v3 using GDSF. 80

13 CPU usage of the Squid v3 using an Heap LRU. 81

14 Memory usage of the Squid v3 using an Heap LRU. 81

15 CPU usage of the Squid v3 using LFU-DA. 81

16 Memory usage of the Squid v3 using LFU-DA. 81

17 CPU usage of the Squid v3 using LRU. 82

18 Memory usage of the Squid v3 using LRU. 82

vi

19 Domain Classes - Part 1 . 83

20 Domain Classes - Part 2 . 84

21 Domain Classes - Part 3 . 85

22 Classes implementing the VFC-Wiki model . 86

23 Help section of the VFC-Cache client plugin . 86

24 VFC Consistency zone configuration section of the VFC-Cache client plugin . . . 87

25 Bookmark configuration section of the VFC-Cache client plugin 87

vii

viii

List of Tables

ix

x

1Introduction
In today’s Internet environment, there is an increasing number of users geographically dis-
persed and a large amount of those users uses the web, some of them exclusively, to do their
daily work and to look for information or for recreational activities like social networking, on-
line gaming, etc.

This poses many problems to the internet service providers that have almost unlimited
requests for providing more bandwidth to their clients, placing the providers in a difficult
situation since their network may not be ready for the increase of traffic and the redesign of
that network may have prohibitive costs.

So in order to continue satisfying the demands of the users, many ISPs use one or more
layers of cache servers in order to reduce the bandwidth required for some of the most com-
mon protocols (like HTTP), but due to the dynamic nature of the requirements needed for a
cache, those caches have more and more problems to satisfy the client´s needs (that prefer a
fast response above all),1 mainly related to the number of unnecessary pages (frequently dy-
namic), cached and updated/invalidated and to the fact that many web pages have a lot of
uninteresting things to the user, that are highly dependent on the user itself.

The first of these problems is related to the traffic from the caches to the client workstations
and from the caches to the original web servers, since 40% of all requested objects from a client
are not cacheable without resorting to special strategies(Rabinovich & Spatschek 2002), which
makes the traditional caching systems more and more inefficient, given the amount of web
content.

Also many objects cached are useless since even if 90% of all web accesses are made to
the same set of servers, there is a significant percentage of those pages that are accessed only
once(Abdulla 1998), which causes unnecessary traffic when a cache is refreshing pages that
are not needed anymore and also an increase in storage use, which is problematic due to the
increase in the number of clients of these cache systems.

Besides the general increase in web pages, there is also an increase in the interest and in
the number of users of replicated distributed systems like wikis, being that some of the largest
wikis have a daily number of users in the order of thousands 2, 3 with an equally high number
of edits to their pages.4

This results in a problem similar to the one present in web cache, because there is the need
of presenting the wiki users with the most updated information (ie. the most recent version

1http://www.websiteoptimization.com/speed/tweak/design-factors/
2http://www.alexa.com/siteinfo/wikipedia.org+wikia.com+orkut.com+live.com
3http://www.google.com/adplanner/static/top1000/
4http://s23.org/wikistats/index.php?sort=edits_desc

http://www.websiteoptimization.com/speed/tweak/design-factors/
http://www.alexa.com/siteinfo/wikipedia.org+wikia.com+orkut.com+live.com
http://www.google.com/adplanner/static/top1000/
http://s23.org/wikistats/index.php?sort=edits_desc

2 CHAPTER 1. INTRODUCTION

of a wiki page), while reducing the bandwidth required for transmitting those updates to the
client.

This is allied with the fact that most wikis allow their users to maintain a set of preferred
or favorite pages and that many wiki systems allow a user or set of users to be responsible for
a given set of pages, according to their knowledge about a certain topic, requiring those users
to keep an eye on the changes made their set of pages, in order to keep the wiki free of spam
posts and as accurate as possible.

1.1 Shortcomings of current solutions

In the case of the web caches, most of the current solutions try to propose different algorithms
for page replacement, i.e. different ways of specifying when a page should be removed from
memory, but many pages are non-cacheable according to the most commonly used consistency
method, because of several reasons, including misconfigured servers or web applications that
do not use the full knowledge of their domain by providing useful information that the server
cannot infer (in the case of strong ETags or last modification dates) and that could be useful,
even in the case of dynamic websites like blogs and news sites.

Also since the most used consistency model does not really take precise attention into the
user behavior, certain patterns like users with a working set of similar pages and interests are
not taken into attention, which could have helped to prevent that pages outside that common
working set have replaced pages belonging to that common working set.

This is the case of schools or small enterprises where employees or students have a similar
working set of pages, that are related to enterprise related pages or supplier´s pages in the
case of employees from an enterprise and from school or course related pages in the case of
students.

1.2 Proposed Solution

In this paper we develop a system that adapts and extends the Vector-Field Consistency model
to semantically enhance the caching of web pages and to show updates to pages interesting to
a wiki user.

It is also the purpose of this work to provide a system that reduces the number of cached
pages to the ones that are commonly used by a set of users and avoid the caching of unrelated
pages or elements to those common to that working set.

In terms of wikis, the purpose of this paper, is to decrease the number of watched pages
of a moderator or user, by allowing all of the related or linked pages to be also considered for
updating purposes, avoiding the need for a user or moderator, to explicitly and exhaustively
include those pages in his working set.

In the subsections below, we provide more detail on the objectives and enumerate the col-
lected functional and non-functional requirements for both the web cache and wiki system.

1.2. PROPOSED SOLUTION 3

1.2.1 Web Caching

As functional requirements we have the following:

• Usage of the importance of a web page to a user in order to determine if it should be
cached and when the cached document is updated/validated;

• Usage of the distance, as the number of links from the bookmarked web pages to a given
page, the usage frequency of a page and the time a page has been cached without being
requested as a measure of page importance;

The non-functional requirements our cache system should strive to provide include:

Fast Access Our cache system should provide a fast access, not only globally but also to the set
of pages frequently used by the users of our cache and to the web pages that are related
to the ones they like and spend more time in;

Adaptability Our cache system, should adapt to new access patterns and not stick to a given
set of frequently used pages indefinitely, but rather change at the same rate of the access
patterns and users’ tastes;

Simplicity By building upon Vector-Field Consistency, our cache system will inherit the sim-
plicity of VFC, while providing a powerful web cache scheme.

1.2.2 Wiki Replication

On the wiki side, our objective is similar to the web cache objective, so our functional require-
ments are:

• Usage of the importance of a wiki page to a user in order to determine when the user
needs to be notified of changes to that page;

• Usage of the distance, as the number of links, from the watched wiki pages to a given
page, the maximum number of updates that a page can have before the user wants to
know about them as a measure of wiki page importance;

As for the non-functional requirements we keep the Adaptability and the Simplicity.

1.2.3 Browser Extension

As for the browser extensions, whose use is to determine the preferences of the user in a page,
our objective is to have an extension that:

• Provides a way for the user to control the consistency zones and specifying their consis-
tency requirements, both for a cache and wiki;

• Propagates changes of the bookmarked pages to the web cache server;

4 CHAPTER 1. INTRODUCTION

1.3 Contribution and Goals

To both of these problems we propose a strategy based on VFC(Santos et al. 2007; Veiga et al.
2010), in order to use a semantic and client oriented approach to the problems related above,
that not only takes into account commonly used semantic information such as distance between
documents, 5 but also other useful information in order to know when caches should update
their documents.

Using this algorithm, we also plan on exploiting the common working set of pages by
users, so that our algorithm is particularly useful in the case of a group of users with similar
interests, like academic or scholar users, library users, enterprise users and so on. Thus, allow-
ing the common set of pages to be almost always stored in cache, while avoiding the poisoning
of the cache with pages not related with that common working set.

In terms of wikis, this will greatly ease the work of a wiki moderator, allowing them to
track a small but related set of pages relevant to the domain of their knowledge and be notified
of changes not only to these set of pages, but also to the pages that are related to this page set.

For all of these problems we will use the bookmarks of a user and the watched pages of
a wiki moderator as a starting point or sources, for Vector-Field Consistency, i.e., where the
consistency fields will emanate from.

1.4 Document Roadmap

In the following chapters we will:

• Study the related work, related to both the cache and wikis, in Chapter 2, we will also
try to frame under taxonomies the current existing systems and their advantages and
disadvantages;

• Describe our architecture, for both the cache and wiki in Chapter 3, including a set of
related use cases for the cache and wiki system;

• Describe our implementation, for both the cache and wiki, in Chapter 4, discussing also
the classes that are used to implement VFC in both the cache and wiki system;

• Present the tests done to both the cache and wiki, in Chapter 5, including the comparison
to the other caches, with focus on the goals of our work;

• Finally we will close with a conclusion, describing the work done, future work and the
advantages and disadvantages of the presented solution.

5Measured as the length of the shortest chain of links leading to them

2Related Work

In this part we are going to analyze web caches and wiki systems, in the context of web caches
we are going to analyze some important characteristics of any web cache, on the wiki systems
we are going to analyze the types of wikis, the types of users and the architecture of wiki
systems.

Finally we are going to discuss some concepts about Vector-Field consistency, in order to
provide the reader with information about what is Vector-Field consistency and the current
uses for Vector-Field consistency.

2.1 Web Caching

In web caching we are to talk about:

• The structure or architecture of a web cache;

• The two different models of a web proxy;

• How caches keep the content fresh and consistent with the web server hosting them;

• How caches decide what to cache and what to replace in the lack of space for more doc-
uments;

• Classify some of the most used caches on the above studied parameters;

2.1.1 Web Cache Architecture

The architecture of a distributed web cache can be based on four classical approaches, a hi-
erarchical architecture, a cooperative distributed architecture and a hybrid architecture(Wang
1999)(Rodriguez et al. 2001).

2.1.1.1 Centralized Architecture

This architecture (Fig. 2.1) is the simplest one of all four because it consists of only one cache
server, that connects to a set of clients (users) and that makes requests to a web server hosting
content whenever a client makes a request.

This architecture was the first one to be used and in spite of the big disadvantage that it is
limited in the number of requests that it can serve and that it is a single point of failure, it is
still used on very simple cases, like home web cache servers or in networks that serve a small
set of clients.

6 CHAPTER 2. RELATED WORK

Figure 2.1: Diagram of a centralized cache

2.1.1.2 Hierarchical Architecture

The second approach (Fig. 2.2) distributes the cache servers in a pyramidal tree, where the
bottom servers are contacted by the clients and the upper or root server is the only one allowed
to connect to web servers hosting content.

In this approach, when a client makes a request to the local server, the server forwards the
request upstream in the hierarchy until it is either satisfied by some cache server or it reaches
the top of the tree. When it does the root server, connects to the web server that can satisfy the
request and distributes the response to the caches below it, so that the document is available to
the lower levels.

The Adaptive Web Caching or Top-10 prefetch(Markatos & Chronaki 1998) is one example
of a cache system that uses the hierarchical model.

One advantage of this distributed architecture is that it can save bandwidth, because doc-
uments can be served more quickly since there is some probability that, the document is on
some cache along the hierarchy, so that only a few client requests have to be sent to the web
servers hosting the content.

On the downside, there are delays associated with each caching level, because for each new
level, there is another set of caches processing requests that cause delays; and since a document
travels down in the hierarchy to the web caches the same document is stored on multiple caches
wasting possible memory or disk space for some pages.

2.1.1.3 Cooperative Distributed Architecture

In the third approach (Fig. 2.3), there is no hierarchy, but a set of cache servers receiving con-
nections from clients, that are connected among them, so that when a request comes to a server,
that server checks if any other neighbor server containing the document and if it is retrieves it
from there instead of making a connection to the original web server.

The approaches based on this method, can use:

• A hash of the document URL to know which server contains or which server should
contain the document served by a given URL;

• A central server that decides which server keeps or should keep a given document;

• A cache routing table that is multicasted by a given cache server that specifies the URL´s
that the cache server is responsible for.

2.1. WEB CACHING 7

Figure 2.2: Diagram of an hierarchical cache

Figure 2.3: Diagram of a cooperative distributed cache

The Cache Array Routing Protocol(Valloppillil & Ross 1998) is an example of a protocol based
on the cooperative distributed protocol.

This method has the advantage that it has very low latency compared to the second one
and low disk usage, because each document is stored only once leading to a better document
distribution.

The disadvantage is that the used bandwidth is more than with the first scheme, because
each cache has to coordinate itself with other caches in order to know where a page is or where
a page should be, for example, in the Cache Array Routing Protocol.

2.1.1.4 Hybrid Architecture

In the fourth approach (Fig.2.4), there can be a tree of cache servers, just like in the second
approach but the caches in the same level are connected to each other like the second approach

8 CHAPTER 2. RELATED WORK

Figure 2.4: Diagram of a hybrid cache

and upon receiving a request a cache server contacts first the servers at the same level as it and
only if the requested document is not in those servers, the request is sent up in the hierarchy.
The same process is repeated, until either the request is satisfied or the root cache server is
contacted, and in that case it happens the same as in the hierarchical scheme.

In a variation of this protocol, when deciding the neighbor caches to make a request, an re-
questing cache can choose only the neighbors with a round trip time below a certain threshold,
even if another neighbor has the document.

The Internet Cache Protocol(Wessels & Claffy 1997) used by Squid 1 among others, is an
example of a protocol based on a hybrid scheme.

What makes this architecture interesting is the fact that if planned in a correct way, then the
disadvantages of the hierarchical and cooperative distributed schemes can be mostly mitigated
and the advantages combined.

2.1.1.5 Comparison of Architectures

After having analyze all of the cache architectures, we will compare them according to the
number of servers that can be involved and the topology of the architecture.

• Centralized Architecture:

Number of servers 1;

Topology Single;

• Hierarchical Architecture:

Number of servers Any;

Topology Vertical;

1Squid is an open source proxy/cache server.

2.1. WEB CACHING 9

Figure 2.5: Diagram of the forward proxy model

• Cooperative Distributed Architecture:

Number of servers Any;

Topology Horizontal;

• Hybrid Architecture:

Number of servers Any;

Topology Both vertical and horizontal;

2.1.2 Models of Web Proxies

In the world of web proxies, there are two distinct models for web proxies(2001)(Davison 2001),
that influence the chosen consistency and algorithms.

2.1.2.1 Forward Proxy

The first model of proxy and the most used is the forward proxy model(Fig.2.5), where a proxy
is sitting directly in front of a client and acts as an intermediary between a client and a server
and hides the client from the server enabling the client to be directly served by the proxy if it
has caching capabilities.

2.1.2.2 Reverse Proxy

The second model of proxy is the reverse proxy model(Fig.2.6) and is associated with a web
server and is usually controlled by the same entity or someone on behalf of it. So in this model
the proxy appears as a normal web server to clients, that upon a request may connect to a
back-server to handle the request or if the request is in cache to directly handle the request.

This type of model, allows for load-balancing, since a reverse proxy may choose an differ-
ent back-server depending on its location, load and type of client, allowing for differentiation
according to whether the client is using a mobile device or not; it also allows a provider to
exploit the location of a client, in order to redirect the request to the proxy that is closer to the
client.

10 CHAPTER 2. RELATED WORK

Figure 2.6: Diagram of the reverse proxy model

This model also allows for blocking or filtering of requests in case of attacks to a deter-
mined web server and depending of the proxy software to distribute the processing of a web
application, allowing some of the processing to happen on the actual proxy.

This types of proxies are also associated with content distribution networks, that use re-
verse proxies to directly serve static data.

2.1.2.3 Comparison of Proxy Models

After having studied the two possible proxy models, we will compare them, according to the
most common usage scenario, awareness to the technology behind a page (for example, if it
is aware or not if a page is written in ASP, J2EE or other server language or framework) and
special needs (if there are special needs in terms of server or installation for the given proxy
model).

• Forward Proxy:

Usage scenario Near the client, by an ISP or a network provider;

Server awareness No, since the cache can only see already processed pages;

Special needs None.

• Reverse Proxy:

Usage scenario Near the server, by a cloud network provider and page host company or
a content distribution network (commonly refered as CDN);

Server awareness Yes, since the cache can help the server to further process the requests,
allowing the cache to finish the final page (for example, a cache can store static tem-
plates and only ask a server for the unique information to fill in those templates);

Special needs Depends on whether or not the cache is aware of the technology behind
the server.

