
Project - FaaS@Edge (revised)

Catarina Gonçalves
92437

catarina.g.goncalves@tecnico.ulisboa.pt

Instituto Superior Técnico

Abstract. Function-as-a-Service (FaaS) is an emerging Cloud Computing model
that is proving to be very suitable for processing the large amounts of data being
generated by devices in the expanding Internet of Things. Bringing this computing
model closer to the source of data can provide a response to the reduced latencies
and bandwidth requirements of the applications that reside at the edge of the Inter-
net. Edge Computing environments are typically characterized by their large scale
architecture, decentralized nature, and resource-constrained devices, which causes
FaaS approaches to currently still lack the ability to fulfill these service requirements,
while efficiently leveraging resource utilization on distributed edge devices. In this
work, we present a solution to implement the FaaS model in an Edge Computing
environment, by utilizing resources volunteered by other edge nodes and distributed
through the IPFS network, to deploy WebAssembly runtimes, that allow near uni-
versal deployability on edge devices, using the Apache OpenWhisk framework.

Keywords: Function-as-a-Service, Edge Computing, Cloud Computing, Volunteer
Computing, Peer-to-Peer Data Networks

Table of Contents

1 Introduction . 1
1.1 Current Shortcomings . 1
1.2 Objectives . 1
1.3 Document organization . 2

2 Related work . 2
2.1 Function-as-a-Service . 2
2.2 Edge Computing . 7
2.3 P2P Content, Storage and Distribution . 12
2.4 Relevant Related Systems . 16

3 Architecture . 19
3.1 Distributed Architecture . 19
3.2 Resource Protocols . 20

3.2.1 Resource Discovery . 20
3.2.2 Resource Scheduling . 21

3.3 Node Software Architecture . 22
3.4 Data Structures . 23

4 Evaluation Methodology . 23
4.1 Testbed . 23
4.2 Workloads and Metrics . 24

5 Conclusion . 24
A Schedule . 29

1 Introduction

Function-as-a-Service (FaaS) is an emerging paradigm [1] aimed to simplify Cloud Com-
puting and overcome its drawbacks by providing a simple interface to deploy event-driven
applications that execute the function code, without the responsibility of provisioning, scal-
ing, or managing the underlying infrastructure. In the FaaS model, the management effort
is detached from the responsibilities of the consumer, since the cloud provider transparently
handles the lifecycle, execution, and scaling of the application. This computing paradigm
was originally proposed for the cloud but has since been explored for deployments in geo-
graphically distributed systems [2].

With the expansion of the Internet of Things, the cloud has become an insufficient so-
lution to respond to the growing amounts of data transmitted and the variety of Internet
of Things applications that require low latency and location-aware deployments, as stated
by CISCO [3]. This has led to the introduction of a new computing paradigm, called Edge
Computing, designed to reduce the overload of information sent to the cloud through the In-
ternet, by bringing the resources and computing power closer to the end user and processing
the data at the edge of the network.

1.1 Current Shortcomings

Most of the current cloud service platforms still rely on centralized architectures and services
that are not designed to operate on resource-constrained environments and the diverse
variety of heterogeneous devices that characterize the edge systems. In recent years, solutions
have been explored to bring FaaS deployments to the edge of the network [4], [5]. Even so,
few have managed to realize efficient resource provisioning and allocation [6], along with near
universal deployability, by leveraging volunteered resources in a completely distributed and
decentralized manner [7], in order to maximize resource utilization and meet the performance
needs of edge applications.

1.2 Objectives

The main objective of this work is to develop a system that uses volunteer resources from
users to allow Function-as-a-Service deployments at the edge of the network. In order to
achieve this, we define the following individual objectives:

– Survey the previous research and current state of the art in Function-as-a-Service, Edge
Computing, and Peer-to-Peer (P2P) content, storage and distribution.

– Design a distributed architecture, algorithms, and protocols that leverage volunteer
resources for FaaS deployments on edge computing nodes.

– Implement a middleware that will support our architecture, using the Apache Open-
Whisk1 framework and IPFS [8] to distribute the resources.

– Create an experimental evaluation methodology to assess the feasibility, efficiency and
performance of our work.

1 https://openwhisk.apache.org/

1

1.3 Document organization

The remainder of this paper is structured as follows: Section 2 presents an analysis of the
related work in FaaS, Edge Computing, and P2P content, storage and distribution. Section 3
describes the architecture and resource protocols that compose our solution proposal. In
Section 4 we present the evaluation methodology that will be used to evaluate our solution.
Finally, Section 5 wraps up the document with our final conclusions.

2 Related work

In this section we discuss important research and state of the art work in Function-as-
a-Service in Section 2.1, Edge Computing in Section 2.2, and P2P Content, Storage and
Distribution in Section 2.3. Lastly, we describe the Relevant Related Systems in Section 2.4.

2.1 Function-as-a-Service

Back in 2009, as the excitement surrounding utility computing grew larger, the potential
of Cloud Computing raised a lot of predictions as to how it would revolutionize the service
provisioning model in the IT industry. The main advantages pointed out by Armbrust et
al. [9] were the illusion it creates of infinite computing resources, the elasticity to add or
remove resources, not needing to make upfront investments, and the pay-as-you-go business
model, whilst also mentioning the potential it offers to create economies without needing to
afford large data centers, and improving resource utilization via virtualization and hardware
sharing.

During the following years, we have largely witnessed the accomplishment of these predic-
tions and Cloud Computing is now a highly popular paradigm with several service delivery
models and deployment methods. The three main service delivery models available are:

– Infrastructure-as-a-Service (IaaS): This model provides a cloud infrastructure where
the consumer can deploy and run software including operating systems, runtime envi-
ronments, and applications. The consumer has no control over the underlying physical
infrastructure but can manage storage space, networking properties, and have access to
computing resources that may be virtualized.

– Platform-as-a-Service (PaaS): This model provides a cloud infrastructure where the
consumer applications can be deployed without having the responsibility to manage
the underlying infrastructure, including the physical layer and operating systems. The
consumer can deploy and manage the applications and their configurations without
being concerned about resource provisioning or capacity planning.

– Software-as-a-Service (SaaS): This model provides the consumer the ability to use
product applications hosted by the service provider on a cloud infrastructure. The con-
sumer does not have the responsibility of managing the underlying infrastructure, in-
cluding servers, storage, and network components that constitute the physical layer, nor
the operating systems and application runtime environment where the application is
running. The consumer can simply interact with the interface provided by the service
to utilize the application’s capabilities.

When Amazon first introduced its Elastic Cloud Computing (EC2)2 instances belong-
ing to the IaaS delivery model, other companies followed soon after and this became the

2 https://aws.amazon.com/ec2/

2

designated Virtual Machine approach. However, there were still some drawbacks due to the
managing responsibilities it imposes on developers, for instance, ensuring service availability,
efficient resource utilization, autoscaling capabilities, and service monitoring [1].

The Google App Engine (GAE)3 providing PaaS improved on this by automating the
scaling and storage purposes to allow the customer to only develop at the application level.
GAE applications were still constrained to specific frameworks, programming languages, and
the amount of CPU they could use to answer a request. Some of these limitations were more
emphasized when the customer wanted to deploy code at a more fine-grained level, i.e. an
application function with relatively few lines of code, which led to the core of FaaS offerings,
first presented by Amazon, in the form of Lambda4 functions (a.k.a. Cloud functions).

Cloud functions allow the consumer to run their function code automatically when a
request occurs, i.e., an event is triggered, without having to provision virtual machine in-
stances or monitor and upgrade the system, among other responsibilities mentioned previ-
ously. Cloud functions may take different names depending on the cloud platform, as we
will see later on, and constitute the basis for Serverless Computing frameworks. At the end
of the spectrum, there are the SaaS models (e.g., Google Apps5) where the service provider
hosts applications that the customer can simply access through the Internet.

Fig. 1. Function-as-a-Service Taxonomy

In Figure 1, we present a taxonomy to classify Function-as-a-Service models. Al-
though this is a more recent approach out of all the Cloud Computing delivery models,
significant research has already been carried out and detailed in the current literature.
Jonas et al. [1] provide a good contextualization of Serverless Computing in comparison to
Virtual Machine solutions, describing its challenges and future directions, Mohanty et al.

3 https://cloud.google.com/appengine
4 https://aws.amazon.com/lambda/
5 https://workspace.google.com/

3

[10] focus on comparing the features of existing FaaS open source frameworks, alternatively,
Wen et al. [11] focus on comparing features concerning FaaS commercial platforms. Next,
we define the main characteristics that distinguish the various FaaS offerings according to
the type of Computing Environment, Development, Deployment, and Runtime.

Computing Environment: This characteristic marks the distinction between the enti-
ties granted the right to modify or use the software, depending on the existence of commercial
purposes for the platform. The Computing Environment can either be Commercial Platforms
or Open Source Frameworks.