2.1. WEB CACHING 11

2.1.3 Cache Consistency

Since a cache server must keep its cached content as fresh as possible, while reducing the traffic
between it and the web server where the cached documents belong, it must decide when to
update, how to update and if there is a need or an expected gain to store a given document in
cache, so that the client sees a page with the minimum staleness possible, without having to
download the page from the original server.

So, for this problem of web cache consistency two classic solutions exist, consistency by
validation and consistency by invalidation. There is also another subdivision into strong con-
sistency and weak consistency, where the first one implements a strong notion of consistency,
where the document is always fresh, while the second one only grants that the document is
possibly unchanged in the server and therefore valid(Rabinovich & Spatschek 2002)(Cao &
Oezsu 2002).

2.1.3.1 Consistency by Validation

The first and most used strategy for consistency on the cached documents is consistency by
validation, in that the cache servers are responsible for contacting the web servers hosting the
documents they contain, when a specified condition is reached.

The most used scheme based on this strategy is the one used by the own HTTP 1.1 proto-
col(Fielding et al. 1999) where there is a set of HTTP headers that can be set by either the client
in the request or by the server in the response and that control the caching process and when
the cache should validate the stored documents.

So for HTTP, a cache can send a response to a request if that response was validated with
the server, if it is valid according to the parameters set by the origin server or the client, if it
contains a warning header (if it is not valid, according to the client or server parameters) or if
it is an error message.

Also according to the HTTP protocol a cache must obey to the following headers, present
inside the request:

Cache-control This is a header that a server hosting content or client can set in the request or
answer and that directly applies to the cache allowing a explicit cache control:

no-cache This option tells the cache not to store anything and instructs the cache to sim-
ply route the request to the server;

no-store This options tells the cache not to store the page on disk cache (if that feature is
available) and to try to remove the page from memory as soon as possible;

max-age The maximum amount of time that a document can be served from a cache
without a re-validation specified in seconds, this is only available in a request;

max-stale The amount of time that a stale document may be served to a client without a
re-validation with the server hosting the document specified in seconds, this is only
available in a request;

no-transform The document can not be changed by the cache;
only-with-cached The cache must answer with what has available or return a error mes-

sage if it has not anything available;

12 CHAPTER 2. RELATED WORK

must-revalidate The cache must re-validate the document when the document becomes
invalid, even if it is configured to ignore the staleness value and return a stale re-
sponse, this is only available in a response;

public The document may be cached by any cache server, including a shared cache;

private The document may only be cached by a non-shared cache (ie, one that is available
in the browser).

Expires Specifies the date when the document received in the response, becomes stale and it
is specified using RFC 1123 date format;

Date Specifies the date at which the document was generated by the server;

Age The age of the response if it comes from another cache.

In order to determine when a document becomes stale, HTTP 1.1 uses the following formula if
either the max-age or the expires header is set:

received_age = max(max(0, received_response_time - date_value), age_value)
initial_age = received_age + (received_response_time - request_time)
current_age = initial_age + (now - received_response_time)
lifetime = max(max_age_header_value, expires_header_value - date_header_value)
stale_age = initial_age + lifetime

In this scenario, a page must be checked for modifications when the calculated stale age
is bigger than the calculated lifetime. If neither header is set, the server is free to use another
heuristic, that is usually based on the fact that unchanged documents tend to keep unchanged
for long periods of time(Cate 1992).

While verifying if a request may use the cached response, the HTTP protocol, specifies the
Vary tag, so that the web caches, may use only certain headers to verify if two requests are
identical or not.

Also, a response may contain ETag values or modification dates, to allow the document
to be validated by the server, so that when documents need to be checked for a modification,
those values are used to create a conditional request which avoids the transmission of a full
response, using only a response code of 304 (not modified), if the values match.

If the origin web server cannot be contacted, the HTTP protocol specifies that the web
cache may serve the cached response, if it adds a warning header to the response in order to
notify the client that the page may be stale, therefore allowing the usage of stale pages instead
of failing when a web server is offline.

The disadvantages of HTTP based consistency are that requests using the same URL and
method may return different responses that caches might not perceive because caches in HTTP
cache only the request URL and the response(Mogul 2004), and that the cache may make un-
necessary requests to a server, if a proper max age or expire date is not set by the web server
hosting the requested document.

Also, the HTTP protocol has not a way of specifying if a given document is dynamic or
not, in which cases caches to rely on heuristics such as the presence of cookies in the request

2.1. WEB CACHING 13

or the URL of the request in order to try to guess such information and prevent the caching of
those pages, even if by default HTTP allows the caching of dynamic documents, given that the
cache control headers allow it.

2.1.3.2 Consistency by Invalidation

The second strategy of consistency on the cached documents is consistency by invalida-
tion(Howard et al. 1988)(Lee et al. 2009). Instead of caches contacting a web server, when
a document becomes stale, the web servers take note of the web caches that request the docu-
ments and, on the first contact, piggyback a callback with the response. So that when a page
becomes invalid because it changed, a web server can simply transverse the list of callbacks
and notify the caches where the document has become stale and therefore is invalid.

While this approach potentially reduces the staleness of a document, it also forces the
server to maintain state and therefore one must change the server code.

2.1.3.2.1 Version 2.1 Another variation of the cache consistency based on invalidation is the
use of leases(Gray & Cheriton 1989) in that a cache obtains a lease for each page it receives from
a server and that grants the cache a given time where the obtained document is valid, except
when it is sent a specific invalidation from the server for that object.

This solves the fact that a client may fail and also improves the basic invalidation protocol
because the server only needs to notify clients that hold valid leases in the case of a document
change, which reduces the amount of state in the server.

Also, if a cache is unable to contact with a server the documents it holds from it are poten-
tially out of date and therefore the clients can be warned that they are receiving a copy that is
out of date, using the standard HTTP protocol.

2.1.3.2.2 Version 2.2 On the other side it was later observed that there was a potential prob-
lem in the lease protocol as described above(Yin et al. 1998), in that if a set of objects has to be
used more frequently than its lease time then advantages of leases are lost.

Therefore a solution was proposed to that problem using two types of leases.

The first type is granted to single documents and are called object leases, while the second
type is granted to a set of documents from the same server and are called volume leases.

So that the object leases can be long and the volume caches are short enough to allow the
servers to write an object if they need to, for example, if a server suddenly gets down and then
reboots, then the server only has to wait for the longest volume lease granted.

Using this modification when a client requests a document, the cache server checks both
the object lease and the volume lease of that document and if they are both valid, it returns
the document in cache to the client. But if any of them is invalid, the cache server sends a
lease renewal to the web server and if the document(s) has(have) changed, the web server
piggybacks the change delta or the current document(s) in the lease renewal response.

When a server wants to modify a document, it sends invalidations to the caches that have
valid leases, either object or volume leases and only modifies a document when all responses
are received or when the granted leases expire, if some cache server cannot be contacted.

14 CHAPTER 2. RELATED WORK

2.1.3.2.3 Version 3 In the paper by Yu(Yu et al. 1999), it is described another approach (pig-
gyback) to cache consistency based on invalidation, where there is a cache architecture based
on a hierarchy, where each parent cache uses multicast, to communicate with their children.
There is also a connection between each web server and the top level cache, that works in a
similar way to the top level caches of the hierarchical architecture.

So in this scheme, a parent cache (or web server) sends a periodic message (heartbeat) to
all of its children (or root caches that requested any of its documents) and piggybacks all the
invalid (or changed) documents in that message, so that the children invalidate the set of pages
piggybacked in the message. Also, if for a given time T (an T corresponding to 5 samples was
used by the authors) there is no message received from the parent cache, the pages belonging
to that parent in the children are automatically invalidated.

When a page is requested by a client, the request is sent up in the hierarchy until it reaches
a cache that has a valid version of the page or the original server if none of the caches has a
valid version of the page.

2.1.3.3 Analysis

Based on the two most common used consistency schemes used on the web, it is clearly that the
one that is mostly used is the consistency by validation method, but given the rise in the use of
CDN´s2 and cloud computing under a http server, the consistency by invalidation might find
a use, since those http servers are typically in control of CDN and cloud providers, that may
change the software and adapt the application code to the infrastructure, in order to mitigate
possible problems with reliability and fault-tolerance that may affect these systems.

Also, there is a big disadvantage of these systems that is that consistency by invalidation,
tends to increase the cache and server state pollution rate, since an object may be requested
once at distance intervals of time.

In terms of proxy models, while consistency by validation can be used by reverse and
forward proxies, consistency by invalidation must be used by reverse proxies only.

In terms of offline availability the consistency by validation wins, because the scheme,
tends to be less dependent of an origin web server than the consistency by invalidation. Which
gives the following comparative information:

• Consistency by Validation:

Popularity High;

Usage scenarios Both, forward proxies and reverse proxies;

Server dependency None;

Client awareness High;

• Consistency by Invalidation:

Popularity Low;

2Content Distribution Networks

2.1. WEB CACHING 15

Usage scenarios Reverse proxies only;

Server dependency High;

Client awareness Low;

2.1.4 Cache Replacement Strategies

Because a cache cannot hold all valid requested documents on cache (even if it uses a disk
cache), there is a need of a cache replacement strategy or algorithm, that determines when a
given document is removed from cache or when a document may be replaced by other.

Since there are many metrics by which these strategies may be classified, we shall adopt the
taxonomies commonly used(Podlipnig & Böszörmenyi 2003), that classify the strategies into:

Recency based strategies These strategies use the age of the document, to decide if it should
be replaced/deleted or not, one advantage of these strategies is that the document age is
easy to determine, while one disadvantage is that an an old document that is potentially
replaceable according to these strategies, can be extremely popular;

Frequency based strategies These strategies use the usage frequency of a document to decide
if it should be replaced/deleted or not, an advantage is that it considers documents re-
gardless of their age and therefore avoid one disadvantage of recency based strategies,
but since it does not take into account time, it can happen that an object that was ex-
tremely popular in the past is never removed;

Frequency-Recency based strategies These strategies use both the age and frequency of the
document to decide if it should be replaced/deleted or not and can have the advantages
of the two methods above, without any of the disadvantages if they are well combined,
because they can determine if an old document is still popular and whether a popular
document in the past is still a popular document;

Function based strategies These strategies use a formula that may use a certain amount of
measurable features of the documents in order to decide if the document should be re-
placed/deleted or not, these strategies by being based on a formula instead of a data
structure like the common implementations of the other three strategies above can adapt
more to a usage pattern change and are easier to implement;

Random strategies These strategies use a random approach when deciding if a certain docu-
ment should be replaced/deleted or not and have the advantage of simplicity.

Machine Learning based strategies These strategies use techniques from machine learning to
either improve traditional algorithms or replace them and are commonly divided into
two phases and learning phase and a running phase, where in the first phase the algo-
rithms are trained and in the second phase, the algorithms apply the acquired knowledge.

So in the following subsections, I describe with some detail some algorithms based on the
above strategies that are simple and widely used in existing cache systems ordered by strategy
family as specified above.

16 CHAPTER 2. RELATED WORK

2.1.4.1 Recency Based Strategies

2.1.4.1.1 Pyramidal Selection Scheme This is a strategy(Aggarwal et al. 1999) based on
recency that uses some knowledge about the document size when deciding which document
to replace, in such a way that the authors describe their strategy as a way to solve the knapsack
problem.

The authors consider a measure of dynamic frequency as 1
∆Tik

where ∆Tik is the number
of accesses to other documents since the last access to a certain document i, so that the aim is
to minimize the sum of the dynamic frequencies for the documents that are going to be remove
while removing enough documents to insert the new one.

So the authors consider initially an approach where the documents are ordered by a non-
decreasing order of Si ×∆Tik and then the objects higher in the list are chosen to be removed
until there is enough space on cache.

But since that approach is expensive in terms of processing time, the authors develop an
alternative that is PSS, in which the documents are classified according to their size and placed
into a structure similar to a pyramid, in that the cache space is divided into dlog (M + 1)ewhere
M is the cache memory size, and where each group has objects sized in between 2n−1 and 2i−1
and is managed as a Least Recently Used List.

So, that when the cache needs to remove a document or documents, the values of Si×∆Tik
from the least used objects of each group are compared.

The authors also develop a strategy that takes into account the distance from the cache to
the web server hosting the documents and one that takes into account the document expiration
time.

The result is a method based on recency that takes into account several other metrics like
size (and expiration time or cost) and creates an algorithm that is easy to implement and does
not require a lot of computational power.

2.1.4.1.2 LRU-Min This strategy3(Abrams et al. 1995) is based on the Least Recently Used
algorithm and modifies it in order to include a parameter T that is initially assign to the size of
the object to remove and an auxiliary list L, and proceeds as following:

1. Add to L all documents equal or larger than the value T, given that L may be empty after
this step;

2. Using LRU remove from cache all objects in subset L, until there is either space for the
new object or the list L is empty;

3. If there still is not enough space to add the new object, set T to it´s half and repeat step
one.

3Least Recently Used - Minimal

2.1. WEB CACHING 17

2.1.4.2 Frequency Based Strategies

2.1.4.2.1 LFU-DA This strategy4(Arlitt et al. 2000) is based on frequency and tries to reduce
some disadvantages associated with a pure frequency based strategy, by introducing a param-
eter K that is used to reduce the frequency count of all object by two, if the average frequency
count is bigger than that parameter. It also has another parameter specifies the maximum fre-
quency count that objects may have.

From these parameters, the first one is calculated in a dynamic way, using the following
formula:

Ki = Ci ∗ Fi + L

In this formula the L parameter has the following formula:

Li =

{
0, if object is new
minKi−1, otherwise

The value Ci is an additional parameter used to tune the formula, if wished (the authors
have used one as the value of the parameter).

2.1.4.2.2 α-aging This strategy(Zhang et al. 1999) uses the notion of virtual ticks or periods
that may have a varying or fixed value, that are used to apply an aging function to every object
in cache. Therefore this strategy has the notion of two stages.

In the first stage, all of the objects in cache are incremented by one every time they are hit
(frequency count), according to the normal LFU algorithm.

In the second stage, that happens when there is a tick, the strategy, uses the following aging
function in all objects in cache:

Ki = α ∗Ki−1

Where α is a tuneable value between zero and one and that makes the algorithm ranging
from a LRU to a LFU behavior.

Finally in the case of a tie, the strategy uses LRU in order to decide which object to remove.

2.1.4.3 Frequency-Recency Based Strategies

2.1.4.3.1 LRU* LRU*(Chang & McGregor 1999) is a strategy that combines both frequency
and recency, into a simple scheme, that keeps all documents indexed in a LRU list and when a
document in cache is requested by a client, it is moved to the start of the LRU list and the hit
counter is incremented by one.

When there is a need for removing some document, the hit counter of the last recently used
document (ie. the one at the back of the LRU list) is checked and if it is zero, the document is

4Least Frequently Used - Dynamic Aging

18 CHAPTER 2. RELATED WORK

removed. If not, the counter is decreased by one and placed at the start of the LRU list. This
is done until there is enough space for placing the new document. Also, in order to prevent
documents from having a large hit count, the authors proposed that the maximum hit count is
five.

This scheme is simple to implement, even if it does not take into account the size of the
document that is removed and the fact that a large document may be a better option for removal
than a lot of smaller documents.

2.1.4.3.2 Hyper-G This strategy(Abrams et al. 1996), combines LRU, LFU and the size of
objects in order to provide alternative mechanisms in the event of a tie between objects to
remove. So this strategy uses LFU first in an attempt to remove objects, followed by LRU on
the tie objects and finally if there is still a tie then the largest object is removed. Until there is
enough space to place the new object.

2.1.4.4 Function Based Strategies

2.1.4.4.1 GD-Size The GD-Size5(Cao & Irani 1997) strategy is a function based strategy
where each document in cache contains a value calculated using:

Ki =
Ci

Si
+ L

Where Ci is the cost of retrieving the document from the server hosting it, Si is the size of
the document and L is an aging factor and is initially zero. When the values are recalculated
the value of L is the minimum value of Ki for all the documents.

Then the objects with the lowest ki value are removed, until there is enough space to store
the new document in cache.

2.1.4.4.2 GDSF The GDSF6(Arlitt et al. 2000) strategy is a function based strategy where
each document in cache contains a value calculated using the following formula:

Ki = Fi ×
Ci

Si
+ L

In that Fi is the frequency count (ie. the number of hits that the document had), Ci is the
cost of retrieving the document from the server hosting it, Si is the size of the document and
L is an aging factor and is initially zero. When the values are recalculated the value of L is the
minimum value of Ki for all the documents.

This strategy is based on the GD-Size strategy, but it adds a frequency count to it, so that
documents that have a high frequency in the past can have some advantage to the documents
that have lower frequency. Then, when there is a need to remove a document, the document
with the lowest value of Ki is removed.

This strategy, unlike the other two, does not use a specific data structure or some com-
bination of frequency/recency or recency/size and therefore can better adapt to a dynamic

5GreedyDual-Size
6GreedyDual-Size with Frequency

2.1. WEB CACHING 19

environment. But the cost to retrieve a document cannot be determined exactly (due to the fact
that a document may use different paths from the origin server to the cache server) and the
estimated value is very hard to compute and requires constant adaptation.

2.1.4.5 Random Based Strategies

2.1.4.5.1 Harmonic This strategy(Hosseini-Khayat 1998) uses a weight random function, in
which the probability of an object being selected for removal is equal to the inverse, of its cost.

2.1.4.6 Machine Learning Based Strategies

2.1.4.6.1 NNPCR This is a strategy7(Cobb & ElAarag 2008) based on machine learning
specifically on the usage of a neural network as a way to give a score of the cacheability of
a given page, in the interval of 0 and 1. The input features of the neural network are the re-
cency, frequency and size of the page.

In the learning phase, the strategy uses an hour long log in order to train the neural network
and a second hour long log from a different day in order to verify the neural network results.

2.1.4.6.2 SVM-GDSF This strategy8(Qian et al. 2012) uses a Support Vector Machine to-
gether with the GDSF strategy, explained above in order to improve the byte hit-ratio of the
common GDSF strategy.

In this strategy, the Support Vector Machine uses as inputs the recency of the object, the
frequency of the object, given both of the two parameters are based on a sliding window (thirty
minutes was used by the authors), then the global frequency of the object, the retrieve time of
the object, the size of the object and the type of the object (whether it is an image, HTML file,
etc.) and produces a binary response in order to indicate if the object is going to be reused or
not.

Given this number, the strategy changes the regular GDSF in the following way, with Wi

being the injected parameter:

Ki = Fi ×
Ci

Si
+ L+Wi (2.1)

2.1.4.6.3 C4.5-GDS This strategy9(Qian et al. 2012) uses a C4.5 decision tree, in order to
improve the greedy dual-size strategy, in a different way than the GDSF algorithm mentioned
above. This strategy uses a C4.5 decision tree that has as inputs the recency of the object, the
frequency of the object, given both of the two parameters are based on a sliding window (thirty
minutes was used by the authors), then the global frequency of the object, the retrieve time of
the object, the size of the object and the type of the object (whether it is an image, HTML file,
etc.) and produces a number between zero and one, that is the probability of an object being
reused.

7Neural Network Proxy Cache Replacement
8Support Vector Machine Greedy Dual-Size with Frequency
9C4.5 - Greedy Dual-Size

20 CHAPTER 2. RELATED WORK

This number (Pi) is calculated in an accumulated way into a parameter Wi , at each request
as follows:

Wi =

{
0, if object is new
Wiold+ Pi, otherwise

With this number being injected in GDS in the following way:

Ki = Wi ×
Ci

Si
+ L

2.1.4.7 Analysis

After studying some cache replacement algorithms and following the results of numerous com-
parative tests between them(Romano & ElAarag 2008), with the traditional algorithms being
studied more, one can argue that function based strategies are the ones that have the best re-
sults, even if the recent algorithms of machine learning(Qian et al. 2012) may improve upon
them.

Also given the rise of large objects being transmitted thought the web like movie or au-
dio files10, it may be helpful to have several caching areas each one using a different strategy,
in order to further differentiate between object types and therefore sizes, allowing for objects
to be split across different memory areas that have algorithms appropriate to the type of ob-
jects cached. Finally, we present a comparison of all replacement strategies in terms of used
parameters, relative complexibility of implementation and resource usage.

• Pyramidal Selecttion Scheme (PSS):

Used parameters Age and size;

Relative complexibility Medium-Low;

Relative resource usage Low;

• LRU-Min:

Used parameters Age and size;

Relative complexibility Low;

Relative resource usage Low;

• LFU-DA:

Used parameters Age and frequency;

Relative complexibility Low;

Relative resource usage Low;

• α-aging:

10http://www.websiteoptimization.com/speed/tweak/average-web-page/

http://www.websiteoptimization.com/speed/tweak/average-web-page/

2.1. WEB CACHING 21

Used parameters Age and size;

Relative complexibility Low;

Relative resource usage Low;

• LRU*:

Used parameters Age and frequency;

Relative complexibility Low;

Relative resource usage Low;

• Hyper-G:

Used parameters Age, size and frequency;

Relative complexibility Low;

Relative resource usage Low;

• GDSF:

Used parameters Retrieval cost, size, age and frequency;

Relative complexibility Low;

Relative resource usage Low;

• Harmonic:

Used parameters Retrieval cost;

Relative complexibility Low;

Relative resource usage Low;

• NNPCR:

Used parameters Retrieval cost, size and age;

Relative complexibility Medium-High;

Relative resource usage Medium-High;

• SVM-GDSF:

Used parameters Retrieval cost, size and age, type and frequency;

Relative complexibility Medium-High;

Relative resource usage Medium-High;

• C4.4-GDS:

Used parameters Age, frequency, size, type and cost;

Relative complexibility High;

Relative resource usage Medium-High;

22 CHAPTER 2. RELATED WORK

2.1.5 Commercial Cache Servers

In this section we describe the available cache server software in respect with the parameters
studied above, specifically the consistency method they use, the architecture they support, the
page replacement algorithms they support, together with the supported HTTP protocol version
and some other features.

• Squid:

– Consistency By Validation (HTTP);

– LRU or GDSF or LFU-DA;

– Single or Hybrid (ICP protocol);

– Forward or Reverse Proxy;

– HTTP 1.0 in version <3.X and 1.1 incomplete in version 3.X.

• Polipo:

– Consistency By Validation (HTTP);

– LRU;

– Single;

– Forward Proxy;

– HTTP 1.1.

• Nginx:

– Consistency By Validation (HTTP);

– LRU;

– Single;

– Forward or Reverse Proxy;

– HTTP 1.1.

• Varnish:

– Any (Consistency by Validation (HTTP) by default);

– LRU;

– Any;

– Reverse Proxy;

– HTTP 1.1.

2.1.5.1 Squid

Squid11 is a proxy/cache server that supports HTTP 1.0 client and server, GOPHER and FTP
server connections, it is also available for Unix and Windows and supports the use of either

11http://www.squid-cache.org

http://www.squid-cache.org

2.1. WEB CACHING 23

IPv4 or IPv6 protocol. It supports the use of asynchronous connections for handling client
requests, so that it can support multiple clients in a scalable and efficient way.

In terms of architecture it can be used as a single proxy/cache server or using ICP protocol
in a hybrid distributed architecture, where one can configure if there is a hierarchy or not.

For a cache replacement strategy, Squid can use either a LRU, GDSF or LFU-DA strategy,
according to the Squid version and configuration. Since it is a HTTP 1.0 based cache, it uses the
consistency method of the protocol, that is based on validation.

Squid is also able to cache Cookies and use them when validating documents, even if those
cookies are not distributed to the client because of the requirements of HTTP protocol.

Finally and since Squid can be run as a reverse web cache (ie. a web cache that is on the
server side and is used to load balance the connections from the server), some of its clients that
use it as a reverse web cache are Wikipedia and Flickr that use it to serve their multiple clients
and to serve the images (in the case of Flickr).

Given that Squid only supports HTTP 1.0, that is one disadvantage of it compared to other
caches. Also since Squid has so many features it is hard for someone, to adapt it for a particular
environment or to change its code, in spite that for the first case, its rich configurations and the
availability of many books about it help to mitigate the problems.

It is also important to mention, beginning with version 3, Squid also supports some aspects
of HTTP 1.1, with exception of request chunks.

2.1.5.2 Polipo

Polipo12 is a small proxy/cache server that unlike Squid, fully supports HTTP 1.1 clients and
servers, it is available for Unix platforms and also supports either IPv4 or IPv6 protocol. It also
supports the use of asynchronous connections for handling client requests, just like Squid.

In terms of architecture it is usable as a single and portable proxy/cache server, in the sense
that one user may copy it to several machines and put it to work, without needing to configure
it, although he can do so, if he wishes. For a cache replacement strategy it uses LRU and also
like Squid, uses the HTTP protocol based validation consistency, except that it always uses
HTTP 1.1.

Finally, since Polipo is able to use the SOCKS protocol, it can be used together with a
program like Tor13 and grant anonymity to its clients on the web. Also since it is much smaller
than Squid, its code can be easily changed by a user that wants to add new features, it can also
serve as a bridge between IPv4 and IPv6 or vice versa.

Also since it is made to be very small, this proxy is embedded in some routers and network
equipment.

12http://www.pps.jussieu.fr/˜jch/software/polipo
13Tor is a secure network, that routes the packages through several anonymous servers in order to hide its users

identity and prevent them from being localized

http://www.pps.jussieu.fr/~jch/software/polipo

24 CHAPTER 2. RELATED WORK

2.1.5.3 Nginx

Nginx14 is a proxy/cache server with reverse capabilities that supports HTTP 1.1 clients and
servers, but also acts as a email server and supports IPv6 and IPv4 and uses an asynchronous
approach to handle requests.

In terms of architecture, is it usable as a single proxy/cache server and uses LRU for cache
replacement strategy and the HTTP protocol based validation consistency, but it is also capa-
ble of running CGI scripts and therefore act as a web server that generates content and by
using that is also capable of serving dynamic content, unlike the other two options above. It
is also able to use filters to transform the documents it serves, for purposes such as document
compression, dynamic range requests, image transformation and XSLT transformations.

It also supports the use of SSL and HTTPS in connections in order to securely connect to
clients and servers, fast reconfiguration without the need to stop the server, the use of a rewrite
module in a similar way that one does in a web server like Apache.

It is also capable of serving pages and to behave as a HTTP server, that includes support for
fast CGI and some other technologies in order to integrate scripts written in some languages,
so that they can serve pages from the server.

2.1.5.4 Varnish

Varnish15 is a proxy/cache server that is made specifically to be used as a reverse proxy and
cache content directly from a specific set of web servers, in order to respond to multiple clients.

Because of this, it is made to be extremely responsive and at the same time extensive in an
unusual way, since it allows the writing of scripts in its own domain specific language, that is
called VCL (Varnish configuration Language) and that allows for an customer to override or
add additional behavior when certain events like when a new request arrives or a response is
received (or retrieved). These scripts are then translated to C by Varnish, compiled and inserted
as modules.

Also, it allows the usage of custom modules written directly in C (or a compatible lan-
guage), that can be used to extend the operations available to an VCL script, effectively allow-
ing the cache to be used with a consistency by invalidation protocol.

2.2 Wiki Systems

In this chapter, we describe some categories that are used to classify the relevant aspects of a
wiki and to classify the types of editors in a wiki and also some of the architectures used by
wikis.

2.2.1 Classifying Wikis

There are mainly four types of wikis:

14http://nginx.org/en
15https://www.varnish-cache.org/

http://nginx.org/en
https://www.varnish-cache.org/

2.2. WIKI SYSTEMS 25

Enterprise wikis That are used within an enterprise(Poole & Grudin 2010) and are subdivided
in:

Project or Group wikis That are used to maintain information relevant to a group or
project, like project documentation or instructions to new group or project members;

Single-user wikis That hold information relevant to a person within a enterprise or in-
formation that the owner wishes to share with others;

Enterprise-wide Wikis or encyclopedias That hold information about the enterprise as
a whole and are meant as internal encyclopedias.

Educational wikis These wikis(Forte & Bruckman 2007) are used to share knowledge or infor-
mation relative to a course and are subdivided in:

Course wikis These wikis are created within an educational institution for supporting a
given subject;

Knowledge wikis These wikis are meant for teachers that need to share information and
subject material between them and may or may not be associated with an education
institution;

Subject wikis These wikis are meant to contain books, materials or exercises about a
given subject16

Public wikis This wikis are public wikis and can be accessed and/or edited by anyone and
can be divided in two groups:

General-purpose public wikis These wikis contain information about several issues; 17

Specific-purpose public wikis These wikis are dedicated to one specific purpose or is-
sue. 18

Personal wikis These wikis are meant to replace personal websites.

2.2.2 Classifying Wiki Users

On the subject of the editor types, there are two main types of wiki editors, the first type is the
occasional editor, that either only edits or creates something about what he or she knows or
only changes one section or small paragraphs at once and therefore finds attractive the fact that
a page is easily editable.

The other type of editor is the professional or expert editor, that knows a wiki inside out
and that is more interesting in the fact that the content of a wiki is accessible to others and
usually adopt the behavior of keeping a small page of bookmarked wiki pages that they want
to watch for changes so that when a page is changed they read what was changed and either
revert the change if they did not approve it or correct the new edit or approve the edition and
do nothing (Bryant et al. 2005).

Due to the needs of the professional editors, there is a need for a fast way to tell those
editors if the articles they watch have been changed or not and where those changes have
happen.

16for example. http://en.wikiversity.org/wiki/Wikiversity:Main_Page
17for example http://en.wikipedia.org/wiki/Main_Page
18for example the wikis in http://www.wikia.com/Wikia

http://en.wikiversity.org/wiki/Wikiversity:Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://www.wikia.com/Wikia

26 CHAPTER 2. RELATED WORK

2.2.3 Classifying Wikis by Architecture

In this subsection we describe some of the existing wiki architectures and compare their ad-
vantages, disadvantages and their use cases (ie. when some architecture is better than other).

2.2.3.1 Centralized Architecture

The centralized architecture is one of the most used wiki architectures and typically consists
in a web application, that runs in a web server and that is connected to a database server or
file repository that stores the wiki pages belonging to the wiki. When users want to access the
wiki, they use the URL of the web server that contains the wiki application.

The advantages of this method is that it is simple, it does not need special software (besides
the wiki web application and even that can be done in a similar way to a regular website) and
is accessible to anyone that has a HTTP client.

The disadvantages are that since there is only one centralized server, the bandwidth and
hardware required to operate a medium to large sized wiki can cost a lot to someone that wants
to host the wiki and also if the web server crashes all the data is unavailable and possibly lost
(if there are no backups) and finally there is a high coupling between the backend (the database
that contains the wiki pages) and the user interface (the web application that is accessed by the
user), which opens the door to exploits if the web application has a bad design with vulnera-
bilities such as cross-site scripting, SQL injection and other problems of a website.

So in order to try to solve some of these problems, the architectures below were designed.

2.2.3.2 Peer-to-Peer Architecture

One example of a peer to peer architecture for wikis is presented the paper by Morris et
al.(Morris 2007) and unlike the hybrid approach, it is completely decentralized (or peer to peer),
since the wiki users are also the ones that host the pages and there is no central interface to the
wiki.

As the requirements for this architecture the authors, considered:

Redundant decentralization There is no central server, since everything is stored in peers and
when someone wants to see a wiki page, it connects to the peer to peer network in order
to talk to the peers and obtain the document he or she wants. Also it is important to
provide redundancy since a peer may fail in expected or unexpected ways;

Unique identification of documents The documents must be uniquely identified, since each
document may have multiple versions and because two users can edit the same version
at the same time and create different or conflicting versions of the same document, which
gives that the documents may need to be manually merged and for that each version
must have its own unique name;

Usability This is necessary because a user has a mental model of what it can do with a wiki
and the architecture must respect that mental model, so that the user can continue to use
the knowledge it has, for example, the user knows that a wiki page may contain links to

2.2. WIKI SYSTEMS 27

other pages and that if he clicks on them he will go to the page that was clicked and while
simple this can be difficult to implement correctly in a peer-to-peer system where pages
might not be in the same storage server;

Efficient retrieval of documents Associated with the usability described above, a user may
also like to search for a given page, so the protocol must have some way of locating the
requested page, so that the hosting peer can send the page to the peer that wants it;

As a peer to peer middleware the authors used JXTA, because it offered an easy way to
search for a document, aggressive caching and it allowed for resource and peer discovery (in-
tegrated with the search). It also allowed the formation of a group of peers and a way to make
that group private using authentication methods.