Commercial Platforms of Function-as-a-Service provide the services for provisioning,
management, and resources necessary for a consumer to develop, deploy and execute func-
tions in a pay-as-you-go model (e.g., AWS Lambda, Google Cloud Functions6, Microsoft
Azure Functions7, IBM Cloud Functions8). These are usually maintained by a company,
i.e., a cloud provider, and as a consequence, there are specific requirements imposed on
function code that can create vendor lock-in and computation restrictions. The cloud in-
frastructure is available to be used by the general public regardless of whether it is in an
academic, business, or governmental setting. These platforms may also use Open Source
software for commercial purposes.

Open Source Frameworks of FaaS overcome the limitations of Commercial Platforms by
providing a free and publicly available environment solution for serverless functions (e.g.,
OpenWhisk9, Kubeless10, Fission11, OpenFaaS12). These frameworks are not exclusively
descriptive of private cloud deployments, but rather free software that can be distributed
and modified by the general public.

Development: The characteristics of the application, present in the Development phase
of the process, that need to be supported by the platform when using this serverless
computing model can be considered in terms of the Programming Language, the type of
Function Trigger, and the Package Size Limit.

Programming Language regulates which languages can be used to write the code of the
function that is going to be executed by the platform. Each platform has a set of languages
that are compatible with their runtimes, with Python and Java amongst the most popular
ones.

Function Trigger is associated with the respective function payload and is responsible
for initiating the execution request of the function which can originate from a variety of
events (e.g., HTTP requests, modifications in storage services, scheduled timers).

Package Size Limit of applications defines the maximum size of the packaged function
code and respective dependencies, and it is imposed with the intention of reducing the cold
start delay when executing functions (e.g., AWS Lambda limits a zipped package to 50 MB).

Deployment: The characteristics of the Deployment phase of FaaS models, which may
be distinct across platforms, can be divided in Deployment Methods, Deployment Tools, the
type of Messaging Service, Function Memory Allocation, and CPU.

6 https://cloud.google.com/functions
7 https://azure.microsoft.com/products/functions/
8 https://cloud.ibm.com/functions/
9 https://openwhisk.apache.org/

10 https://github.com/vmware-archive/kubeless
11 https://fission.io/
12 https://www.openfaas.com/

4

Deployment Methods define the packages, repositories, and systems that are responsible
for deploying and orchestrating the function services. The existing options include source
code packages, Docker container images which encompass the operating system, application
code, dependencies, and other system settings needed to deploy the image to its function,
open source container orchestration systems such as Kubernetes 13 and other external ser-
vices.

Deployment Tools are the interface options the consumer can use to deploy the func-
tions to the platform. Existing options include the Command Line Interface (CLI), Console
Interface, APIs, and SDKs.

Messaging Service is typically integrated with these Cloud platforms and can be used
for asynchronous messaging events, by associating specific functions to process messages
present in the message queue (e.g., AWS Lamba can be used with Amazon SQS14).

Function Memory Allocation is configured to define how much memory is allocated for
a function to use during runtime. Most platforms have default and limit values established
but allow custom modifications to increase or decrease the memory allocated and set a limit
value.

CPU power is usually attributed to the function proportionally to the correspondent al-
located memory and consequently, modifying these values can modify memory values as well.

Runtime: The characteristics of the Runtime phase come into view once a function
has already been successfully deployed. During their Runtime, we can consider different
types of Invocation Style, Concurrency, Auto Scaling Metric, Billing Model (for Commercial
Platforms), and Monitoring Tools.

Invocation Style of a function can either be Synchronous or Asynchronous. In Syn-
chronous invocations, when a function is invoked, the consumer has to wait for the task
execution to finish before being able to proceed. Contrarily, in Asynchronous invocations,
the consumer does not have to wait for the function execution. This invocation is usually
connected to a function trigger that decides when it is processed.

Concurrency is the number of executions/activations of functions that can occur at the
same time. Some platforms allow the reservation of a portion of the maximum concurrency
value to ensure that a specific function is able to be activated at a given time.

Auto Scaling Metric is used to evaluate the need to scale the service. By monitoring
these metrics (e.g, number of incoming requests to function per second (QPS) or requests
completed per second (RPS)), the system can automatically make decisions on whether to
deploy more or fewer functions in order to meet the request demands.

Billing Model refers to the payment models that Commercial Platforms use to charge
consumers for the services they provide, based on measurements taken from the consumers’
utilization of the services (e.g., number of function requests).

Monitoring Tools are used to retrieve information about the system status to assess its
performance and monitor used and available resources. Monitoring tools usually provide
graphical interfaces, i.e., dashboards to visualize these differences over time.

Table 1 contains the FaaS platforms and frameworks considered most relevant in our
research and their respective classification according to the taxonomy presented.