So with JXTA behind as a peer to peer middleware, when a client wants to access the wiki,
he or she launches a client, that connects to the group WikiNet of JXTA and gains access to the
resources that belong to that group. Then it opens a JXTA pipe19 in order to listen for document
requests and answer them.

When a document is created, the peer generates a new JXTA advertisement,20 that contains
the publishing date of the document, the title of it, the revision number and the pipe and peer
ID of the document holder.

When a document is requested, a peer searches for the advertisement that tells where the
document is located and then connects to the specified pipe, so that it can retrieve the wanted
page.

Then, in order to increase the redundancy of the page, it publishes a new advertisement
specifying that it also has the document (ie. an advertisement that is similar to the one that he
searched for, but that has the pipe and peer id corresponding to that peer).

2.2.3.3 Hybrid Architecture

This architecture is described in Urdaneta et al.(Urdaneta et al. 2007)2.7. It presents a way to
improve the centralized Wikipedia, using the help of its contributors. So in this architecture the
authors split a wiki into two subsystems, one that is centralized and keeps a document index
database, that contains the title of each document and some of their words and a front-end that
allows the user to query the wiki for a page given a set of keywords, much like a search engine.
The other subsystem keeps copies of the pages inside a wiki and a database that indexes them
and a front-end that allows such pages to be retrieved and updated. In this last subsystem the
placement of the pages, the updates and query requests are handled by a distributed system.

In this paper, for the page placement algorithm the authors considered a cost function that
takes into attention the resources demanded by a page, the performance of a node and the
evolution of that node, resulting in the following formula:

c(N,P,W) =
∑
p∈P

α(
l(p, w)

ltot(N,W)
)j + β(

o(p,W)

otot(N,W)
)j

19A JXTA pipe is a way that JXTA has to connect specific peers together so that they share some data
20A JXTA advertisement is a way to tell peers about resources and network services available

28 CHAPTER 2. RELATED WORK

Figure 2.7: Hybrid Wiki

Where l(p, w) is the number of bytes of the received requests for a page p, during a certain
time window w, ltot(N,W) is the maximum number of bytes that node N can receive within
the same time window w, o(p,W) is the number of bytes that the request for page p generated
as a response in the same time window, while otot(N,W) is the number of bytes that can be sent
from the node N, in the time window w. α, β and j are simple weighting constants to balance
the cost function.

Finally, the result of the cost function is the summation of all these costs and this provides
the value that the page placement algorithm must minimize in order to keep the architecture
efficient and fast.

Since this requires global information, the authors of this paper proposed a solution based
on the fact that when placing or moving a page, one needs only to calculate if that move will
minimize the cost function of those two nodes, so that the nodes can perform this in a concur-
rent way.

In order for a node to know neighbors so that he can reduce the cost function, the authors
considered a gossip based protocol, where the connected nodes change their neighbors list and,
for each connection, choose a different set of neighbors based on the exchanged information,
so that each node has a new set of other nodes to move the pages it contains.

In order to decide which pages to move, each node chooses a given number of pages, that
can be moved and than it tries to see if one page in that set results in a cost reduction and if it
does that page is transferred.

In order to save bandwidth, only one page is transferred at a time to a certain neighbor
and neighbors that are already receiving a lot of pages are not considered for the placement
algorithm. In order to prevent excessive page movement, the nodes only run the algorithm

2.3. VECTOR-FIELD CONSISTENCY 29

when they load is approaching a certain threshold T .

Since any node can receive a query from a user, it is used a Distributed Hash Table, in order
to keep an index of pages and the nodes that contain them. Where the key of this DHT is the
hash of the name of the page and the value is the node that contains this page, also like a DHT
each node is responsible for a given part of the hash table, so that when a query is received a
node executes a DHT query in order to know where the page is kept.

In order to prevent arbitrary failures of a node and node departures each page and DHT
key can be replicated in various nodes.

2.2.3.4 Discussion of Use Cases

Following the discussion of the main wiki architectures we describe some of the use cases
where an architecture might suit best.

So the peer to peer architecture is best when a user wants to create a wiki about a certain
subject or when he wants to look something related to a certain subject21, because the group
orientation of the peer to peer architecture associated with the private group feature would
allow the edition of the pages to only a set of users.

The hybrid architecture is best when there is already a centralized wiki and due to the
number of users of that wiki, it might be useful to set up some data-centers that serve as peers
to contain copies of the wiki pages, while the main web server contains the interface and is the
single point of access to the users. This, because a peer to peer architecture might pose some
privacy (in case of enterprise wikis) or redundancy (since the users might only want to look for
something specific and not be interested at all in hosting wiki content) risk.

The centralized architecture is useful for small or private wikis, that have a small number
of users, because the problems of bandwidth are nonexistent and the reliability and coupling
problems might not be significant.

2.3 Vector-Field Consistency

The Vector-Field consistency (or VFC) algorithm(Santos et al. 2007)(Veiga et al. 2010) is an al-
gorithm that unifies consistency enforcing with locality awareness, using the concept of vector-
fields.

Where there is a pivot or center point that represents an important object for the system
or observation point and generates consistency zones around that object in which we place the
objects according to a set of dimensions defined in a vector called the VFC vector.

Each consistency zone has a given consistency degree (Fig. 2.8) and consistency zones are
ordered so that as one moves away from the pivot the objects placed have less in common to
the given pivot (ie. are more distant).

The consistency zones are shaped like a cube (or square, depending on the number of
dimensions or features one wants to monitor), where each consistency zone is defined by a

21see for example http://www.wikia.com/Wikia that allows users to create wikis about their favorite themes

http://www.wikia.com/Wikia

30 CHAPTER 2. RELATED WORK

Figure 2.8: Example of a consistency zone

Figure 2.9: Example of multiple views

range that goes from the previous consistency zone (or pivot, in the case of the first zone), to a
certain maximum VFC vector value.

In order to position an object in a consistency zone, VFC defines the vector κ = (Θ, σ, ν) to
describe the maximum divergence that a zone can tolerate, so that one only needs to check for
a zone where κi ≤ oi ≤ κi−1 is true, for a given object o.

Because one can have multiple pivots and an object may belong to more than a pivot and
therefore is surrounded by more than one consistency degree, VFC defines that if that happens,
the object belongs to the closest pivot.

In VFC, an object or pivot may also belong to more than one view (Fig. 2.9), where each
view has its own set of pivots and therefore one pivot or object may generate more than one
consistency zone or belong to more than one consistency zone, in the case of pivots and objects
respectively, where a view can be associated with a user, a game field layer, etc.

In previous works VFC was used for mobile game consistency, specially in massive mul-
tiplayer online games and first person shooters and the defined VFC vector had three dimen-
sions that were time, sequence and value. Time is the maximum staleness time a game object
could have had, sequence the maximum number of lost updates of that object and value the
difference between replica contents.

2.4. SUMMARY 31

2.4 Summary

In this chapter, we analyzed the various architectures for a cache system, the various models for
a proxy server, the two great families of cache consistency enforcement approaches, a number
of relevant cache replacement strategies and finished with a taxonomy of the commercial cache
servers according to the analyzed criteria.

Then we addressed wiki systems, where we classified the wiki types, the types of wiki
users and presented relevant wiki architectures.

Finally we explained the VFC algorithm, that serves as the basis for our cache solution and
finished with an overview of the past usages of the VFC algorithm in different scenarios.

32 CHAPTER 2. RELATED WORK

3Architecture

After discussing some of the related work, we are going to define the architecture of the pro-
posed solution and the relevant algorithms.

We are going to use a centralized architecture for our web cache server, in order to comply
with the requirements discussed above of fast accessibility.

In the wiki we are going to use a centralized architecture as the wiki architecture.

3.1 Web Cache

Since our work is related to two main parts, the web cache and the wiki, in this chapter, we
describe the cache architecture, starting by the VFC adaptation and the description of the cache
replacement strategy, an general view of the components of our architecture both server and
client side, followed by a use case of a request using the normal HTTP consistency, the regis-
tering of a user and his or her consistency definitions and bookmarks including the exchanged
network messages and then a request using VFC.

3.1.1 VFC Model Adaptation

In the VFC model, we have used a pivot that contains three dimensions, that are:

Distance Specifies the number of links that must be crossed from the document that is the
pivot, to the current document and must be equal or bigger than zero;

Recency Specifies the number of requests that have passed since the last request to this docu-
ment and must be equal or bigger than zero;

Frequency Specifies the number of requests, that the document had while in cache and must
be equal or bigger than zero;

Because, we define distance as the number of links between a pivot and a given document,
we describe the HTML tags that have a meaning to our algorithm and what they do, so:

a This tag refers to an external document or link, so the distance of the linked document is
going to be stored as the distance of the current document plus one;

img This tag refers to a related image document, the distance of this image document is going
to be equal to the distance of the current document, because it is meant to be aggregated
with it, using HTML semantics;

34 CHAPTER 3. ARCHITECTURE

link This tag is a stylesheet that applies to the HTML document and the distance of this docu-
ment is going to be equal to the distance of the current document, again because of HTML
semantics;

script This tag may specify a JavaScript file that is used by the current HTML document, and
its distance is going to be equal to the distance of the current document.

Also, since a pivot should typically be the only element with a distance of one, when we
are parsing a pivot, we are going to add one to the distance of any of the documents specified
by the tags above, but as an exception to all of this, if the pivot is made from an frame page, we
are going to keep all pages from the frame in the same area (with a distance of zero).

Also only a bookmark may become a pivot, so if a user makes a request to a document that
is not linked to a pivot, then the document isn’t cached, even if later (by parsing more pages) it
is found that the document did have a connection to a pivot; so that the algorithm can provide
a fast way of deciding what to cache in spite of being unable to cache a potential linked page
and therefore not providing any prefetching of pages.

If a document needs to be re-validated because it has exceeded the consistency zone limits,
and upon parsing the new response, it is found that some of the existing links no longer exist,
then they are deleted if they do not have any other parent links, the removal is not recursive, in
order to keep the algorithm fast and document are only removed using our cache replacement
strategy, described below.

If a user is removed either explicitly or by inactivity, then the pivot references associated
with him are removed, again in a non-recursive way, since the pages could be referenced by or
be pivots of other users. Also, if a pivot page of a user is a regular page of another user, then
that page will have multiple consistency zones and obey to all of them as specified below.

If a document is linked to more than one pivot (they may be from multiple users), then the
document has a VFC vector for each connection that is associated with a given pivot, so that
when in a request that document needs to be checked for freshness the correct VFC vector is
used, according to the pivot and consistency zone of the user, where it is.

3.1.2 Cache Replacement Strategy

In a way to make space for new documents or to remove unused documents to make space,
there is a need to run a cache document removal process either periodically or when there is a
need to make more space for a document.

So, in conformance with the most common used scheme in the existing web caches1, there
are two values important for the document removal/replacement algorithm:

MaxCacheSize This is the maximum size of a cache and when this limit is reached, the algo-
rithm is run in order to remove some useless pages or move them to other type of cache;

MeanCacheSize This is the value that specifies when the algorithm stops removing docu-
ments from cache, when it is run for space reasons;

1see the description of squid above

3.1. WEB CACHE 35

Figure 3.1: Deployment diagram of the web cache and all involved machines

Also, since our cache server has two areas for caches (disk and memory), each area has
a set of the above values, so that they can be customized and controlled independently by
the cache server administrator. Additionally the units of the two above values are bytes and
MeanCacheSize < MaxCacheSize.

Also because the VFC vector that each object has specifies useful values for the cache re-
move/replacement strategy, we specify our strategy using heuristics based on those values, so
we have:

Weighted Distance by Frequency The documents more distant from the pivots and least used
are potential candidates to being replaced/removed from cache (or moved to disk);

Weighted Recency by Frequency The documents that were updated a long time ago, but that
are not frequently used are potential candidates to being replaced/removed from cache;

Using this heuristics, together with the removal of objects that have no parents, we have
an simple cache replacement protocol, that uses the VFC vector to its fullest, while keeping
the wanted properties and qualities of user preference awareness this may be changed in order
to run a periodic process that removes pages without parents, even if there is no need for
removing pages, providing some type of garbage collection.

3.1.3 Web Cache Deployment Model

In this subsection, we will give a general overview of all machines, client and server software
that are related to our cache and will provide input to our cache and to whom our cache will
provide output (Figure 3.1).

So, after looking at the deployment diagram, we add that the cache is based on a forward
proxy model and a centralized architecture as defined in the related work chapter in the web
cache related section.

36 CHAPTER 3. ARCHITECTURE

Figure 3.2: Architecture of the web proxy/cache server

3.1.4 Base Component Model

We will now give a general view over the components of the web cache architecture, both
server and client side.

3.1.4.1 Server Side

As an architecture for the proxy layer (Fig. 3.2), we have a model that divides it into three
main blocks and one configuration component that stores global configuration options set by
configuration files read upon server startup. So the three main blocks are described below.

3.1.4.1.1 Port Management This blocks contains all the ports, that are components that can
handle client and/or server connections, in a given protocol (for now there is only ports for
HTTP 1.1).

Also, it can be any number of ports, that have a unique identifier and may have only inputs
or outputs or both, so that a user may configure a port to receive special requests from a web
application or a port that is specific for a certain type of server content like objects with a large
size.

The components of this block are described below:

Port or Connection Port This component manages the connections both from the clients and
to the servers using the pro-actor pattern to handle simultaneous connections from the

3.1. WEB CACHE 37

clients and servers and is divided into two sub-components:

Client layer This component is the client side of the port and processes, client requests
and sends responses and has sub-components to parse the HTTP request into a
generic proxy request and a proxy response to a HTTP response.

Server layer This component is the server side of the port and processes, server re-
sponses and sends requests and has sub-components to parse the an proxy request
to a server request and a server response to a proxy response.

3.1.4.1.2 Request Processor This block receives proxy requests from a client connection and
using a chain of responsibility distributes the requests for processing by the VFC consistency
module or the HTTP consistency module, it may also distribute them through additional mod-
ules that may store the message, produce a log of the requests or transform either the request
or response.

If a processing module cannot process the request immediately and needs to send an re-
quest to the server, this component will also forward those requests to the server connectors
and provide the received response.

Finally, the request processor sub-components are described below:

Request Distributor This component receives the requests from the ports and introduces them
to the chain of responsibility containing the processors and receives requests from the
processors and sends them to a web server;

VFC Cache Consistency This component manages the VFC protocol and returns the docu-
ment in cache, if it is fresh according to the VFC parameters and if it exists, otherwise
it creates a request for the Request Processor, so that the document is fetched from the
original web server, it is also responsible for storing any information, related to VFC and
manage the user registration and changes;

HTTP Cache Consistency This component uses the HTTP protocol consistency, according to
the HTTP RFC;

Processing Plugins These are modules that can do other useful things with a request with or
without a response, like storing logs and so on.

The VFC Cache consistency, also processes all requests coming from the user browser plu-
gin, like user management, bookmark management and so on. It is also responsible to remove
users after a configurable period of inactivity.

3.1.4.1.3 Storage Component This block contains components for managing the cache sys-
tem and the server preferences, specifically:

Cached Objects Manager This component manages the cache and is responsible for storing
and retrieving objects from the disk and memory caches and completely abstract the stor-
age method, from the consistency managers that use the cache. The documents from the
different consistency managers are kept separated, so that they don’t conflict;

38 CHAPTER 3. ARCHITECTURE

Figure 3.3: Architecture of the web proxy/cache client plugin

Memory Cache Manager This component manages a memory cache, that stores documents
in memory, using a content-addressed system2, in order to perform lookup, insert and
remove operations in a fast and efficient way;

Disk Cache Manager This component manages a disk cache, that stores documents in disk, in
order to save space in the memory cache or to store documents that had not been acceded
on a long time;

Cache Replacement Module Manager This component is responsible to manage all the avail-
able cache replacement algorithms and use them according to the user configurations for
each consistency method specific cache.