13 https://kubernetes.io/
14 https://aws.amazon.com/sqs/

5

P
la
tf
o
rm

C
o
m
p
u
ti
n
g

E
n
v
ir
o
n
m
en

t
D
ev
el
o
p
m
en

t
D
ep

lo
y
m
en

t
R
u
n
ti
m
e

P
ro
g
ra
m
m
in
g

L
a
n
g
u
a
g
e

F
u
n
ct
io
n

T
ri
g
g
er

P
a
ck
a
g
e

S
iz
e

L
im

it

D
ep

lo
y
m
en

t
M
et
h
o
d
s

D
ep

lo
y
m
en

t
T
o
o
ls

M
es
sa
g
in
g

S
er
v
ic
e

F
u
n
ct
io
n

M
em

o
ry

A
ll
o
ca
ti
o
n

C
P
U

In
v
o
ca
ti
o
n

S
ty
le

C
o
n
cu

rr
en

cy
A
u
to

S
ca
li
n
g

M
et
ri
c

B
il
li
n
g

M
o
d
el

M
o
n
it
o
ri
n
g

T
o
o
ls

A
W

S
L
a
m
b
d
a

C
o
m
m
er
ci
a
l

J
av
a
,
G
o
,

P
ow

er
S
h
el
l,

N
o
d
e.
js
,

C
#
,
P
y
th
o
n
,

R
u
b
y,
C
u
st
o
m

H
T
T
P
,

S
ch
ed

u
le
,

E
v
en

t,
A
W

S
se
rv
ic
es

5
0
M
B

o
r

2
5
0
M
B

S
o
u
rc
e
C
o
d
e,

D
o
ck
er

C
o
n
ta
in
er

C
L
I,

C
o
n
so
le
,

A
P
I

S
D
K

A
m
a
zo
n

S
Q
S

1
0
,2
4
0

M
B

P
ro
p
o
rt
io
n
a
l

to
M
em

o
ry

S
y
n
ch
ro
n
o
u
s,

A
sy
n
ch
ro
n
o
u
s

3
0
0
0

Q
P
S
,

cu
st
o
m

m
et
ri
cs

#
re
q
u
es
ts
,

ex
ec
u
ti
o
n

ti
m
e

a
ll
o
ca
te
d

m
em

o
ry

A
m
a
zo
n

C
lo
u
d
W
a
tc
h

G
o
o
g
le

C
lo
u
d

F
u
n
ct
io
n
s

C
o
m
m
er
ci
a
l

N
o
d
e.
js
,

P
y
th
o
n
,

G
o
,
J
av
a
,

.N
E
T

C
o
re
,

R
u
b
y,

P
H
P

H
T
T
P
,

S
ch
ed

u
le
,

E
v
en

t,
G
o
o
g
le

C
lo
u
d

se
rv
ic
es

1
0
0
M
B

o
r

5
0
0
M
B

S
o
u
rc
e
C
o
d
e,

D
o
ck
er

C
o
n
ta
in
er
,

T
er
ra
fo
rm

,
E
x
te
rn
a
l
S
er
v
ic
es

C
L
I,

C
o
n
so
le
,

A
P
I

S
D
K

C
lo
u
d

T
a
sk
s,

P
u
b
/
S
u
b

8
1
9
2

M
B

P
ro
p
o
rt
io
n
a
l

to
M
em

o
ry

S
y
n
ch
ro
n
o
u
s,

A
sy
n
ch
ro
n
o
u
s

3
0
0
0

Q
P
S

#
re
q
u
es
ts
,

ex
ec
u
ti
o
n

ti
m
e

a
ll
o
ca
te
d

m
em

o
ry
,

id
le

ti
m
e

C
lo
u
d

M
o
n
it
o
ri
n
g

A
zu

re
F
u
n
ct
io
n
s

C
o
m
m
er
ci
a
l

C
#
,
F
#
,

J
av
a
S
cr
ip
t,

J
av
a
,
P
ow

er
S
h
el
l,

P
y
th
o
n
,

T
y
p
eS

cr
ip
t,

C
u
st
o
m

H
T
T
P
,

S
ch
ed

u
le
,

E
v
en

t,
A
zu

re
se
rv
ic
es

1
0
0
M
B

S
o
u
rc
e
C
o
d
e,

D
o
ck
er

C
o
n
ta
in
er
,

E
x
te
rn
a
l

S
er
v
ic
es

C
L
I,

C
o
n
so
le
,

A
P
I

S
D
K
,

V
S
C
o
d
e

A
zu

re
Q
u
eu

e
1
.5

G
B

P
ro
p
o
rt
io
n
a
l

to
M
em

o
ry

S
y
n
ch
ro
n
o
u
s,

A
sy
n
ch
ro
n
o
u
s

5
0
0

Q
P
S

#
re
q
u
es
ts
,

ex
ec
u
ti
o
n

ti
m
e

co
n
su
m
ed

m
em

o
ry

A
zu

re
M
o
n
it
o
r

IB
M

C
lo
u
d

F
u
n
ct
io
n
s

C
o
m
m
er
ci
a
l

N
o
d
e.
js
,

P
y
th
o
n
,
P
H
P
,

G
o
,
R
u
b
y,

J
av
a
,

.N
E
T

C
o
re
,

C
u
st
o
m

H
T
T
P
,

S
ch
ed

u
le
,

E
v
en

t,
IB

M
C
lo
u
d

se
rv
ic
es

4
8
M
B

S
o
u
rc
e
C
o
d
e,

D
o
ck
er

C
o
n
ta
in
er

C
L
I,

C
o
n
so
le
,

A
P
I

S
D
K

IB
M

M
Q
,

IB
M

E
v
en
t

S
tr
ea
m
s

2
0
4
8

M
B

U
n
sp

ec
ifi
ed

S
y
n
ch
ro
n
o
u
s,

A
sy
n
ch
ro
n
o
u
s

1
0
0
0

Q
P
S

E
x
ec
u
ti
o
n

ti
m
e

a
ll
o
ca
te
d

m
em

o
ry

IB
M

C
lo
u
d

M
o
n
it
o
ri
n
g

A
p
a
ch
e

O
p
en

W
h
is
k

O
p
en

S
o
u
rc
e

G
o
,
J
av
a
,

J
av
a
S
cr
ip
t,

P
H
P
,
P
y
th
o
n
,

R
u
b
y,

R
u
st
,

S
w
if
t,

.N
E
T

C
o
re
,

C
u
st
o
m

H
T
T
P
,

S
ch
ed

u
le
,

E
v
en

t
4
8
M
B

S
o
u
rc
e
C
o
d
e,

D
o
ck
er

C
o
n
ta
in
er
,

E
x
te
rn
a
l

S
er
v
ic
es

C
L
I,
A
P
I

K
a
fk
a

5
1
2

M
B

U
n
sp

ec
ifi
ed

S
y
n
ch
ro
n
o
u
s,

A
sy
n
ch
ro
n
o
u
s

1
0
0

Q
P
S

F
re
e

S
ta
ts
D

K
u
b
el
es
s

O
p
en

S
o
u
rc
e

P
y
th
o
n
,
N
o
d
e.
js
,

R
u
b
y,

P
H
P
,
G
o
,
.N

E
T
,

C
u
st
o
m

H
T
T
P
,

S
ch
ed

u
le
,

E
v
en

t
1
M
B

S
o
u
rc
e
C
o
d
e,

K
u
b
er
n
et
es

C
L
I

K
a
fk
a
,

N
A
T
S

1
G
B

C
u
st
o
m

S
y
n
ch
ro
n
o
u
s,

A
sy
n
ch
ro
n
o
u
s

>
1

C
P
U

u
ti
li
za
ti
o
n
,

Q
P
S
,

cu
st
o
m

m
et
ri
cs

F
re
e

P
ro
m
et
h
eu

s

F
is
si
o
n

O
p
en

S
o
u
rc
e

N
o
d
e.
js
,
P
y
th
o
n
,

G
o
,
J
av
a
,
R
u
b
y,

P
H
P
,
.N

E
T
,

P
er
l,
B
in
a
ry

H
T
T
P
,

S
ch
ed

u
le
,

E
v
en

t
U
n
sp

ec
ifi
ed

S
o
u
rc
e
C
o
d
e,

K
u
b
er
n
et
es

C
L
I

K
a
fk
a
,

N
A
T
S
,

A
zu

re
Q
u
eu

e

1
G
B

C
u
st
o
m

S
y
n
ch
ro
n
o
u
s,

A
sy
n
ch
ro
n
o
u
s

>
1

C
P
U

u
ti
li
za
ti
o
n

F
re
e

P
ro
m
et
h
eu

s

O
p
en

F
a
a
S

O
p
en

S
o
u
rc
e

G
o
,
N
o
d
e.
js
,

P
y
th
o
n
,
J
av
a
,

R
u
b
y,

P
H
P
,

C
#
,
C
u
st
o
m

H
T
T
P
,

S
ch
ed

u
le
,

E
v
en

t
U
n
sp

ec
ifi
ed

S
o
u
rc
e
C
o
d
e,

D
o
ck
er

C
o
n
ta
in
er
,

K
u
b
er
n
et
es
,

E
x
te
rn
a
l

S
er
v
ic
es

C
L
I,

A
P
I

S
D
K

N
A
T
S
,

K
a
fk
a
,

A
W

S
S
Q
S
,

R
a
b
b
it
M
Q

C
u
st
o
m

C
u
st
o
m

S
y
n
ch
ro
n
o
u
s,

A
sy
n
ch
ro
n
o
u
s
U
n
sp

ec
ifi
ed

Q
P
S
,
R
P
S
,

C
P
U

u
ti
li
za
ti
o
n

F
re
e

P
ro
m
et
h
eu

s

T
a
b
le

1
.
F
a
a
S
P
la
tf
o
rm

s/
F
ra
m
ew

o
rk
s
C
la
ss
ifi
ca
ti
o
n

6

2.2 Edge Computing

As a result of the recent developments of edge technology in number and complexity, the
Edge Computing paradigm has been continuously studied as a way to bring the computing,
storage, and network resources closer to the edge of the network.

The distribution of computing power has been introduced before in several paradigms,
including older approaches such as Grid Computing [12], which is designed to offer public
organizations computing resources through a shared infrastructure and is still used nowadays
in scientific research with systems like the World Community Grid15. The development of
this approach as a commercial offering with the adaptation of a consumption-based business
model inspired what resulted in the Cloud Computing paradigm [12].

Edge Computing is a particular incarnation of Cloud Computing that seeks to provide
a solution for some of the challenges that Cloud Computing faces, in particular, network
bandwidth pressure, privacy, and real-time needs, by bringing Cloud Computing capabilities
closer to the source of data [13]. In more recent years, with the evolution of technologies like
the Internet of Things, the literature has looked at advances in Edge Computing such as
Fog Computing [14], Mobile Edge Computing (MEC) [15], and Cloudlets [16]. Fog Comput-
ing is a term often interchangeable with Edge Computing (albeit relying on geo-distributed
provider infrastructure), whereas MEC and Cloudlets are similar concepts as well, but more
focused on utilizing mobile devices as edge computing nodes [17].

In this section, we present a taxonomy to classify Edge Computing models (Figure 2).
Since this is a very broad and recent computing paradigm, there are still alternative clas-
sifications in the current literature. Cao et al. [13] provide a broad overview of the layered
architecture and other aspects and research topics in Edge Computing, Özyar et al. [18]
present a comparison of Edge orchestration frameworks, and Hong et al. [19] classify re-
source management architectures and algorithms in Fog and Edge Computing. Next, we
define the main design choices, architectural properties, and characteristics that enable us
to address and distinguish these models.

Architecture: This characteristic relates to how the coordination between the nodes
is managed and how they are structured. This is distinct from where the computation
effectively takes place, which in Edge Computing, as the term already indicates, is inherently
distributed. The type of architecture can be Centralized or Decentralized.

Centralized models have a controller component or a small set of nodes in a central
location dedicated to managing the computational and storage resources throughout the
edge nodes (e.g., PiCasso [20]). This type of architecture has fewer scaling capabilities since
the provisioning and resource scheduling tasks all depend to some degree on the same set
of nodes.

Decentralized models can be divided into two sub-types: Hierarchical and P2P. Hierar-
chical models distribute the responsibilities amongst different tiers that can be composed
of edge devices, nodes, routers, servers, or data centers. This is usually the model used in
Fog Computing paradigms as it allows the offloading of tasks to a different tier, with the
trade-off of communication delays (e.g., Cloudlets [21]). P2P models (e.g., VFuse [7]) are a
widespread composition of decentralized edge nodes with nearly symmetrical responsibilities
of coordinating admission, provisioning, and scheduling decisions with each other.

15 https://www.worldcommunitygrid.org/

7

Fig. 2. Edge Computing Taxonomy

Computing Environment: This characteristic distinguishes the nature of the execu-
tion environment where the computation takes place. The environment is not dependent
on the node’s physical location, but rather on the hardware and software upon which it
operates. The Computing Environment type can be a Virtual Machine, Container, Process,
or Browser.

Virtual Machine (VM) instances allow hardware virtualization to any guest OS by pro-
viding full isolation inside a node. This can be useful for multi-tenant environments since a
single node can contain several instances.

Containers provide a virtualized environment to run applications in a manner that iso-
lates CPU, memory, and network resources at the OS level from other applications. This
ability to deploy, terminate, replicate, and migrate a virtual environment anywhere, along
with the small size of Container images, compared to VM instances, make Containers a
faster and highly scalable solution for Edge Computing (e.g., Caravela [22]).

Processes are a common Computing Environment in systems intended to utilize large
amounts of volunteered computing resources (e.g., nuBOINC [23]) since the computational
workload of these projects can be divided into tasks, and each volunteer can execute one
or more of these tasks as an application process on their personal computing device. These
processes are usually run in the background and with low priority to avoid hindering the
user’s normal performance.

Browsers provide an environment for Web applications to run isolated and an easily
accessible way to share resources. This is the more fine-grained environment solution, that

8

can become highly scalable on demand if every Edge Computing node has a Browser installed
and simply deploys a worker thread on it (e.g., Pando [24]). Contrary to VM instances or
Container environments, Browser based Edge Computing instantiations are useful in systems
where low latency is a requirement due to their ability to be executed on the Edge node
closer to the source of data and user input. WebAssembly (wasm) binaries were initially
built for Browsers but have since been explored, using their modules of WebAssembly code
compiled in Browsers, to host runtimes with quick start-up time and secure isolation (e.g.,
Bacalhau [25]).

Resource Ownership: This characteristic describes who owns the physical devices that
power the Edge Computing system. Two types can be considered: Volunteer Devices and
Infrastructure Owner.

Volunteer Devices are the interconnection of Edge Computing with Volunteer Comput-
ing, the system leverages the resources and computational power of personally owned devices
from the general public (e.g., Folding@home [26], Volunteer MapReduce [27], guifi.net [28]).
The users may be incentivized to join, e.g., by a reputation or virtual currency system (e.g.,
Filecoin16). In Personal Volunteer Computing the focus is on the personal needs of compu-
tational power and resources by programmers for their personal or community applications.

Infrastructure Owner is the single or collective entity that owns the system’s physical
infrastructure. The owner can be the Infrastructure Service Provider if the system is com-
posed of a Cloud Computing infrastructure, such as AWS data centers, or a mobile device
infrastructure. There can also be on-premises owners (e.g., Skippy [29]) in the circumstance
that a Service Provider supplied computational devices for personal or communal use, this
can describe the resource ownership of several Grid infrastructures.

This classification is parallel to having Private, Public, or Community ownership. There
are also Edge Computing models where the Resource Ownership is a combination of the
two types described. This is the case where a big part of the infrastructure is owned by an
individual or collective entity (e.g. ISP), usually the higher tiers in the architecture that
are responsible for the heavier computational power and resource management, while other
users with their edge devices volunteer computational power and other resources to the in-
frastructure.

Resource Scheduling: This characteristic comprises the processes of provisioning and
allocating resources. The scheduling mechanism decides on which resource to execute the
computation request, by managing the need to allocate more or fewer resources accord-
ing to the user application requirements. Resource Scheduling in Edge Computing mod-
els has implicit challenges as it has to consider the latencies imposed by the distance of
computation nodes to the users, the overhead of starting the respective virtualized environ-
ment and preparing it to execute the requested computations, and the communication and
coordination delays from having distributed computation locations [6]. We further divide
Resource Scheduling into several sub-types: Scheduling Policies, Decision-taking, Scaling,
Application-level Placement, and Execution Migration.

Scheduling Policies define the global approach used to decide where an execution is
placed. In Edge Computing systems the execution placement is usually correlated to the
prioritization of system goals designed to improve Quality-of-Service and user experience,
e.g. by reducing communication delays and response time. We classify these policies into the

16 https://filecoin.io/

9

following types: Load-aware and Network-aware. Load-aware refers to policies whose goal
is to leverage the available resources of nodes (e.g. CPU, RAM, disk utilization), either by
maximizing the resource utilization of specific nodes, or evenly distributing the load across
all nodes. Network-aware encompasses policies that attempt to reduce latencies and serve
network-intensive applications without compromising the bandwidth pressure of the system
or introducing communication delays.

Decision-taking describes how the scheduling mechanism decides to act upon the re-
sources, it can be Reactive or Predictive. Reactive methods base their decisions on an eval-
uation of the system’s current state, which activates the subsequent decision that there is
a need to utilize more or fewer resources. Predictive methods consider previously obtained
knowledge to make future decisions, providing a mechanism to anticipate the system’s re-
source needs and allocate them in a timely manner. These are usually based on machine
learning techniques and tend to provide better solutions and performances than Reactive
methods [18].

Scaling the system is fundamental to maximize resource utilization and improve user
experience due to the heterogeneous and resource-constrained nature of edge nodes that
compose Edge Computing systems. This can be done through Horizontal Scaling or Vertical
Scaling. Horizontal Scaling applies to the deployment or termination of resources, such as
deploying more application containers or terminating VM instances according to the appli-
cation’s workload. It can be performed on a single node, e.g. deploying more containers on
the same node, or across several edge nodes of a network. Vertical Scaling is the adaptation
of resource specifications of the existing infrastructure, e.g. improving or replacing the CPU
and memory capabilities of the application container.

Application-level Placement defines on which node of the network to place the compo-
nents or microservices of an application in execution. Some systems have to satisfy user
requirements to reduce communication delays between microservices, or lower request la-
tencies and network bandwidth pressure. There are two approaches for selecting locations to
place the executions: Spread or Co-location. Spread approach places the application compo-
nents physically distanced from each other, which becomes less prone to creating bandwidth
bottlenecks in a region. Co-location is used when the user intends to have all the components
close to each other, usually in applications that require low latency communication between
components (e.g., Caravela [22] allows both).

Execution Migration can happen after an execution is placed on an edge node and is
running a service application, it is also possible to relocate it to another edge node. This
may be helpful if, for instance, the node has suffered a failure or there is a workload imbal-
ance within the infrastructure nodes [30]. Execution migration can be of two types: Cold or
Warm. Cold migration terminates the execution instance that was running in a node and
uses its base image to launch it on a different node. Warm migration requires the service to
be running while it is being transferred. The image is started on a new node, and the appli-
cation state is saved and transferred to that node when it is ready. This type of migration
proves more advantageous for large-size images, especially if the image was already cached
in the destination node since only the execution environment needs to be deployed, and it
minimizes downtime possibly at the cost of temporarily lower throughput.

10

Work Architecture
Computing
Environment

Resource
Ownership

Resource Scheduling Target Application

Pando [24] Centralized Browser
Volunteer
Devices

Load-aware,
Reactive,

Horizontal/Vertical Scaling

Computational
Workflows

VFuse [7] P2P Browser
Volunteer
Devices

Network-aware,
Reactive,

Horizontal Scaling

Computational
Workflows

SETI@home [31] Centralized Process
Volunteer
Devices

Horizontal Scaling17 Cycle-Sharing

Folding@home [26] Centralized Process
Volunteer
Devices

Load-aware,
Horizontal Scaling17

Cycle-Sharing

Cloudlets [21] Hierarchical
VM,

Process
Infrastructure Owner,
Volunteer Devices

Load-aware,
Reactive,

Horizontal Scaling,
Warm Migration

Computation
Offloading

PiCasso [20] Centralized Container
Infrastructure

Owner

Load-aware,
Reactive,

Horizontal Scaling,
Co-location/Spread,
Warm Migration

General
Application

Caravela [22] P2P Container
Volunteer
Devices

Load-aware,
Network-aware,

Co-location/Spread

General
Application

Cicconetti
et al. [32]

Hierarchical
VM,

Container
Infrastructure Owner,
Volunteer Devices

Network-aware,
Predictive,

Horizontal Scaling

Computation
Offloading

Skippy [29] Centralized Container
Infrastructure Owner

(On-premises)

Load-aware,
Network-aware,

Reactive,
Horizontal Scaling,
Co-location/Spread

General
Application

Tong et al. [33] Hierarchical VM
Infrastructure Owner,
Volunteer Devices

Load-aware,
Predictive,
Spread

Computation
Offloading

Özyar et al. [18] P2P Container Volunteer Devices
Load-aware,
Predictive,

Vertical Scaling

General
Application

nuBOINC [23] Centralized Process Volunteer Devices Horizontal Scaling17 Cycle-Sharing

Bacalhau [25] P2P Container Volunteer Devices Horizontal Scaling17 Cycle-Sharing

Gridcoin [34] P2P Process Volunteer Devices Horizontal Scaling17 Cycle-Sharing

Table 2. Edge Computing Works Classification

17 Through volunteers joining/leaving the network.

11

Target Application: Edge Computing models share some relevant advantages that
most of its applications can benefit from, e.g. lower latencies due to proximity to the end
user, lower network pressure at the edge, and the ability to answer to real-time needs.
Nonetheless, some models have been purposefully designed to attend to specific applications.
These are the four main categories we identified: Cycle-Sharing, Computational Workflows,
Computation Offloading, and General Application.