3.1.4.2 Client Side

As an architecture for the proxy layer (Fig. 3.3), we have a model that combines a traditional
MVP3, with a component to change the requests made by the browser and a main component
that is represented by a button in the browser and allows the browser user to configure his or
her user name, the consistency zone definitions and the bookmarks he wants to consider as
pivots. The rest of the blocks are described below.

3.1.4.2.1 Plugin Views This component is responsible to present a user interface in order
for the user to configure his or her user name, to view the cache generated user name (using
an hash of the given user name, browser version and a random unique number), the plugin
version, the cache version.

It also allows the user to configure the consistency zone definitions and the maximum VFC
vector, before a pivot is updated and to configure his or her bookmarks/pivots to send and
optionally adds all of his or her current bookmarks and/or open tabs.

2Also known as CAS
3Model View Presenter

3.1. WEB CACHE 39

Figure 3.4: Use case involving a HTTP request.

3.1.4.2.2 Plugin Controllers This component is responsible for listening to changes in the
view and do any required communications with the cache server when the user changes his or
her name or the consistency zone definitions or any of the other configurable parameters.

3.1.4.2.3 Plugin Store This component is responsible to persist the information entered by
the user, using the standard means offered by the browser for it.

3.1.5 Use Cases

In this section we are going to describe the operations done by the cache when it receives an
normal HTTP request, when a new user registers (and its related operations) and when the
cache receives a VFC request.

3.1.5.1 HTTP Request - Use Case

When a client browser makes a request to the cache (Fig. 3.4), the following steps are done,
considering that the page is not in the cache and a server request must be made:

40 CHAPTER 3. ARCHITECTURE

1. The client makes the connection;

2. The client part of the port that receives the connection parses the request, including the
headers and their information and builds a generic proxy request object;

3. The generic proxy request object is placed on a queue and retrieved by the request dis-
tributor;

4. The request distributor, distributes the request along the chain of responsibility contain-
ing the HTTP Cache Consistency, that processes the request;

5. The HTTP Cache Consistency component, sends a get request to the Cached Objects Man-
ager, to see if the request is cached;

6. The Cached Objects Manager, tries to see if the requested object is in the memory cache;

7. The Cached Objects Manager, tries to see if the requested object is in the disk cache;

8. The Cached Objects Manager, sends a failure response to the request;

9. The HTTP Cache Consistency, transforms the client request into a server request and
places it in a queue for sending it to the original web server;

10. The Request Distributor, retrieves the server request passing it to a compatible Server
Connector, using a queue;

11. The Server Connector, retrieves the request from the queue sending it to the server;

12. Upon receiving a response, the Server Connector, associates the response to the proxy
request handling it to the Request Distributor, by placing it in a queue;

13. The Request Distributor, retrieves the request from the queue distributing it to the chain
of responsibility, allowing the HTTP Cache Consistency to process it;

14. The HTTP Cache Consistency sends an asynchronous request for the Cached Objects
Manager in order to store the received response and simultaneously sends the response
to the client request, by placing it in a queue;

15. The Request Distributor, retrieves the request from the queue handling it to the Client
Connector;

16. The Client Connector answers the client sending it the response.

3.1.5.2 VFC User Registration - Use Case

When a client browser makes a request to the cache (Fig. 3.5), in order to register a user and his
or her information, the following steps are done:

1. The user browser plugin makes a request, to register the user and his or her data, that is
a regular HTTP request;

2. The Client Connector, sends the data to the Request Distributor, that places the request in
the chain of responsibility;

3.1. WEB CACHE 41

Figure 3.5: Use case involving a user registration.

42 CHAPTER 3. ARCHITECTURE

3. The VFC Cache Consistency, handles the request processing the received data, adapting
the user pivots or the user consistency zones if they change;

4. The VFC Cache Consistency, sends a response to the Request Distributor, that may con-
tain the proxy version and the generated user name;

5. The Request Distributor, sends the response to the Client Connector;

6. The Client Connector sends the response to the User Browser.

The message sent by the user browser plugin, may contain a new user name to create or
replace the existing user name or a generated user name, followed by a set of bookmarks or
consistency zone definitions that may create new pivots and respective consistency zones or
change the existing ones.

3.1.5.3 VFC Request - Use Case

When a client browser makes a request to the cache using VFC, the following steps are done,
considering that the page is not in the cache and a server request must be made. We highlight
that the first three steps are equal to the use case of the normal HTTP request and are therefore
not represented, so that our list starts after the first three steps are done.

1. The first three steps are equal to the normal HTTP case;

2. The request distributor, distributes the request along the chain of responsibility contain-
ing the VFC Cache Consistency, that processes the request;

3. The VFC Cache Consistency component, determines the VFC Page corresponding to the
request sending a get request to the Cached Objects Manager, to see if the request is
cached;

4. The three steps involving the Cached Objects Manager, are equal to the normal HTTP
steps;

5. The VFC Cache Consistency, transforms the client request into a server request placing it
in a queue for sending it to the original web server;

6. The normal HTTP request steps 10, 11 and 12 are common to the VFC request use case
and take place at this time;

7. The Request Distributor, retrieves the request from the queue distributing it to the chain
of responsibility, allowing the HTTP Cache Consistency to process it;

8. The VFC Cache Consistency parses the received page if the page is a html request, adds
the parsed links as shadow VFC Pages to the consistency zones where the parent is in-
serted sending an asynchronous request for the Cached Objects Manager in order to store
the received response and simultaneously sends the response to the client request, by
placing it in a queue. It also adds one to the recency value of all pages;

9. The final client response handling is equal to the steps 15 and 16 of the normal HTTP
request.

3.2. VFC-WIKI 43

If for some reason the page already is in cache, the VFC request manager gets the corre-
sponding VFC Page, determines if it is fresh or not, that is, sees if its current pivot is within the
consistency zone boundaries and if it is adds one to its frequency and one to the recency of all
VFC Pages.

If not it sends a conditional request to the server if possible and retrieves the new page, if
there are changes to the page, then the page is re-parsed and the new links merged with the
old ones and the page in cache is changed.

3.2 VFC-Wiki

3.2.1 VFC Adaptations

For the VFC-Wiki architecture and since we are using a centralized architecture, this means that
the wiki server has access to all of the data about changes to a page and the current users and
their pivots. That are defined as the watched pages and the current page (much like the case
with VFC-Web pivots), we use the following as VFC vector dimensions:

Distance This is the same as the VFC-Web distance (ie. the number of links between a page
and the nearest pivot) and is always bigger or equal to zero (when is the case of embedded
images or videos);

Sequence This is the maximum number of updates that a user is willing to tolerate, before
wanting to be notified about them and is equal or bigger than zero;

We highlight that the rest of the special behavior is identical to the VFC-Web protocol de-
scribed above, including the handling of multiple users, wiki pages with multiple pivots and
users share the same pivot.

3.2.2 VFC-Wiki Deployment Model

Similarly to what we have done for the web cache, in this section we will describe the machine
and processes involved in our wiki implementation and all of the surrounding machines and
processes (Figure 3.6).

So, after looking at the deployment diagram, we add that the wiki is based on a centralized
architecture as defined in the related work chapter in the wiki related section.

3.2.3 VFC-Wiki Architecture

Since we used XWiki as a base to develop our system, we are going to describe the architecture
of XWiki, since our VFC-Wiki is implemented as a plugin upon XWiki.

So, the components in the already implemented wiki, are based on a standard model-view-
controller architecture and therefore separate the domain from the view and the wiki logic, as
described in figure 3.7.

44 CHAPTER 3. ARCHITECTURE

Figure 3.6: Deployment diagram of the wiki and all involved machines

Figure 3.7: Architecture of a XWiki request.

Figure 3.8: Blocks of XWiki.

3.2. VFC-WIKI 45

In terms of blocks, the already implemented wiki, uses the blocks specified in Figure 3.8.

From this figure, it is important to discuss that the core component implements the model,
the localization service, the notification service, the user management, among other services.
And that our implementation will be done as a module and an application, since it will involve
two plugins and a few pages in order to implement the user interface.

3.2.4 Use Cases

In this section we are going to describe the use cases related to the wiki, when a user adds a
watched page to his or her user page, when a user removed a watched page from his or her
user page and when the user wants to get a list of all updated pages.

3.2.4.1 Add Watched Page - Use Case

When a user adds a watched page to his or her personal list of watched pages, our VFC plugin
gets notified of that event and will do the following algorithm in order to respond to it:

1. Get the name and id of the added page;

2. Retrieve the matched page;

3. Check if the page already has VFC information:

(a) If it has VFC information, than add the VFC information for the current user, to the
page (mainly a pair of username/(distance, pivot));

(b) Else, create a new VFC information object in the page and add the VFC information
for the current user;

4. For each, non-repeated child page, do the steps 3 to 4.

3.2.4.2 Remove Watched Page - Use Case

When a user removed a watched page from his or her personal list of watched pages, our VFC
plugin gets notified of that event and will do the following algorithm in order to respond to it:

1. Do the first two steps as the add watched page user case;

2. Check if the page has information about the user:

(a) If it has, then remove the information about the user;

(b) Else, log an warning;

3. For each, non-repeated child page, do the steps 2 to 3.

46 CHAPTER 3. ARCHITECTURE

3.2.4.3 Get Updated Pages - Use Case

When a user requests the list of updated pages from his or her personal list of watched pages,
our VFC plugin gets notified of that event and will do the following algorithm in order to
respond to it:

1. Get a list of the user watched pages;

2. For each watched page:

(a) Check if the page is fresh according to the VFC parameters of the user (Note that in
XWiki pages, already have a tracker of the number of changes they have had);

(b) If the page is not fresh, than add the page to a list of updated pages;

(c) For each, non-repeated child page, do the steps a) and b);

(d) Concatenate all updated pages into one list;

3. Concatenate the list of all updated pages received from the for loop, into one list and
return it to the user.

3.2.4.4 Notes

Given that an wiki page has a reduced set of pages, compared to the web cache, we have
choosen an algorithm that involves recursion, in the hope that the number of child pages and
links between the pages, is small or tolerable enough so that the cost of a recursion is insignifi-
cant.

3.3 Summary

In this section we have analysed our adaptation of the VFC algorithm to the cases of both the
wiki and the web cache, including the description of the deployment architecture, that in the
case of the web cache, described all the machines that communicated with the cache, including
the user browsers and the http servers. While in the case of the wiki, it included the client
machines of the users or editors using the wiki.

Then, we described the components of the wiki and cache and finally we described some
use cases for both the cache and wiki, with the steps involved in them.

4Implementation

After discussing the architecture we are going to discuss the implementation of the parts related
to VFC with more detail.

4.1 VFC-Cache

The VFC-Cache was implemented from scratch, using the architecture described above and
the Java language, together with some libraries, in order to ease the interfacing with the HTTP
protocol, to implement the cache storage system and to implement an way to configure the
cache.

About, the VFC component, it was implemented using two sets of classes, one in order to
provide storage of pages in their consistency zones and information about the users, and their
pivots.

The other was created in order to process the VFC related requests and the use cases of a
page retrieval using VFC and user registration within VFC.

4.1.1 Relevant Libraries

In this subsection we will describe some of the major libraries used in our implementation, and
why we have choosen to use them.

Netty1 This is the library used for handling user and server connections and parsing the re-
ceived HTTP messages, extracting all of the information contained in the headers, includ-
ing the HTTP status line;

ehcache2 This is the library that is used to handle cached pages in memory and persist them
to disk, also offering an way to search for pages given their URL and to provide hooks
(using the Policy interface3) so that we can use our custom VFC replacement policy;

slf4j and logback4 These are the libraries used to handle logging in our cache and allow us to
see which cache consistency method is being used;

htmlparser5 This is the html parser library used, to parse the html pages and extract the links
from it.

3http://ehcache.org/documentation/apis/cache-eviction-algorithms#
plugging-in-your-own-eviction-algorithm

http://ehcache.org/documentation/apis/cache-eviction-algorithms#plugging-in-your-own-eviction-algorithm
http://ehcache.org/documentation/apis/cache-eviction-algorithms#plugging-in-your-own-eviction-algorithm

48 CHAPTER 4. IMPLEMENTATION

4.1.2 Domain Classes

To implement the domain of VFC (Figures 19, 20, 21 in the appendix), we used the following
classes:

VFCPageList This is a list that stores every page known to VFC, so that if a similar page (with
same URL), is requested from other user or using other pivot, that same page is used
instead of a new one (since objects in Java are just references, to the same object);

StandardVFCLinkVisitor This class, using a library for parsing HTML, tries to extract all valid
URLs (that have at least a path) linked to the page being parsed and builds the informa-
tion needed for VFC to work, in other words, it associates a link type to an URL, so that
the algorithm, can know if the URL comes from an image link or a script link;

VFCLinkInformation This class represents the information extracted from a link by the Stan-
dardVFCLinkVisitor and contains the URL and type of link;

Users This is a singleton, that stores all of the registered users and that contains methods in
order to help the main VFC algorithm;

User This is an object representing a user and contains its registered user name, his VFC defi-
nitions, the pivots that he has and methods to help the VFC algorithm;

Pivot This is an object that represents a user pivot and it contains the page represented by this
pivot, the maximum VFC value that the pivot can have before requiring an update and a
list of consistency zones associated with the pivot and finally some methods to help the
VFC algorithm;

ConsistencyZone This is an object, that represents a consistency zone and contains the max-
imum VFC vector, that any object in the consistency zone can have and a list of pages
currently in the consistency zone;

VFCPage This is an object, that represents a VFCPage and contains the type of link that created
the page, the URL associated with the page, the unique id of the request associated with
the page, a list of VFC Vectors associated with the page (in order to represent multiple
views, of users or pivots), a list of the parent of the page, so that the cache replacement
strategy can remove them, when they are no longer needed and a bit that indicates if the
page is in cache or not;

VFCZoneDefinitions These are the VFC definitions for a user.

VFCVector This is an object, representing all the fields of a VFC-Cache vector (distance, re-
cency and frequency);

4.1.3 Request Processing and User Registration

To implement the request processing and user registration, we used the following classes (Fig-
ure 4.1).

VFCStandardRequestAction This class implements the response to a user request;

4.1. VFC-CACHE 49

Figure 4.1: Classes implementing the processing

50 CHAPTER 4. IMPLEMENTATION

VFCClientOperations This class implements the operations to a user registration;

VFCUtilityFunctions This class implements some functions used by the other VFC classes, for
adding new pages to the VFC pivot consistency map or to parse new or modified pages,
for example;

VFCPolicy This class implements the VFC page replacement policy, on top of ehcache, using
the specified Policy interface to insert our policy into the the ehcache system.

4.1.3.1 Request Processing

The component used for the request processing is the class VFCStandardRequestAction, using
the algorithm specified in the algorithm 1 and algorithm 2.

Algorithm 1 Process a request using VFC - Part 1

if Request is from the user then
if If the request contains a user name then

if Page is known to the user then
if Page is cached then

if Page is fresh then
Serve the page to the user

else
Send a conditional request to the server, if possible or a normal request to

the server
end if

else
Send a request to the server

end if
else

if Page is known globally then
if Page is cached then

if Page is fresh then
Serve the page to the user

else
Send a conditional request to the server, if possible or a normal request

to the server
end if

else
Send a request to the server

end if
else

Send a request to the server and mark the request as uncacheable
end if

end if
else

Send a request to the server and mark the request as uncacheable
end if . Continues in listing 2

4.1. VFC-CACHE 51

Algorithm 2 Process a request using VFC - Part 2

else . Continuation of listing 1
if Request is cacheable then

Get the page representing the request
if Request is cached then

Extract the links of the new page.
Merge the existing page information, removing the parent of all pages not men-

tioned in the new page and adding the new pages.
Increment the frequency value of the visited page;
Increment the recency value of all other pages.

else
Parse the received page;
Extract all the links;
For each link, see if a VFCPage already exists and if it does reuse it, otherwise

create a new one.
Increment the frequency value of the visited page;
Increment the recency value of all other pages.

end if
if Request/Response can be cached then

Queue the received response, for caching within the cache manager;
if Caching is successful then

Set the VFCPage as cached;
else

Set the VFCPage as not cached;
end if

end if
Send the received response to the user.

else
Send the received response to the user.

end if
end if

52 CHAPTER 4. IMPLEMENTATION

4.1.3.2 Page Replacement Algorithm

The class responsible for the replacement of pages, is the class VFCPolicy, which by virtue of
the usage of ehcache as the inner cache storage system and by obeying to the Policy inteface for
page replacement algorithm provided by ehcache, receives as input an array of elements given
by ehcache, that are possible candidates for removal, and the element that is going to be added
and returns the element to be removed, that should belong to the array of elements given as
input, so the algorithm proceeds as listed in algorithm 3.