Cycle-Sharing applications are characterized by Edge Computing models whose purpose
is to take advantage of volunteered computing resources to share the computational cy-
cles needed to execute the computational workload. For example, SETI@home [31] sends
digitalized data from radio signals through the Internet to be analyzed by home computers.

Computational Workflows applications in Edge Computing environments are built to
support large amounts of data, by using specific computing paradigms such as MapReduce or
Fork/Join, used by VFuse [7], or Streaming Map, used by Pando [24], in order to orchestrate
distributed workflows and resources.

Computation Offloading applications are useful since the network edge environments,
sometimes compromised by the resource-constraint nature of its edge devices, e.g. mobile
phones, can take advantage of this type of model to easily forward threads, components,
or applications that are too computationally heavy to be run on an edge device, to other
constituents of the distributed cloud model. Cloudlets [21] focus on offering a transparent
solution to offload mobile application components closer to the end user. Cicconetti et al.
[32] use edge routers to forward lambda functions to devices with sufficient computation
capabilities.

General Application is a type reserved for models that could not fit any of the previous
categories, since they are not designed to handle the execution of any particular types of
orchestration workflows, data workloads, or applications.

Table 2 presents the classification of Edge Computing works analyzed during our research
process using the previously explained taxonomy.

2.3 P2P Content, Storage and Distribution

As computational progress evolves rapidly on a global scale with the emergence of increas-
ingly more powerful processors and more data being stored and shared through the Internet,
cloud storages have been more sought after to handle these data management functions.
However, the typical characteristics of centralized management and single-entity infrastruc-
ture providers which are linked to cloud storages may pose several privacy and security
concerns and threaten data accessibility and availability [35].

Peer-to-Peer Data Networks [36] aim to overcome these issues by creating overlay net-
works where peers can autonomously share their resources with each other. While other
data-sharing and content distribution approaches like Content Delivery Networks [37], that
addressed the lack of dynamic management of Web content, focus on fulfilling the customer’s
(often a company) requirements for performance and Quality-of-Service, Peer-to-Peer Data
Networks’ main goal is to efficiently locate and transfer files across peers (often final users)
[38].

Similar approaches for data distribution surfaced alongside P2P Data Networks, in-
cluding Content Delivery Networks (CDNs) [37] that addressed the lack of dynamic
management of Web content. CDN infrastructures contain servers for content caching and

12

routers that join other network elements in distributing the content requested by a client
[39]. A CDN provider focuses on fulfilling the customer’s (often a company) requirements
for performance and Quality-of-Service whereas the goal of P2P Data Networks is mainly
to efficiently locate and transfer files across peers (often final users) [38].

We were able to find insightful taxonomy classifications on these topics in the existing
literature. Pathan et al. [38] provide a survey on commercial and academic CDNs and then
classify them based on organization approach, content distribution, request routing, and
performance. More recently, Anjum et al. [40] have focused on peer-assisted CDNs as an
alternative to traditional CDNs, which take advantage of the distribution capabilities of
peers instead of relying solely on the CDN servers, and compare the techniques employed
by commercial solutions to solve several challenges these types of CDNs face.

Regarding P2P Data Networks, Ashraf et al. [41] provide a critical analysis of unstruc-
tured networks based on several qualitative measures, Lua et al. [42] accomplish a compar-
ison of structured and unstructured network schemes and categorize P2P networks in both,
whilst Daniel et al. [35] in a more recent study, present a comparative overview of what
they define as the next generation of P2P networks. In Figure 3, we present a taxonomy
to classify the architecture, storage handling, availability, and incentive approaches of P2P
Data Networks that incorporates a broader class of these networks.

Fig. 3. Peer-to-Peer Data Networks Taxonomy

Network Architecture: This characteristic defines how the peer nodes are coordinated
over the network. Data networks create an overlay network, which is a logical network on
top of the physical network, to communicate with peers, and can be organized in different
ways, which we will see later on that is highly correlated to how the content is discovered

13

and shared among nodes. We divide the possible architectures into three types: Structured,
Unstructured, or Hybrid.

Structured networks have a well-defined overlay network, usually, a DHT where it is
deterministically placed the information regarding the location of the data stored, at the
node whose identifier corresponds to the content’s key value [42]. Each node keeps a routing
table with the node identifiers and IP addresses of its neighboring nodes. This type of
architecture is highly efficient for locating specific content but could prove to be more difficult
for node membership and access control management.

Unstructured networks (e.g., Gnutella [43]) have to rely on peer discovery and direct
communication mechanisms since no defined network topology is connecting them. Nodes use
communication protocols that allow them to disperse their addresses and maintain a record
of their neighboring peers and their content, occasionally using a ranking or reputation
system. In this type of network architecture, nodes can easily enter and exit the network
without causing disruptions to the structure.

Hybrid networks are only structured to some extent, combining characteristics of both
of the previous types. These networks (e.g. BitTorrent [44]) can use a structured overlay
network (e.g. a DHT), to perform solely the peer discovery and then use a different un-
structured network for the data exchange between peers, which can be influenced by peer
rankings, allowing content owners to achieve greater performance in content distribution.

Storage Handling: This characteristic encompasses the components of P2P Data
Networks related to how the content is handled. We organize them into: Data Structure,
Placement, and Look-up Method.

Data Structure defines the structure in which data can be stored locally and/or on the
network. We classify it as the following: File-based or Chunks. File-based is more frequent
in networks mainly interested in content sharing since their goal is to hold all the pieces
that compose a file. Although in these cases splitting larger files into pieces is useful when
transferring data, this is not always implicit (e.g. Arweave [45] uses on-chain storage based
on transactions). Chunks are file fragments or blocks that can be stored on different nodes
regardless of whether a node possesses the chunks composing an entire file (e.g., Kadem-
lia [46]).

Placement defines the approaches to deciding where the data is stored. We classify
them using the following categories: Content-Addressed and Random. Content-Addressed
describes the storage placement approach usually used in structured networks where each
chunk of the data can be individually addressed by its content (via hashing) and this deter-
mines its location (e.g. Swarm [47] uses a hash function of the content to decide the address).
Random is an approach used when the storing location is decided arbitrarily by distributing
the chunks to the available nodes. Some networks (e.g. IPFS [8]) build a Merkle DAG linking
the data chunks, that are Content-Addressed, but their storing location is arbitrary.

Look-up Method defines the different ways through which data can be discovered in a
network, usually, these are specific requests made to neighbors for a certain file or chunk.
Networks are able to employ one or more of these methods depending on their storage
structure and network overlay. We classify these methods as: Centralized, DHT-based, and
Vicinity-based. Centralized look-up is used when the network possesses a central component
that is responsible for directing the data request, typically employed in an unstructured
network (e.g, Napster [48]). DHT-based as the term indicates uses a DHT to send the re-
quest to the desired peers in the network. This is the method employed in structured overlay

14

networks and can also be found in some hybrid architectures. Vicinity-based uses the typi-
cal gossip, flood, or random-walk dissemination protocols to acquire information about the
content possessed by neighbors in their vicinity. These are employed mostly by unstructured
networks since there is no structured connection to peers that would allow them to obtain
some prior knowledge of the content of neighboring nodes. Although these protocols are
very efficient to locate popular content in the network, nodes can easily become overloaded
if flooded with a large number of content requests.

Content Availability: This characteristic is one of the important aspects associated
with information security, alongside confidentiality and integrity. These other aspects are
usually achieved in P2P Data Networks by means of encryption and hash functions, re-
spectively. The content availability in these systems can be challenged by factors such as
failures in nodes where content is stored, and the churn effect caused by the arrival and de-
parture of nodes from the network [49]. P2P networks are able to employ multiple methods
to guarantee availability. We classify these methods into: Replication and Erasure Codes.

Replication can help promote content availability by multiplying the same content in
different nodes to ensure that the system can provide the requested data even under the
circumstance of node failures in the network. P2P systems can employ more than one of
these three types of replication: Proactive, User-driven, or Cache-based. Proactive replication
is the more rigorous solution where data is replicated in advance in arbitrary nodes. This
can also mean that nodes need to be coordinated in case of a peer departure, to ensure
that the data it possesses is promptly copied to another peer. User-driven replication is the
case where the replication of data implies another node’s voluntary request for the content.
Nodes can then prevent the deletion of this data and therefore promote its replication (e.g.,
Swarm [47]). Cache-based is the type where content is cached at nodes without a specific
request but rather as a result of the natural distribution and content sharing along the
network.

Erasure Codes are a method to protect data by splitting a file into fragments that are
then expanded to introduce redundancy as a way to allow data recovery, which may cause
some overhead during the storing process of the distributed files (e.g., in Storj [50]). Erasure
coding offers protection against a single point of failure with the distribution of fragments
and ensures sufficient information redundancy to recover the data. This allows the retrieval
of data in case of node failures and thus contributes to improving content availability.

Incentive: This characteristic has become very popular especially in volunteer P2P Data
Networks as a way to promote the participation of nodes and also consequently increase
availability. Incentive mechanisms aim to provide a reward as compensation for actions
that benefit the system and penalize actions that negatively influence it. In some P2P
networks, the compensation can be a monetary incentive, e.g. cryptocurrencies. We classify
the incentives according to the actions they reward: Storage and Exchange.

Storage can be rewarded to nodes that perform it for specific predetermined time peri-
ods, receiving compensations after the completion of those time intervals, or for providing
continuous storage capabilities over time (e.g., in Storj [50]).

Exchange is rewarded to nodes actively participating in the retrieval and trading of
content by incentivizing them to answer data requests or possibly punishing them for re-
fusing. Some P2P networks also evaluate this exchange in terms of traded data (e.g., in
BitTorrent [44]) by comparing the overall data a node offered and the data it received.

15

Table 3 contains the P2P Data Networks included in our research and their respective
classification using the taxonomy presented.

Work
Network

Architecture
Storage Handling Content

Availability
Incentive

Data
Structure

Placement
Look-up
Method

Napster [48] Unstructured File-based Random Centralized User-driven None

Gnutella [43] Unstructured File-based Random Vicinity-based User-driven None

Freenet [51] Unstructured File-based Content-addressed DHT-based Cache-only None

Chord [52] Structured Chunks Content-addressed DHT-based Proactive None

CAN [53] Structured Chunks Content-addressed DHT-based Proactive None

Tapestry [54] Structured Chunks Content-addressed DHT-based Proactive None

Kademlia [46] Structured Chunks Content-addressed DHT-based Proactive None

Viceroy [55] Structured Chunks Content-addressed DHT-based Proactive None

Pastry [56] Structured File-based Content-addressed DHT-based Proactive None

FastTrack/KaZaA [57] Unstructured File-based Random Vicinity-based User-driven None

BitTorrent [44] Hybrid File-based Random
Centralized,
DHT-based18 User-driven Exchange

IPFS [8] Hybrid Chunks Random
DHT-based,
Vicinity-based

User-driven,
Cache-based

Exchange,
Storage19

Swarm [47] Structured Chunks Content-addressed DHT-based

Proactive,
User-driven,
Cache-based,
Erasure Codes

Exchange,
Storage

Hypercore
Protocol [58]

Hybrid File-based Random DHT-based User-driven None

SAFE [59] Structured Chunks Content-addressed DHT-based
Proactive,

Cache-based
Exchange

Storj [50] Unstructured Chunks Random Centralized
Erasure
Codes

Exchange,
Storage

Arweave [45] Unstructured File-based Random Vicinity-based User-driven
Exchange,
Storage

Table 3. P2P Data Networks Classification

2.4 Relevant Related Systems

IPFS [8] is a highly distributed file system that combines DHTs, block exchanges, version
control, and self-certified filesystems ideas to build a decentralized P2P Data Network. IPFS

18 Can rely on a central tracker or a DHT.
19 Uses Filecoin to reward storage.

16

nodes are identified by a NodeId, the hash of their public key, and can be discovered using
the Kademlia-based DHT or by a direct encounter with another peer. When connecting,
peers exchange public keys and verify the respective hash. The Kademlia-based DHT also
serves as a routing system to not only discover peers’ network addresses but also locate
content that is being stored locally by specific nodes. The DHT contains NodeId references
to peers who store data objects locally.

The objects stored in IPFS are split into chunks that are content-addressed and used to
build a Merkle DAG with links between objects. An object can then be retrieved using the
root of its Merkle DAG. The checksum used to identify content and links allows the detection
of tampering and helps prevent data duplication since the same content will produce the
same checksum. Since the content-addressed data in a Merkle DAG is immutable, IPFS
incorporates the InterPlanetary Name System (IPNS) to allow mutable naming, i.e., linking
a name with a content identifier of a file. Data distribution in IPFS is achieved using the
BitSwap protocol in which peers maintain a list of content identifiers of chunks they want
to retrieve and another list of the ones they are willing to offer in exchange. IPFS allows
any network transport protocol to be used for communication between nodes. Support for
publish-subscribe based notifications has also been developed [60].

These features allow IPFS to be explored as a highly distributed file system, where it is
possible to upload, exchange and download FaaS deployment images and, at the same time,
its DHT-based content and peer discovery are suitable for a distributed and decentralized
system to locate available resource offers in edge nodes of the network.

Caravela [22] is a completely decentralized Edge Cloud system that utilizes volunteered
user resources where users can deploy their applications using Docker containers. It has a
distributed and decentralized architecture, based on a ring structure of nodes built upon a
Chord P2P overlay. Nodes are uniquely identified by a key that is used in the resource dis-
covery mechanism to find a node with the necessary amount of resources available to deploy
a container. The Chord ring is mapped in regions according to different combinations of re-
sources available (CPU class, amount, and RAM) and this information is encoded in the node
IDs. Peer nodes in Caravela can act as suppliers, publishing offers to supply their resources,
buyers, searching for resource offers in order to deploy a container, or traders, registering
and mediating the offers made within their resource region. The Chord lookup process is
used to publish resource offers and in the resource discovery process. For the scheduling
process, there is a search for a favorable resource offer(s), according to the scheduling policy
selected, and the buyer node requests a deployment indicating the container configurations
to be run using the resources previously discovered.

The leveraging of volunteer resources is a feature worth exploring in a decentralized edge
cloud system, that along with the content distribution and lookup protocols of P2P overlay
networks, such as Chord and IPFS, can provide an efficient mechanism to distribute the
available offers and discover the necessary resources to deploy a service. Although the goal
in Caravela is to deploy long-running container applications, some of these mechanisms can
be adapted in terms of the resources and coordination needed for FaaS deployments.

Apache OpenWhisk20 is an open source serverless framework that provides the appli-
cation function execution capabilities without having to manage the servers and underlying
infrastructure. In the OpenWhisk programming model, serverless functions that execute

20 https://openwhisk.apache.org/

17

code are called Actions and can be written in any programming language. Their execution
can be driven by events, called Triggers, coming from a variety of sources, or manually, using
the designated CLI or REST API. Rules are employed to associate Triggers with Actions.

The OpenWhisk architecture, as pictured in Figure 4, relies on several technologies
to compose its cloud service platform, in particular, Nginx21 serves as the entry to the
system through an HTTP and reverse proxy server; Kafka22 provides the distributed event
streaming services; Docker23 allows to deploy actions in an isolated and safe environment
using containers; CouchDB24 stores the results of invocations in the database.

After a request enters the system through the reverse proxy it is forwarded to the Con-
troller component, responsible for the implementation of the REST API, which decides the
next path to take based on the user’s request. The Controller acts as an orchestrator and
load balancer to the system, by interacting with the Invokers to execute actions. The Invok-
ers create a Docker container for each invocation, where they inject the function code and
respective parameters to run it and then retrieve the results.

Nevertheless, OpenWhisk still suffers from some performance challenges when utilized
for low latency applications, due to cold starting containers, and on typically resource-
constrained devices like the ones used in edge computing environments.

Fig. 4. Apache OpenWhisk architecture. Source:https://openwhisk.apache.org/

WOW [61] is a prototype for a WebAssembly runtime environment, as a lightweight
alternative to traditional container runtimes, designed mainly for serverless computing at
the edge. It introduces the components to support the WebAssembly runtime, similar to
Docker’s container runtime support, using the Apache OpenWhisk framework but focusing
more on the execution and performance aspects of the system. The developers can use any
programming language to write the function code which is then compiled to WebAssembly

21 https://www.nginx.com/
22 https://kafka.apache.org/
23 https://www.docker.com/
24 https://couchdb.apache.org/

18

and deployed using an adapted OpenWhisk interface instead of the usual Docker container
deployment. The components introduced are an Executor that takes the wasm runtime
binary and provides the endpoints necessary for its execution; an Invoker that receives a
request, forwards the execution instructions to the Executor and returns the results to the
user; and the wasm module containing the function code, similar to a container image. The
OpenWhisk interface was modified so that its Invoker passes the request to the respective
endpoint of the wasm Executor. The experimental results of the prototype present it as a
promising approach to FaaS in edge computing environments, mainly due to the improve-
ments it introduces on cold start performances and memory usage.

System Content Storage/Distribution Edge Environment FaaS Execution

IPFS Yes Yes No
Caravela Yes Yes No

Apache OpenWhisk No No Yes
WOW No Yes Yes

Table 4. Relevant Related Systems Comparison

The previous systems address some of the aspects that we are going to tackle in our
solution but, as presented in Table 4, none achieves the implementation of all aspects.
IPFS focuses on content storage and distribution, which is highly important in P2P edge
environments but involves no computation execution by itself.Caravela uses a P2P network
with similar capabilities as IPFS and introduces the execution of long-running container
applications, it is not designed for FaaS deployments. Apache OpenWhisk is a framework
for FaaS deployments, but it was not intentionally designed to maintain performance in an
edge environment and does not feature content distribution. WOW focuses solely on the
aspects of FaaS execution in edge computing nodes, abstracted from its integration in a
distributed and decentralized network architecture.