Algorithm 3 Choose a page to be replaced.

Get the page representing, the pages to be removed
for all VFCPage in candidate list do

if Page distance <6 and Page frequency >6 then
Add the value of distance/(frequency+1) to the score of the page in a score list.

end if
if Page recency >6 and Page frequency <6 then

Add the value of recency/(frequency+1) to the score of the page in a score list.
end if

end for
Get the page with the lowest score and select the page for removal
for all VFCPage in VFCPageList do

if Page has no parents and the page is not the selected page then
Remove page from VFCPageList . Comment: This will trigger a cache remove, for

the pages due to the VFCPage finalize method
end if

end for
Return the selected page

4.1.3.3 User registration

The class responsible for registering new users and getting the new pivots and new consistency
zone definitions, is the VFCClientOperations. This component uses, an restful interface, on
top of HTTP, with some messages, given as Json objects. So the restful interface defines the
following methods:

registerUser(userName, browserName): generatedUserName, proxyVersion This is the
method for registering a user in the cache, using a hash of the userName and browser-
Name, given as query parameters of a get request, that returns a json object containing
the generated user name and the version of the proxy.

unregisterUser(userName) This is the method for unregistering a user from the cache, using
a simple get request with the user name as the parameter query.

changeBookmark(userName, bookmarks) This is the method for changing the list of user
bookmarks (or pivots), where an empty list, means that all pivots are to be removed.
This method uses a get request with the user name as the query parameter and a JSON
object that specifies the bookmarks to add/remove.

4.2. VFC-WIKI 53

changeConsistency(userName, consistencyZoneDefenitions) This is the method for chang-
ing the list of consistency zones or the maximum vfc of the pivot and is an get request
with the userName as a query parameter and a JSON object that specifies the definitions
of the consistency zone, that is an array of VFC vectors, corresponding to the maximum
VFC value that the consistency zone can take.

4.2 VFC-Wiki

For the VFC-Wiki, we used XWiki, because it allowed us to implement the VFC functionality,
on top of an already stable and usable wiki and that contains a watchlist functionality, which
we use to support our pivots.

Also, XWiki allows us to receive events and store arbitrary information along with the wiki
pages.

4.2.1 VFC-Wiki Model

For the VFC-Wiki model and using the fact that XWiki allows us to store information, with wiki
pages and that a user is also represented by a wiki page. We implemented the model, described
in the class diagram of figure 22 that is in the appendix.

Document Class that represents the VFC data that a document has, mainly a link to the wiki
document represented by it, a list of users/pivots containing the document, along with
the distance from the pivot and the consistency zone containing the document and meth-
ods to access the links of the current document;

VFCVectorInformation It is used by the document class to store information about the docu-
ment distance to the pivot and the consistency zone where the document belongs accord-
ing to a given user/pivot;

VFCVector Represents a VFCVector and contains the distance and sequence fields of the VFC
vector;

UserVFCDefinitions Represents the user VFC definitions, specifically the maximum VFC Vec-
tor of the user consistency zones and the maximum VFC Vector of the user pivot;

VFCDefinitionsConsistencyClass Static class, that is used as a bridge between XWiki docu-
ment storage and the VFC plugin, that reads the user VFC Definitions from his or her
profile. It also appends the VFC Definitions to the user profile, if they don’t already exist
in it.

4.2.2 VFC-Wiki Operations

For the operational part of VFC-Wiki, that is implemented using the model and the XWiki
plugin infrastructure, we created the classes given in figure 4.2. Since XWiki allows us to be
notified when a document6 is created, modified and/or deleted, we base the plugin under that
envent-based functionality. So we have the following classes:

6For XWiki, an document can be a wiki document, a set of wiki configurations or a user profile

54 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Classes implementing the VFC-Wiki plugin

4.2. VFC-WIKI 55

XWikiVFCApi This is the interface that the document interface scripts see and corresponds to
the public interface of the plugin and allows a user to directly add pivots, remove pivots
and to get a list of updated documents, according to VFC;

XWikiVFCPlugin This is the internal or hidden part of the plugin, that implements the public
API and listens to the events provided by the XWiki core engine. It also adds a VFCDefi-
nitionsConsistencyClass object to the user profile, if it does not already have one.

Also, as we said the plugin listens to the creation, change or removal of XWiki documents,
so according to the event we do one of the actions, mentioned in the paragraphs, below.

4.2.2.1 Document created

This event is fired after a document is created and performs the actions explained in algorithm
4.

In this algorithm it is important to note that whenever the user is first created and if the
user does not have a VFC Definition object, one will be created and appended to his or her
profile.

Also, when the watched documents (or pivots) children are added to the consistency zones,
this is done according to a recursive algorithm, so that all of the linked documents are added,
without the same document being added twice (in that case, the recursion is stopped).

Algorithm 4 Action executed after a document is created

if The document is a user page then
Parse the VFC Definitions of the user
Parse the list of watched documents
Insert all the documents watched by the user in the new consistency zones

end if

4.2.2.2 Deleting Document

This event is fired before a document is removed and does the actions explained in algorithm
5.

In this algorithm it is important to note, that when the watched documents are removed,
only the information about the given user is removed, using an recursive algorithm, so that all
of the linked documents are also removed from the user consistency zones, unless there is a
cycle in the linked documents (one document, points towards a document already seen).

Algorithm 5 Action executed before a document is removed

if The document is a user page then
Remove all the references to the user from the pivots and their children documents
Remove the cached user VFC definitions
Remove the cached list of watched files (or pivots)

end if

56 CHAPTER 4. IMPLEMENTATION

4.2.2.3 Updating Document

This event is fired before a document is updated and does the actions explained in algorithm 6.

In this algorithm, the old children of the document are cached using a method, inside the
Document class, that is the backupOldChildren method.

Algorithm 6 Action executed before a document is updated

if The document is not a user page then
if The document is known to the VFC System then

Cache the old children of the document;
end if

end if

4.2.2.3.1 Document Updated This event is fired after a document is updated and does the
actions explained in algorithm 7.

When the documents are reinserted in the consistency zones, after a definition change, only
the definitions associated with the user are changed and for all documents and their children
using a recursive algorithm that stops if an cycle is detected.

Algorithm 7 Action executed before a document is updated

if The document is a user page then
Get the user VFC Definitions
if The definitions are valid then

if The definitions have changed then
Reinsert all the documents to the consistency zones
Replace the old cached definitions with the new definitions

end if
Get the list of new and removed watch documents
if There are new watched documents then

Add the documents to the user consistency zones
end if
if There are new removed documents then

Remove the documents from the user consistency zones
end if

end if
else

Get the new and removed children
if There is a removed document then

Remove the pivot/users of the parent document from the removed document
end if
if There is a new document then

Add the children to the consistency zones of the parent users.
end if

end if

4.3. SUMMARY 57

4.3 Summary

In this section we have addressed the specific details of the implementation of both wiki and
the web cache, presenting the classes that make up the domain of both wiki and web cache,
some classes involved in the implementation of the algorithms for the wiki and web cache
operation.

Also, for the web cache we presented some of the major libraries that were used and why
they were used.

58 CHAPTER 4. IMPLEMENTATION

5Evaluation
After discussing the architecture, the algorithms and the relevant implementation details, we
are going to evaluate the project in quantitative, qualitative and comparative terms. In the
quantitative subsection, we are going to show screenshots of VFC-Cache working, in the qual-
itative subsection, we are going to compare VFC-Cache while using VFC and the standard
http consistency protocol. In the comparative terms, we are going to compare VFC-Cache with
other caches, like Squid and Polipo, in different configuration scenarios.

In the quantitative and comparative tests, we are specially focused in reducing the number
of uninteresting cached pages, in order to be able to cache more interesting pages, since that is
the main aim of the VFC algorithm.

All of the quantitative and comparative tests, were done using an automated tool and a list
of visited urls (in order to simulate what a real user would do) together with a list of bookmarks
selected from those urls. Then, several features were measured for each of the tested caches.
With the numbers about the number of cache-hits, cache-misses and page state being generated
from the logs, of each cache (in this cache our developed cache and squid).

In the quantitative section, we will also present a test case using fifa98 website access
log(Arlitt & Jin 1998), in which we consider a population of 21 users that access a common
url set and analyse the gains that our VFC cache could offer given that scenario.

5.1 Qualitative Evaluation

Like told above, in this section we are going to show how our developed solution works and we
will start by the VFC-Cache, specifically by showing the aspect of the developed client plugin,
that is shown in figures 5.1, 23, 5.2, 24 and 25.

So that, in the first image we have the global aspect of the menu of the plugin, in the second
image we have the menu entry to edit some general preferences like the address of the proxy
url, the user name and the addon version.

In figure 23, we have the help section of our plugin, in figure 24 we have the consistency
zone definitions that are set by the user and finally the list of user bookmarks.

In the terms of the VFC-Cache working, in figure 5.3 we have an example of a request to
a document that is present in one of the consistency zones of the user, but it has not been yet
retrieved, since no request for it has arrived.

In the figure 5.4, we have an example of a request to the same document, but since that
document is in cache and is fresh, the cached document is used to service the user request.

60 CHAPTER 5. EVALUATION

Figure 5.1: Initial aspect of the VFC-Cache client plugin

Figure 5.2: General section of the VFC-Cache client plugin

5.1. QUALITATIVE EVALUATION 61

Figure 5.3: VFC-Cache server, dealing with a request for the first time, meaning that since it
does not have it, the request has to go to the server.

So in the first figure, the request is sent to the server while in the second figure the request
is done by the cache and therefore the image shows an debug line with ”The cached page is
fresh”.

62 CHAPTER 5. EVALUATION

Figure 5.4: VFC-Cache server, dealing with a request for the subsequent time, meaning that
since the cache page is fresh, the web cache can imeadiatly send the cached page and therefore
our processor prints “The cached page is fresh” on its log.

5.2. QUANTITATIVE EVALUATION 63

5.2 Quantitative Evaluation

In this section, we will present and discuss two types of tests, one that is done using an au-
tomated browser tool, with the dataset presented at the appendix and the other using the fifa
1998 website access logs, with a specific scenario, presented in that subsection.

5.2.1 Automated Tests

In this subsection we are going to compare the VFC scheme with the regular http scheme using
the developed base cache, focusing on the number of cached documents, with the dataset of
pages used for both the quantitative and comparative tests being listed in the appendix.

So in the ocupation of the cache memory (Figure 5.5), we see that one of the main objectives
of VFC, that is to reduce the number of unimportant cached pages was successfully achieved,
with a ratio of 0.26 : 1 pages from VFC to standard http, meaning 26.08% of pages or in overall
less 74%. Which means that we have more space to store more interesting pages, using the
same memory space as other caches or if the cache administrator likes, using a machine with
less memory.

In terms of memory usage (Figures 5.6 and 5.7), we see that the differences are not so big,
in spite of the fact that VFC has to parse all html pages and store extra information, when
compared with the standard cache.

In terms of cpu usage (Figures 5.8 and 5.7) and considering that the tests were run in an
quad-core machine (with 4 cpus), we see that the VFC algorithm has some extra processing,
mostly due to the fact of having to parse the html and managing a set of consistency zones,
which make the algorithm more cpu heavy. And this also reflects in the latency graphics shown
below.

In terms of latency (Figure 5.10), we see that the VFC algorithm can reduce the load for
the most used pages, in spite of behaving almost like a direct cache for the pages that are not
bookmarks, which reflects that the bookmarks should be extremely well chosen and that the
algorithm is more cpu heavy than the standard http caching algorithm.

Figure 5.5: Number of cached pages, VFC on the left and standard http on the right

64 CHAPTER 5. EVALUATION

Figure 5.6: Memory usage of the VFC cache.

Figure 5.7: Memory usage of the standard cache.

Figure 5.8: CPU usage of the VFC cache.

5.2. QUANTITATIVE EVALUATION 65

Figure 5.9: CPU usage of the standard cache.

Figure 5.10: Latency of page loading, using a direct connection, a standard connection and the
VFC algorithm

66 CHAPTER 5. EVALUATION

Figure 5.11: Number of DOM nodes

Finally, for comparison we present a graph (Figure 5.11) with the number of DOM nodes of
the parsed HTML pages and that directly influence the VFC algorithm, since all of them have
to be created in memory and parsed by the DOM HTML parser we used.

5.2.2 Fifa 1998 tests

In this subsection, we are going to present a synthetic test using the fifa 1998 website access log
data. For this test we have considered the logs of July 15th of 1998, then we have filtered the
first 80000 entries of that log (after a conversion to the common log format) and then we have
selected users number 55, 60, 79, 111, 210, 245, 179, 366, 381, 388, 465, 595, 623, 638, 746, 998,
1509 and 1548 which we gave as common interest the fact that they are all interested in french
pages and hence the their set of pivots involve pages that begin with the url “/french/*”.

For this test we have compared the number and size of pages that a regular cache would be
allowed to cache (in other words, everything), the number and size of pages that the VFC cache
would be allowed to cache (in other words, everything with the prefix given above). From the
second set we have also filtered the data in order to analyse the pages that would be wasted
(in other words, pages that are cached but needed only one time) and pages that would not be
wasted (in other words, pages that are cached and needed several times).

So, given the results presented in figures 5.12 and 5.13, we notice that although the number
of wasted pages is high it is close to the number of not wasted pages, even if the number of
wasted bytes is higher than the number of not wasted bytes.

But, if we take into attention the number of repeated accesses to the pages and multiply
those by the size of those pages (whose cached state, has prevented the server and client from
making a direct connection to the server), we get a number of 351795 bytes, which far surpasses
the number of wasted bytes, making the cache eficient.

That contributes further to the conclusion that if well choosen a bookmark/pivot can bal-
ance the cost that it takes to have it in memory, by allowing an increased number of cache hits,
relative to the regular case, thereby justifying the trade between the size of the store page and
the number of cache hits.

5.2. QUANTITATIVE EVALUATION 67

Figure 5.12: Results of the fifa 1998 test in bytes

Figure 5.13: Results of the fifa 1998 test in number of pages

68 CHAPTER 5. EVALUATION

5.3 Comparative Evaluation

In this section, we will compare our solution against other existing solutions, specifically Squid
2, Squid 3 and Polipo, focusing in the number of cached documents.

So in the number of cached documents (Figures 5.5 (presented in the quantitative tests)
and 5.14) and given that in the second figure, the first graphic (counting from the top left of
the figure) is from Squid v2 using GDSF, next to the right we have Squid v2 using the LRU
Heap, next to the right we have Squid v2 using the LFU-DA, in the next row, we have Squid
v2 using LRU, then Squid v3 using GDSF, then Squid v3 using LRU Heap, in the next row we
have Squid v3 using LFU-DA and finally Squid v3 using LRU.

We were unable to get any information from polipo, due to the fact that polipo does not
produce any statistics of the number of cached pages, cache-hits and cache-misses. And once
again we obtain satisfatory results in the number of cached pages, which shows that VFC might
work in resulting the number of cached pages.

In terms of latency (Figure 5.15), we see that the VFC algorithm can reduce the load for
the most used pages, in spite of behaving almost like a direct cache for the pages that are
not bookmarks. Also our cache is unable to parse CSS files or javascript files which can force
the browser to transfer more pages, particularly images that are used in the background of
the page or as the background of buttons or other visual elements, which could be solved by
either employing a regular cache on top of our VFC system, using the space saved by the VFC
algorithm or partially by parsing the CSS files.

This is noticeable since in average most pages used in the test and in the bookmarks, re-
trieved at least two elements without the usage of the VFC algorithm, being mostly images and
pieces of HTML pages, used in ads, that are produced using javascript.

In terms of memory usage and cpu usage (Figures 5.8, 5.6, 5.9, 5.7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18 in the appendix) this is where most differences are and these can
be attributed to the fact that most of the commercial caches are fine tuned to extract the most
performance out of the operations they do.

Also in the memory aspect, all of the other caches were coded in C or C++, while our
implementation was coded in java, so the java virtual machine, simply allocated a predefined
amount of memory independent of its usage or not by the program, even if we configured the
cache storage subsystem to have similar sizes as the other caches, an maximum of 18MB.

5.3. COMPARATIVE EVALUATION 69

Figure 5.14: Cached pages of the other caches, where a) is Squid2 with GDSF, b) is Squid2 with
LRU Heap, c) is Squid2 with LFU-DA, d) is Squid2 with LRU, e) is Squid3 with GDSF, f) is
Squid3 with LRU Heap, g) is Squid3 with LFU-DA and h) is Squid 3 with LRU

70 CHAPTER 5. EVALUATION

Figure 5.15: Latency of all caches.

5.4 Summary

In this evaluation we have performed some quantitative, qualitative and comparative tests and
discussed their results with possible causes for some suboptimal performance verified in some
of the tests.

We also confirmed that our cache system is able to store more pages in the same amount
of cache memory, than in regular solutions and that if well choosen a bookmark can reduce
the number of cache misses and stay more time in the cache memory and therefore in the long
run, all our system is able to grant that all interesting pages to a user or user community stay
in memory and prevent unnecessary communications with a web server, allowing for better
bandwidth usage and less load in the origin web servers.

6Conclusions
After having studied and presented some of the related work, where we analyzed the various
architectures for a cache system, the various models for a proxy server, the two great families
of cache consistency, some of the cache replacement strategies and finished with a taxonomy of
the commercial cache servers according to the analyzed criteria.

Then, in the wiki systems, we classified the wiki types, the types of wiki users and some of
the possible wiki architectures, ending with an explaination the VFC algorithm, that we intent
to use in our cache solution, together with an overview of the past usages of the VFC algorithm.

In the next chapter, we described the architecture of our solution, where we analysed our
adaptation of the VFC algorithm to the cases of both the wiki and the web cache, the deploy-
ment architecture of both cache and wiki system, the components of the cache and wiki and
finally we described some use cases related to both the cache and the wiki.

Following that we provied some details about the implementation of our solution, where
we have talked about the specific details of the implementation of both wiki and the web cache,
presenting the classes that make up the domain of both wiki and web cache and some of the
algorithms and classes involved in the wiki and web cache operations. For the web cache we
presented some of the major libraries that were used and why they were used.

Next we followed to the evaluation tests, that were divided into qualitative, quantitative
and comparative tests, some of them involving other caching solutions.

So in this conclusion we start by remembering the reader that our initial and most impor-
tant aim, was to reduce the number of uninteresting cached pages, while keeping the working
set of the user (if possible of a group of related users, like students, investigators of a depart-
ment or employees of an enterprise) in cache in order to give the perception of a fast page load
(or lower load latency) and to reduce the need to query the web server.

We also had the aim of doing the same for wiki pages, in order for a wiki moderator to
keep an “eye” over a group of pages related to the domain of his knowledge.

Also while implementing we discovered some disadvantages of this method, some of them
more important and serious than others, which we summarize below.

Possibility of cycles in the graph of pages Since we track, the links between pages it is possi-
ble that we follow a link to a page that is upper in the graph hierarchy, which results in
the same pivot to be linked to a resource twice. Which while not very serious might com-
plicate the allocation and removal algorithms, particularly if we use pointers to represent
the elements in a tree;

Serialization problems Related to the problem above, we have serialization problems, since
we must be careful not to serialize the same node twice and be careful while designing

72 CHAPTER 6. CONCLUSIONS

the serialization algorithm, since we must be able to detect cycles. Which lead us to move
to a Java based solution instead of one based on C or C++;

Problems with dynamic pages Since we have to parse a page, our algorithm has problems
with dynamic pages that use javascript to add or remove nodes from a HTML page, since
we can only use the page without processing the javascript or else we had to implement
a full headerless browser in the server which would increase the latency;

Problems with CSS Related to the problem above we have pages that use CSS to define el-
ements like background images and component images (like buttons), since those ele-
ments might force the browser to retrieve more elements related to a page, that could
have been cached;

Freeform of the HTML We also have a problem with the HTML pages, since usually HTML is
not as strict as XML and some browsers also tolerate some semantic errors within HTML,
which makes that our cache also has to behave like a browser while parsing pages and be
as forgiving as the most relaxed browser in terms of HTML semantic and that adds to the
processing time and memory amount since some of those errors require the reordering
of some of the elements in the DOM tree, that we are forced to build instead of using
something more lighter in terms of processing time and memory like SAX;

Streaming and Flash content There are also problems with content that is transmitted in real
time like videos, music files and even live chat, but actually those problems also happen
with most of the other caches, so most users are aware that for streaming content they
cannot use a cache;

Overral cost of cached page Since there is a high cost for both the parsing and maintainable of
pages in cache, since upon considered stale a page could have been potentially changed
to an entirely different page with different links (rendering all of the existing connec-
tions useless), the algorithm is very sensitive to pages that represent unwanted ads (often
present in a “interesting” page to a user) or bookmarked pages that are not really inter-
esting to a user (maybe he or she bookmarked that page only to read it later just once).

In the field of contributions, our paper has shown that it is possible, albeit with some practi-
cal or implementation cost, to use bookmarks and the VFC algorithms in order to reduce the
number of cached pages and the number of watched pages in a wiki, some of those practical
shortcomings were reflected in the Evaluation that we have done, particularly when comparing
our cache with other existing caches.

As future work, there is an aspect that can be further explored that is related to finding
out what are the real interesting pages for a user, for example the frequency it is actually used
to start a browsing session, since a bookmark may be a bookmark for several reasons, most of
which are not related to a bookmark being interested in a way, that is a frequently visited page.

Bibliography

(2001). Web protocols and practice: HTTP/1.1, Networking protocols, caching, and traffic
measurement. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Abdulla, G. (1998). Analysis and modeling of world wide web traffic. Ph. D. thesis.
AAI9953804.

Abrams, M., C. R. Standridge, G. Abdulla, E. A. Fox, & S. Williams (1996, August).
Removal policies in network caches for world-wide web documents. SIGCOMM Comput.
Commun. Rev. 26(4), 293–305.

Abrams, M., C. R. Standridge, G. Abdulla, S. Williams, & E. A. Fox (1995). Caching
proxies: Limitations and potentials. Technical report, Blacksburg, VA, USA.

Aggarwal, C., J. L. Wolf, & P. S. Yu (1999, January). Caching on the world wide web.
IEEE Trans. on Knowl. and Data Eng. 11, 94–107.

Arlitt, M., L. Cherkasova, J. Dilley, R. Friedrich, & T. Jin (2000, March). Evaluating
content management techniques for web proxy caches. ACM SIGMETRICS Performance
Evaluation Review 27(4), 3–11.

Arlitt, M. & T. Jin (1998, August). 1998 world cup web site access logs.

Bryant, S. L., A. Forte, & A. Bruckman (2005). Becoming wikipedian: transformation
of participation in a collaborative online encyclopedia. In Proceedings of the 2005 interna-
tional ACM SIGGROUP conference on Supporting group work, GROUP ’05, New York, NY,
USA, pp. 1–10. ACM.

Cao, L. & M. Oezsu (2002). Evaluation of strong consistency web caching techniques.
World Wide Web 5(2), 95–123.

Cao, P. & S. Irani (1997). Cost-aware www proxy caching algorithms. In Proceedings
of the USENIX Symposium on Internet Technologies and Systems on USENIX Symposium on
Internet Technologies and Systems, USITS’97, Berkeley, CA, USA, pp. 18–18. USENIX Asso-
ciation.

Cate, V. (1992). Alex-a global filesystem. In Proceedings of the 1992 USENIX File System
Workshop, Number 7330, pp. 1–12. Citeseer.

Chang, C. & A. McGregor (1999). The LRU* WWW proxy cache document replace-
ment algorithm.

Cobb, J. & H. ElAarag (2008, September). Web proxy cache replacement scheme
based on back-propagation neural network. J. Syst. Softw. 81(9), 1539–1558.

73

74 BIBLIOGRAPHY

Davison, B. D. (2001, July). A web caching primer. IEEE Internet Computing 5(4),
38–45.

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, & T. Berners-Lee
(1999). RFC 2616: Hypertext transfer protocol–HTTP/1.1, June 1999. Status: Standards
Track 1(11), 1829–1841.

Forte, A. & A. Bruckman (2007). Constructing text:: Wiki as a toolkit for (collabora-
tive?) learning. In Proceedings of the 2007 international symposium on Wikis, WikiSym ’07,
New York, NY, USA, pp. 31–42. ACM.

Gray, C. & D. Cheriton (1989, November). Leases: an efficient fault-tolerant mecha-
nism for distributed file cache consistency. SIGOPS Oper. Syst. Rev. 23, 202–210.

Hosseini-Khayat, S. (1998). Investigation of generalized caching. Ph. D. thesis, St. Louis,
MO, USA. UMI Order No. GAX98-07761.

Howard, J. H., M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N.
Sidebotham, & M. J. West (1988, February). Scale and performance in a distributed file
system. ACM Transactions on Computer Systems 6, 51–81.

Lee, B.-H., S.-H. Lim, J.-H. Kim, & G. C. Fox (2009). Lease-based consistency schemes
in the web environment. Future Generation Computer Systems 25(1), 8 – 19.

Markatos, E. & C. Chronaki (1998). A top-10 approach to prefetching on the web. In
Proceedings of INET, Volume 98, pp. 276–290.

Mogul, J. (2004). Clarifying the fundamentals of HTTP. Software: Practice and Experi-
ence 34(2), 103–134.

Morris, J. (2007). DistriWiki:: a distributed peer-to-peer wiki network. In Proceedings
of the 2007 international symposium on Wikis, pp. 69–74. ACM.

Podlipnig, S. & L. Böszörmenyi (2003). A survey of web cache replacement strategies.
ACM Computing Surveys (CSUR) 35(4), 374–398.

Poole, E. S. & J. Grudin (2010). A taxonomy of wiki genres in enterprise settings. In
Proceedings of the 6th International Symposium on Wikis and Open Collaboration, WikiSym ’10,
New York, NY, USA, pp. 14:1–14:4. ACM.

Qian, F., K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao, S. Sen, & O. Spatscheck
(2012). Web caching on smartphones: ideal vs. reality. In Proceedings of the 10th interna-
tional conference on Mobile systems, applications, and services, MobiSys ’12, New York, NY,
USA, pp. 127–140. ACM.

Rabinovich, M. & O. Spatschek (2002). Web caching and replication. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Rodriguez, P., C. Spanner, & E. Biersack (2001). Analysis of web caching architec-
tures: hierarchical and distributed caching. Networking, IEEE/ACM Transactions on 9(4),
404–418.

BIBLIOGRAPHY 75

Romano, S. & H. ElAarag (2008). A quantitative study of recency and frequency
based web cache replacement strategies. In Proceedings of the 11th communications and
networking simulation symposium, CNS ’08, New York, NY, USA, pp. 70–78. ACM.

Santos, N., L. Veiga, & P. Ferreira (2007). Vector-field consistency for ad-hoc gaming.
Middleware 2007, 80–100.

Urdaneta, G., G. Pierre, & M. Van Steen (2007). A Decentralized Wiki Engine for Collab-
orative Wikipedia Hosting, pp. 156–163. Citeseer.

Valloppillil, V. & K. W. Ross (1998). Cache array routing protocol v1.1. 1.

Veiga, L., A. Negrão, N. Santos, & P. Ferreira (2010, August). Unifying divergence
bounding and locality awareness in replicated systems with vector-field consistency. Jour-
nal of Internet Services and Applications 1(2), 1–21.

Wang, J. (1999, October). A survey of web caching schemes for the internet. ACM
SIGCOMM Computer Communication Review 29, 36–46.

Wessels, D. & K. Claffy (1997). Application of internet cache protocol (icp), version
2. RFC Editor United States (2187).

Yin, J., L. Alvisi, M. Dahlin, & C. Lin (1998, may). Using leases to support server-
driven consistency in large-scale systems. In Distributed Computing Systems, 1998. Pro-
ceedings. 18th International Conference on, pp. 285–294. IEEE.

Yu, H., L. Breslau, & S. Shenker (1999, August). A scalable web cache consistency
architecture. SIGCOMM Comput. Commun. Rev. 29, 163–174.

Zhang, J., R. Izmailov, D. Reininger, M. Ott, & N. U. S. A (1999). Web caching frame-
work: Analytical models and beyond. In Proceedings of the 1999 IEEE Workshop on Internet
Applications, WIAPP ’99, Washington, DC, USA, pp. 132–. IEEE Computer Society.

76 BIBLIOGRAPHY

Appendices

.1 Figures and Graphics

Figure 1: CPU usage of the polipo cache.

77

78 BIBLIOGRAPHY

Figure 2: Memory usage of the polipo cache.

Figure 3: CPU usage of the Squid v2 using GDSF.

Figure 4: Memory usage of the Squid v2 using GDSF.

Figure 5: CPU usage of the Squid v2 using an Heap LRU.

.1. FIGURES AND GRAPHICS 79

Figure 6: Memory usage of the Squid v2 using an Heap LRU.

Figure 7: CPU usage of the Squid v2 using LFU-DA.

Figure 8: Memory usage of the Squid v2 using LFU-DA.

80 BIBLIOGRAPHY

Figure 9: CPU usage of the Squid v2 using LRU.

Figure 10: Memory usage of the Squid v2 using LRU.

Figure 11: CPU usage of the Squid v3 using GDSF.

Figure 12: Memory usage of the Squid v3 using GDSF.

.1. FIGURES AND GRAPHICS 81

Figure 13: CPU usage of the Squid v3 using an Heap LRU.

Figure 14: Memory usage of the Squid v3 using an Heap LRU.

Figure 15: CPU usage of the Squid v3 using LFU-DA.

Figure 16: Memory usage of the Squid v3 using LFU-DA.

82 BIBLIOGRAPHY

Figure 17: CPU usage of the Squid v3 using LRU.

Figure 18: Memory usage of the Squid v3 using LRU.