3 Architecture

In this Section we present the proposal architecture of our solution. Section 3.1 details how
the ID space is organized in our distributed architecture. Section 3.2 presents our protocols
for resource discovery and resource scheduling. Section 3.3 describes the software present in
each node. Finally, Section 3.4 describes the relevant data structures.

3.1 Distributed Architecture

The distributed architecture of our solution consists logically in a ring of nodes that supports
a DHT. Each node represents an edge device that is uniquely identified by its ID. The node’s
available resources are encoded in its ID, since we use the information regarding a node’s
resources to derive the key provided to IPFS, in order to find the node that can supply those
resources. Therefore, the ID space is divided into several regions that represent different
levels of resource availability, to allow a simplified and scattered range query search. Given
that in FaaS, CPU power is usually allocated proportionally to the memory allocated, we
can have a unidimensional query in terms of memory amount, ranging from 128 MB to
10,240 MB. Each node can be responsible for various “virtual nodes” representing several

19

partitions of resources available, as pictured in Figure 5. Similarly to Caravela [22], there
are larger ranges for lower memory values, since due to the characteristics of edge devices
we expect there to be more users volunteering small amounts of resources than larger ones.

Fig. 5. Ring of nodes and resource distribution

3.2 Resource Protocols

Next, we describe the resource protocols used to offer and discover resources, as well as
schedule deployments using the resources found.

3.2.1 Resource Discovery With all nodes having access to IPFS, there is the possibility
to realize a distributed and decentralized resource discovery process. Nodes with available
resources can publish these offers in the DHT. An offer is composed of the IP address of the
node offering resources, the information regarding the amount of resources (e.g. memory)
they have available, the amount already in use, and the offer’s ID.

Algorithm 1 Publish Offer algorithm

1: function PublishOffer(resAvailable, resUsed, destRegion):

2: newOffer ← Offer(resAvailable, resUsed, destRegion)
3: destID ← SelectID(destRegion)
4: destIP ← IPFSLookup(destID)
5: if CreateOffer(destIP, newOffer) = true then
6: offersTable.add(destIP, newOffer)
7: return
8: end if
9: return Error(”Publish Offer Failed”)

20

As described in Algorithm 1, to publish an offer, a node will build a new offer object
containing this information. Then it will obtain an ID/key within the range of the resources
region it is offering. In order to scatter the resources in a decentralized way and promote
load balancing, a random key is selected from an evenly distributed group of keys in the
region. Using the selected ID, the node can use IPFS’s lookup method to retrieve the IP
address of the node responsible for that ID and create the offer. The destination node will
register the offer and add it to its records of offers received, along with the IP of the offering
node, to allow direct communication between both nodes. This method mitigates the churn
in the overlay and allows nodes to publish different slices of resources in different regions,
without causing collisions of IDs.

Once resource offers have been published in the system, it is possible to discover these
resources using Algorithm 2. It takes as argument the information regarding the amount
of memory needed to run the requested function and, as in the publish offer algorithm,
it will obtain a random ID/key from a group in the range of resources desired. With the
ID/key, it will use IPFS’s lookup method to get the destination node’s IP address and
retrieve the offers that the node has registered. If there are no offers, it will retry with a
different generated ID/key. When resources are abundant, the random discovery process
is effective and has low delay and overhead. However, when resources are scarce this can
generate a lot of retries until offers are found. To tackle this, we have a backup mechanism
inspired by Caravela’s [22] use of Super Traders to manage resource trades, in which nodes
with available offers will periodically choose to notify a scheduling node of their available
resources in the background. When the scheduling node is trying a random discovery process
and it reaches a maximum number of retries, it will resort to this list to guarantee resources.

3.2.2 Resource Scheduling A user can submit a request to deploy a WebAssembly
function through a client node in our middleware. Only a fraction of nodes need to be able
to bootstrap a scheduling request (i.e., using OpenWhisk API), and thus are registered in a
designated index of the IPNS. This way, the client nodes can direct the scheduling requests
to them.

Algorithm 2 Resource Discovery algorithm

1: function ResourceDiscovery(resAmount):

2: while retries < maxTries do
3: destID ← SelectID(resAmount)
4: destIP ← IPFSLookup(destID)
5: resDiscovered ← FindOffers(destIP)
6: if resDiscovered = ∅ then
7: retries ← retries + 1
8: else
9: return resDiscovered
10: end if
11: end while
12: resDiscovered ← checkBackupList()
13: return resDiscovered

21

To schedule a request, a random ID/key is selected amongst the ones registered in IPNS
since there is a minority of scheduling nodes evenly distributed across the network regions
to distribute the requests’ load. This number of scheduling nodes can be adjusted in order to
maintain system performance. The scheduling request includes the IPFS object key to the
WebAssembly module (i.e., function’s image), and the number of resources (e.g., memory)
needed to run it.

The scheduling node will run Algorithm 3 to find a suitable node for the function
deployment. It will start by running Algorithm 2 to find offers with the necessary amount
of resources or higher and will choose the lowest offer that can serve the request, to maximize
resource utilization. The function deployment is done through a simplified modification of
the OpenWhisk API that the Function Manager component of the scheduling node can
interact with. This is done to alleviate the responsibilities of the nodes as much as possible.
If successful, OpenWhisk will return the function endpoints to the client.

Algorithm 3 Scheduling algorithm

1: function Scheduling(funcModuleID, resAmount):

2: offers ← ResourceDiscovery(resAmount)
3: /*Sort offers to select minimum resources needed.25

4: offer ← offers.sort()
5: if Deploy(offer.IPAddress, funcModuleID, offer.ID) = true then
6: return ”Deployment successful.”
7: end if
8: return Error(”Deployment Failed”)

3.3 Node Software Architecture

Here we present the components that constitute the software of an edge node, as pictured
in Figure 6, and explain their purpose and interactions.

Resource Manager : component responsible for a node’s local resources and offers, re-
source discovery algorithms, and communications with Function Manager for resource schedul-
ing purposes. It publishes resource offers in IPFS and searches for resources being offered
by other nodes. Besides this, it manages the necessary resources to schedule the function
requests through the Function Manager.

Network Manager : component responsible for communication between edge nodes in the
network, acting as an overlay client to IPFS and using the network protocols supported by
it. It is used to exchange communications related to resource management, user information,
and requests.

Function Manager : component present solely in nodes with scheduling responsibilities. It
is in charge of the execution of a function request. Exposes an interface to receive scheduling
requests on behalf of other nodes and interacts with the OpenWhisk simplified interface.

25 Other policies besides best fit, e.g., worst fit will be explored to study fragmentation outcomes
(internal/external) as in memory and container allocation.

22

Fig. 6. Node Software Architecture

3.4 Data Structures

The following data structures are a part of our solution:

– Address Table: Hash table containing the key-values (nodeID, IP) of neighboring nodes
a peer discovers.

– Offer : Data structure containing: IP address of the node with the resources (memory);
resources available; resources used; offer identifier.

– OffersSent Table: Hash table containing the key-values (destinationID, List [offerID])
of nodes that have the offers the node has sent.

– OffersRecv Table: Hash table containing the key-values (resources, List [offerID,
sourceIP]) of resource offers the node has received.

4 Evaluation Methodology

Here we present the testbed, in Section 4.1, and the workloads and metrics, in Section 4.2,
that we will use during the evaluation phase of our solution.

4.1 Testbed

For the evaluation we will implement two different deployments: a small deployment in
a server or local cluster and a larger deployment using a platform (e.g., Testground26 or
similar) to deploy on a distributed infrastructure of a cloud provider.

26 https://github.com/testground/testground

23

4.2 Workloads and Metrics

We will evaluate the implementation across the following workloads that have different
resource requirements (e.g., CPU intensive, execution timespan), assuming data is: (1) stored
locally; and (2) stored in IPFS.

– REST API : Simple HTTP requests from a microservice benchmark [62] to query a
database (short execution time).

– File Hashing : Fetch a file from storage and hash its contents (data processing pipelines).
– Image Classification: Load a pre-trained model and an image from storage and perform

its classification.
– Video Transformation: Split an input video file in multiple chunks and each function

fetches and processes a chunk in parallel (CPU intensive).

The following metrics will be considered to evaluate aspects regarding (1) our resource
discovery and scheduling algorithms; and (2) the FaaS performance of our solution:

– Bandwidth consumed per node: To evaluate if bandwidth is cheap enough for the
edge nodes.

– Request Success Rate: To evaluate the efficacy of our resource algorithms.
– Deployment Efficiency: To evaluate the efficiency of our resource algorithms by mea-

suring the average number of messages (hops) and the time it takes until deployment is
scheduled.

– CPU utilization of edge nodes executing requests.
– Memory occupied by the edge nodes over time.
– Function latency, separating function execution time from complete latency.