.1. FIGURES AND GRAPHICS 83

Figure 19: Domain Classes - Part 1

84 BIBLIOGRAPHY

Figure 20: Domain Classes - Part 2

.1. FIGURES AND GRAPHICS 85

Figure 21: Domain Classes - Part 3

86 BIBLIOGRAPHY

Figure 22: Classes implementing the VFC-Wiki model

Figure 23: Help section of the VFC-Cache client plugin

.1. FIGURES AND GRAPHICS 87

Figure 24: VFC Consistency zone configuration section of the VFC-Cache client plugin

Figure 25: Bookmark configuration section of the VFC-Cache client plugin

88 BIBLIOGRAPHY

.2 List of Pages Used In the Test

• http://www.virtualbox.org/manual/UserManual.html

• http://www.gnu.org/

• http://www.gnu.org/gnu/linux-and-gnu.html

• http://www.gnu.org/licenses/licenses.html

• http://www.gnu.org/licenses/license-recommendations.html

• http://www.gnu.org/copyleft/copyleft.html

• http://www.gnu.org/help/help.html

• http://www.rfc-editor.org/rfcxx00.html

• http://www.rfc-editor.org/rfc/rfc959.txt

• http://www.rfc-editor.org/rfc/rfc868.txt

• http://tools.ietf.org/html/rfc867

• http://tools.ietf.org/html/rfc865

• http://tools.ietf.org/html/rfc2067

• http://tools.ietf.org/html/rfc1191

• http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

• http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.5.2

• http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html

• http://www.bearcave.com/software/java/comp java.html

• http://www.cs.vu.nl/manta/

• http://www.bearcave.com/softnotes.htm

• http://www.bearcave.com/software/c++types.html

• http://www.bearcave.com/software/networking.html

• http://www.bearcave.com/software/java/comp infra.html

• http://www.bearcave.com/software/java/misl/software reuse.html

• http://www.bearcave.com/misl/misl tech/c++ critique.html

• http://www.bearcave.com/unix hacks/python.html

• http://tapestry.apache.org/index.html

• http://tapestry.apache.org/documentation.html

• http://tapestry.apache.org/user-guide.html

• http://tapestry.apache.org/annotations.html

• http://tapestry.apache.org/component-templates.html

• http://tapestry.apache.org/injection.html

• http://www.bearcave.com/

• http://www.bearcave.com/bear contents.shtml

• http://www.bearcave.com/misl/misl other/dogs/index.html

• http://www.bearcave.com/misl/misl tech/wavelets/index.html

.2. LIST OF PAGES USED IN THE TEST 89

• http://www.bearcave.com/sourcepg.htm

• http://www.bearcave.com/italy/index.html

• http://www.bearcave.com/barcelona/index.html

• http://www.bearcave.com/bookrev/revindex.htm

• http://www.bearcave.com/finance/

• http://www.bearcave.com/finance/portfolio equations/

• http://www.bearcave.com/finance/etf portfolio/etf portfolio.html

• http://www.bearcave.com/finance/factor models/index.html

• http://www.bearcave.com/cae/index.html

• http://www.bearcave.com/dac paper/dac paper final.html

• http://www.bearcave.com/cae/chdl/index.html

• http://www.bearcave.com/software/vhdl/index.html

• http://www.bearcave.com/cae/cascade mult.html

• http://www.bearcave.com/misl/misc.htm

• http://www.bearcave.com/misl/misl tech/index.html

• http://www.bearcave.com/bookrev/linked/index.html

• http://www.bearcave.com/misl/misl tech/rdf query languages.html

• http://www.bearcave.com/misl/misl tech/nlp.html

• http://www.bearcave.com/misl/misl tech/detecting authorship.html

• http://www.bearcave.com/misl/misl tech/publishing.htm

• http://www.bearcave.com/misl/misl tech/msdrm/index.html

• http://www.bearcave.com/misl/misl tech/gnutella.html

• http://www.bearcave.com/misl/misl tech/peer2peer.html

• http://www.bearcave.com/random hacks/permute.html

• http://www.bearcave.com/misl/misl tech/transmeta.html

• http://www.bearcave.com/misl/misl tech/asynch.html

• http://www.bearcave.com/misl/misl tech/demise of sun.html

• http://www.bearcave.com/software/dlang/Cplus plus and d.html

• http://www.bearcave.com/software/btp/freesoft.html

• http://www.bearcave.com/misl/misl tech/email virus.html

• http://www.bearcave.com/misl/misl other/tirza.html

• http://www.datanucleus.org/products/accessplatform.html

• http://www.datanucleus.org/products/accessplatform 3 2/jdo/guides/
tutorial mongodb.html

• http://db.apache.org/jdo/api30/apidocs/

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/annotations/
package-summary.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/metadata/
package-summary.html

90 BIBLIOGRAPHY

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/identity/
package-summary.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/identity/
CharIdentity.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/Constants.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/spi/Detachable.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/annotations/Element.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/metadata/
ExtensionMetadata.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/annotations/
FetchGroup.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/annotations/
InheritanceStrategy.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/JDOCanRetryException.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/JDOHelper.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/
JDOOptimisticVerificationException.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/
JDOUnsupportedOptionException.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/metadata/Metadata.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/metadata/PackageMetadata.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/annotations/PrimaryKey.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/datastore/Sequence.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/annotations/Serialized.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/spi/StateManager.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/identity/StringIdentity.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/metadata/ValueMetadata.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/overview-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/overview-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
cache/infinispan/entity/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
cfg/beanvalidation/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
dialect/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
cache/infinispan/timestamp/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
cfg/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
dialect/resolver/package-summary.html

.2. LIST OF PAGES USED IN THE TEST 91

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
ejb/criteria/expression/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
ejb/criteria/predicate/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
ejb/instrument/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
envers/entities/mapper/relation/component/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
envers/entities/mapper/relation/lazy/proxy/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
envers/exception/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
envers/query/impl/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
envers/query/property/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
envers/strategy/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
envers/tools/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
envers/tools/reflection/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
id/insert/package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/
jmx/package-summary.html

• http://ant.apache.org/manual/Tasks/javadoc.html

• http://docs.oracle.com/javase/7/docs/api/overview-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/awt/im/spi/package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/lang/package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/lang/management/
package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/net/package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/nio/charset/
package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/rmi/package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/security/acl/package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/sql/package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/util/package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html

• http://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html

92 BIBLIOGRAPHY

• http://docs.oracle.com/javase/7/docs/api/javax/annotation/package-summary.html

• http://docs.oracle.com/javase/7/docs/api/javax/crypto/interfaces/package-
summary.html

• http://docs.oracle.com/javase/7/docs/api/javax/imageio/metadata/package-
summary.html

• http://docs.oracle.com/javase/7/docs/api/javax/imageio/stream/package-
summary.html

• http://docs.oracle.com/javase/7/docs/api/javax/lang/model/element/package-
summary.html

• http://docs.oracle.com/javase/7/docs/api/javax/management/package-
summary.html

• http://docs.oracle.com/javase/7/docs/api/javax/management/remote/rmi/package-
summary.html

• http://docs.oracle.com/javase/7/docs/api/javax/naming/ldap/package-
summary.html

• http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

• http://www.bearcave.com/software/c++types.html

• http://www.bearcave.com/unix hacks/python.html

• http://docs.oracle.com/javase/7/docs/api/javax/management/remote/rmi/
package-summary.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/cfg/
package-summary.html

• http://www.datanucleus.org/products/accessplatform 3 2/jdo/guides/tutorial
mongodb.html

• http://db.apache.org/jdo/api30/apidocs/javax/jdo/metadata/
ExtensionMetadata.html

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/ejb/
criteria/expression/package-summary.html

• http://www.bearcave.com/misl/misl tech/transmeta.html

• http://wiki.squid-cache.org/

• http://wiki.squid-cache.org/SquidFaq

• http://wiki.squid-cache.org/SquidFaq/InterceptionProxy

• http://wiki.squid-cache.org/SquidFaq/SecurityPitfalls

• http://wiki.squid-cache.org/SquidFaq/ToomanyMisses

• http://wiki.squid-cache.org/SquidFaq/RAID

• http://www.squid-cache.org/Doc/config/cache dir/

• http://en.wikipedia.org/wiki/Fiber channel

• http://wiki.squid-cache.org/SquidFaq/SquidProfiling

• http://wiki.squid-cache.org/SquidFaq/ContentAdaptation

• http://wiki.squid-cache.org/SquidFaq/WindowsUpdate

.2. LIST OF PAGES USED IN THE TEST 93

• http://wiki.squid-cache.org/BestOsForSquid

• http://wiki.squid-cache.org/ZeroSizedReply

• http://wiki.squid-cache.org/ConfigExamples

• http://www.squid-cache.org/Versions/v2/2.7/cfgman/http port.html

• http://www.squid-cache.org/Versions/v2/2.7/cfgman/maximum object size in memory.html

• http://www.squid-cache.org/Versions/v2/2.7/cfgman/memory replacement policy.html

• http://www.squid-cache.org/Versions/v2/2.7/cfgman/logformat.html

• http://www.squid-cache.org/Versions/v3/3.0/cfgman/

• http://old.squid-cache.org/Doc/Hierarchy-Tutorial/tutorial-9.html

• http://www.squid-cache.org/Versions/v2/2.7/cfgman/memory replacement policy.html

• http://www.squid-cache.org/Versions/v2/2.7/cfgman/maximum object size in memory.html

• http://www.squid-cache.org/Versions/v2/2.7/cfgman/http port.html

• http://jpivot.sourceforge.net/api/overview-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/excel/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/mondrian/
script/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/navigator/
hierarchy/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/olap/model/
package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/param
/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/olap/
navi/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/table
/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/table
/span/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/test
/olap/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/util
/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/olap/model/
impl/package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/mondrian/
package-summary.html

• http://jpivot.sourceforge.net/api/com/tonbeller/jpivot/chart/
package-summary.html

• http://jdbforms.sourceforge.net/UsersGuide/html/index.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch02.html

94 BIBLIOGRAPHY

• http://jdbforms.sourceforge.net/UsersGuide/html/ch03s01.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch04s03.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch05s06.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch07s01.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch08s06.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch10s01.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch11s02.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch12s03.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch14s02.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch15s05.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch15s08.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch16s04.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch16s01.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch17s01.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch17s05.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch17s08.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch18s02.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch19s03.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch19s05.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch20s01.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch20s03.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch22s01.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch22s03.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch22s04.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch26s02.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch26s05.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch27s04.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch27s09.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch31s01.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch31s03.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch32s02.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch32s05.html

• http://jdbforms.sourceforge.net/UsersGuide/html/apb.html

• http://jdbforms.sourceforge.net/UsersGuide/html/apc.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch02s02.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch07s03.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch07s04.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch11s03.html

.2. LIST OF PAGES USED IN THE TEST 95

• http://jdbforms.sourceforge.net/UsersGuide/html/ch26s03.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch14s01.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch32s04.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch32s03.html

• http://jdbforms.sourceforge.net/UsersGuide/html/ch04s01.html

• http://jdbforms.sourceforge.net/apidocs/overview-summary.html

• http://jdbforms.sourceforge.net/apidocs/org/dbforms/config/
package-summary.html

• http://jdbforms.sourceforge.net/apidocs/org/dbforms/dom/
package-summary.html

• http://jdbforms.sourceforge.net/apidocs/org/dbforms/event/
datalist/package-summary.html

• http://jdbforms.sourceforge.net/apidocs/org/dbforms/event/
eventtype/package-summary.html

• http://jdbforms.sourceforge.net/apidocs/org/dbforms/servlets/
reports/package-summary.html

• http://jdbforms.sourceforge.net/apidocs/org/dbforms/util/
package-summary.html

• http://jdbforms.sourceforge.net/apidocs/org/dbforms/validation/
package-summary.html

• http://jdbforms.sourceforge.net/apidocs/org/dbforms/xmldb/
package-summary.html

• http://icu-project.org/apiref/icu4j/overview-summary.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/package-summary.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/
UCharacter.EastAsianWidth.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/
UCharacter.HangulSyllableType.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/
UCharacter.JoiningType.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/
UCharacter.NumericType.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/
UCharacter.SentenceBreak.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/
UCharacterEnums.ECharacterCategory.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/
UProperty.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/
UProperty.NameChoice.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/
UCharacter.DecompositionType.html

96 BIBLIOGRAPHY

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
package-summary.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
AlphabeticIndex.Bucket.LabelType.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
AlphabeticIndex.Bucket.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
AlphabeticIndex.Record.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
AlphabeticIndex.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
ArabicShaping.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
ArabicShapingException.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
Bidi.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
BidiClassifier.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
BidiRun.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
BreakIterator.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
CanonicalIterator.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/
CharsetDetector.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
AnnualTimeZoneRule.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
BasicTimeZone.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
BuddhistCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
ByteArrayWrapper.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
BytesTrie.Entry.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
BytesTrie.Iterator.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
BytesTrie.Result.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
BytesTrie.State.html

.2. LIST OF PAGES USED IN THE TEST 97

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
BytesTrie.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
BytesTrieBuilder.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
Calendar.FormatConfiguration.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
Calendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CaseInsensitiveString.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CharsTrie.Entry.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CharsTrie.Iterator.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CharsTrie.State.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CharsTrie.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CharsTrieBuilder.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
ChineseCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CompactByteArray.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CompactCharArray.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CopticCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
Currency.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
CurrencyAmount.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
DangiCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
DateInterval.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
DateRule.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
DateTimeRule.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
EasterHoliday.html

98 BIBLIOGRAPHY

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
EthiopicCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
Freezable.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
GenderInfo.Gender.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
GenderInfo.ListGenderStyle.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
GenderInfo.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
GlobalizationPreferences.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
GregorianCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
HebrewCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
HebrewHoliday.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
Holiday.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
IllformedLocaleException.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
IndianCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
InitialTimeZoneRule.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
IslamicCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
JapaneseCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
LocaleData.MeasurementSystem.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
LocaleData.PaperSize.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
LocaleData.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
LocaleMatcher.LanguageMatcherData.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
LocaleMatcher.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
LocalePriorityList.Builder.html

.2. LIST OF PAGES USED IN THE TEST 99

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
LocalePriorityList.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
Measure.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
MeasureUnit.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
Output.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
OverlayBundle.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
PersianCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
RangeDateRule.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
RangeValueIterator.Element.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
RangeValueIterator.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
Region.RegionType.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
Region.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
RuleBasedTimeZone.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
SimpleDateRule.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
SimpleHoliday.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
SimpleTimeZone.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
StringTokenizer.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
StringTrieBuilder.Option.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
StringTrieBuilder.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
TaiwanCalendar.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
TimeArrayTimeZoneRule.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
TimeUnit.html

100 BIBLIOGRAPHY

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
TimeUnitAmount.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
TimeZone.SystemTimeZoneType.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/util/
TimeZone.html

.3 List of Bookmarks

• http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

• http://www.bearcave.com/softnotes.htm

• http://docs.jboss.org/hibernate/orm/4.1/javadocs/overview-summary.html

• http://docs.oracle.com/javase/7/docs/api/overview-summary.html

• http://jpivot.sourceforge.net/api/overview-summary.html

• http://jdbforms.sourceforge.net/UsersGuide/html/index.html

• http://jdbforms.sourceforge.net/apidocs/overview-summary.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/text/package-summary.html

• http://icu-project.org/apiref/icu4j/com/ibm/icu/lang/package-summary.html

• http://www.bearcave.com/finance/

	Introduction
	Shortcomings of current solutions
	Proposed Solution
	Web Caching
	Wiki Replication
	Browser Extension

	Contribution and Goals
	Document Roadmap

	Related Work
	Web Caching
	Web Cache Architecture
	Centralized Architecture
	Hierarchical Architecture
	Cooperative Distributed Architecture
	Hybrid Architecture
	Comparison of Architectures

	Models of Web Proxies
	Forward Proxy
	Reverse Proxy
	Comparison of Proxy Models

	Cache Consistency
	Consistency by Validation
	Consistency by Invalidation
	Version 2.1
	Version 2.2
	Version 3

	Analysis

	Cache Replacement Strategies
	Recency Based Strategies
	Pyramidal Selection Scheme
	LRU-Min

	Frequency Based Strategies
	LFU-DA
	-aging

	Frequency-Recency Based Strategies
	LRU*
	Hyper-G

	Function Based Strategies
	GD-Size
	GDSF

	Random Based Strategies
	Harmonic

	Machine Learning Based Strategies
	NNPCR
	SVM-GDSF
	C4.5-GDS

	Analysis

	Commercial Cache Servers
	Squid
	Polipo
	Nginx
	Varnish

	Wiki Systems
	Classifying Wikis
	Classifying Wiki Users
	Classifying Wikis by Architecture
	Centralized Architecture
	Peer-to-Peer Architecture
	Hybrid Architecture
	Discussion of Use Cases

	Vector-Field Consistency
	Summary

	Architecture
	Web Cache
	VFC Model Adaptation
	Cache Replacement Strategy
	Web Cache Deployment Model
	Base Component Model
	Server Side
	Port Management
	Request Processor
	Storage Component

	Client Side
	Plugin Views
	Plugin Controllers
	Plugin Store

	Use Cases
	HTTP Request - Use Case
	VFC User Registration - Use Case
	VFC Request - Use Case

	VFC-Wiki
	VFC Adaptations
	VFC-Wiki Deployment Model
	VFC-Wiki Architecture
	Use Cases
	 Add Watched Page - Use Case
	 Remove Watched Page - Use Case
	 Get Updated Pages - Use Case
	 Notes

	Summary

	Implementation
	VFC-Cache
	Relevant Libraries
	Domain Classes
	Request Processing and User Registration
	Request Processing
	Page Replacement Algorithm
	User registration

	VFC-Wiki
	VFC-Wiki Model
	VFC-Wiki Operations
	Document created
	Deleting Document
	Updating Document
	Document Updated

	Summary

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Automated Tests
	Fifa 1998 tests

	Comparative Evaluation
	Summary

	Conclusions
	Figures and Graphics
	List of Pages Used In the Test
	List of Bookmarks