5 Conclusion

Our work presented a proposal for a distributed architecture and resource protocols that
allows FaaS deployments at the edge. We started by introducing these computing paradigms
and their current shortcomings. Then we presented the previous research and the current
state of the art in FaaS, Edge Computing and P2P works, along with their classification
taxonomies and comparisons. Next, we presented our architecture, algorithms and data
structures. Finally, we proposed an evaluation methodology to assess our future implemen-
tation.

24

References

1. Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandel-
wal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar, et al.
Cloud programming simplified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383, 2019.

2. Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick
Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski, et al. Serverless computing:
Current trends and open problems. In Research advances in cloud computing, pages 1–20.
Springer, 2017.

3. Cisco Systems. Fog computing and the internet of things: extend the cloud to where the things
are. White paper, 2016.

4. Luciano Baresi and Danilo Filgueira Mendonça. Towards a serverless platform for edge com-
puting. In 2019 IEEE International Conference on Fog Computing (ICFC), pages 1–10. IEEE,
2019.

5. Tobias Pfandzelter and David Bermbach. tinyfaas: A lightweight faas platform for edge envi-
ronments. In 2020 IEEE International Conference on Fog Computing (ICFC), pages 17–24.
IEEE, 2020.

6. Onur Ascigil, Argyrios G Tasiopoulos, Truong Khoa Phan, Vasilis Sourlas, Ioannis Psaras, and
George Pavlou. Resource provisioning and allocation in function-as-a-service edge-clouds. IEEE
Transactions on Services Computing, 15(4):2410–2424, 2021.

7. Alessia Antelmi, Giuseppe D’Ambrosio, Andrea Petta, Luigi Serra, and Carmine Spagnuolo.
A volunteer computing architecture for computational workflows on decentralized web. IEEE
Access, 10:98993–99010, 2022.

8. Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561,
2014.

9. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H Katz, Andrew
Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Stoica, et al. Above the clouds:
A berkeley view of cloud computing. Technical report, Technical Report UCB/EECS-2009-28,
EECS Department, University of California, 2009.

10. Sunil Kumar Mohanty, Gopika Premsankar, Mario Di Francesco, et al. An evaluation of open
source serverless computing frameworks. CloudCom, 2018:115–120, 2018.

11. Jinfeng Wen, Yi Liu, Zhenpeng Chen, Junkai Chen, and Yun Ma. Characterizing commodity
serverless computing platforms. Journal of Software: Evolution and Process, page e2394, 2021.

12. Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid computing
360-degree compared. In 2008 grid computing environments workshop, pages 1–10. Ieee, 2008.

13. Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge computing
research. IEEE access, 8:85714–85728, 2020.

14. Hany F Atlam, Robert J Walters, and Gary B Wills. Fog computing and the internet of things:
A review. big data and cognitive computing, 2(2):10, 2018.

15. Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architecture and com-
putation offloading. IEEE communications surveys & tutorials, 19(3):1628–1656, 2017.

16. Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The case for
vm-based cloudlets in mobile computing. IEEE pervasive Computing, 8(4):14–23, 2009.

17. Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen, Padmanabhan
Pillai, and Mahadev Satyanarayanan. Quantifying the impact of edge computing on mobile
applications. In Proceedings of the 7th ACM SIGOPS Asia-Pacific workshop on systems, pages
1–8, 2016.

18. Umut Can Özyar and Arda Yurdakul. A decentralized framework with dynamic and event-
driven container orchestration at the edge. In 2022 IEEE International Conferences on Internet
of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE
Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE
Congress on Cybermatics (Cybermatics), pages 33–40. IEEE, 2022.

25

19. Cheol-Ho Hong and Blesson Varghese. Resource management in fog/edge computing: a survey
on architectures, infrastructure, and algorithms. ACM Computing Surveys (CSUR), 52(5):1–37,
2019.

20. Adisorn Lertsinsrubtavee, Anwaar Ali, Carlos Molina-Jimenez, Arjuna Sathiaseelan, and Jon
Crowcroft. Picasso: A lightweight edge computing platform. In 2017 IEEE 6th International
Conference on Cloud Networking (CloudNet), pages 1–7. IEEE, 2017.

21. Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. Cloudlets: Bringing the cloud
to the mobile user. In Proceedings of the third ACM workshop on Mobile cloud computing and
services, pages 29–36, 2012.

22. André Pires, José Simão, and Lúıs Veiga. Distributed and decentralized orchestration of con-
tainers on edge clouds. J. Grid Comput., 19(3):36, 2021.

23. João Nuno Silva, Lúıs Veiga, and Paulo Ferreira. nuboinc: Boinc extensions for community cycle
sharing. In 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, pages 248–253. IEEE, 2008.

24. Erick Lavoie, Laurie Hendren, Frederic Desprez, and Miguel Correia. Pando: personal volunteer
computing in browsers. In Proceedings of the 20th International Middleware Conference, pages
96–109, 2019.

25. Protocol Labs. Bacalhau.
26. Adam L Beberg, Daniel L Ensign, Guha Jayachandran, Siraj Khaliq, and Vijay S Pande.

Folding@ home: Lessons from eight years of volunteer distributed computing. In 2009 IEEE
International Symposium on Parallel & Distributed Processing, pages 1–8. IEEE, 2009.

27. Fernando Costa, Lúıs Veiga, and Paulo Ferreira. Internet-scale support for map-reduce pro-
cessing. J. Internet Serv. Appl., 4(1):18:1–18:17, 2013.

28. Mennan Selimi, Llorenç Cerdà-Alabern, Felix Freitag, Lúıs Veiga, Arjuna Sathiaseelan, and Jon
Crowcroft. A lightweight service placement approach for community network micro-clouds. J.
Grid Comput., 17(1):169–189, 2019.

29. Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Optimized container scheduling
for data-intensive serverless edge computing. Future Generation Computer Systems, 114:259–
271, 2021.

30. Omogbai Oleghe. Container placement and migration in edge computing: Concept and schedul-
ing models. IEEE Access, 9:68028–68043, 2021.

31. David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer. Seti@ home:
an experiment in public-resource computing. Communications of the ACM, 45(11):56–61, 2002.

32. Claudio Cicconetti, Marco Conti, and Andrea Passarella. An architectural framework for server-
less edge computing: design and emulation tools. In 2018 IEEE international conference on
cloud computing technology and science (CloudCom), pages 48–55. IEEE, 2018.

33. Liang Tong, Yong Li, and Wei Gao. A hierarchical edge cloud architecture for mobile comput-
ing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer
Communications, pages 1–9. IEEE, 2016.

34. Rob Halford. Gridcoin: Crypto-currency using berkeley open infrastructure network computing
grid as a proof of work, 2014.

35. Erik Daniel and Florian Tschorsch. Ipfs and friends: A qualitative comparison of next generation
peer-to-peer data networks. IEEE Communications Surveys & Tutorials, 24(1):31–52, 2022.

36. Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer content
distribution technologies. ACM computing surveys (CSUR), 36(4):335–371, 2004.

37. George Pallis and Athena Vakali. Insight and perspectives for content delivery networks. Com-
munications of the ACM, 49(1):101–106, 2006.

38. Al-Mukaddim Khan Pathan, Rajkumar Buyya, et al. A taxonomy and survey of content
delivery networks. Grid computing and distributed systems laboratory, University of Melbourne,
Technical Report, 4(2007):70, 2007.

39. Athena Vakali and George Pallis. Content delivery networks: Status and trends. IEEE Internet
Computing, 7(6):68–74, 2003.

26

40. Nasreen Anjum, Dmytro Karamshuk, Mohammad Shikh-Bahaei, and Nishanth Sastry. Survey
on peer-assisted content delivery networks. Computer Networks, 116:79–95, 2017.

41. Fasiha Ashraf, Ateeqa Naseer, and Shaukat Iqbal. Comparative analysis of unstructured p2p
file sharing networks. In Proceedings of the 2019 3rd International Conference on Information
System and Data Mining, pages 148–153, 2019.

42. Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. A survey and
comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys & Tuto-
rials, 7(2):72–93, 2005.

43. Fernando RA Bordignon and Gabriel H Tolosa. Gnutella: Distributed system for information
storage and searching model description. J. Internet Technology, 2(2):171–184, 2001.

44. Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics of Peer-
to-Peer systems, volume 6, pages 68–72. Berkeley, CA, USA, 2003.

45. Sam Williams, Viktor Diordiiev, Lev Berman, and Ivan Uemlianin. Arweave: A protocol
for economically sustainable information permanence. Arweave Yellow Paper, www. arweave.
org/yellow-paper. pdf, 2019.

46. Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system based
on the xor metric. In International Workshop on Peer-to-Peer Systems, pages 53–65. Springer,
2002.

47. Viktor Trón. The book of swarm: storage and communication infrastructure for self-sovereign
digital society back-end stack for the decentralised web. V1. 0 pre-Release, 7, 2020.

48. Napster: Music from every angle, 2001.
49. Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In Proceed-

ings of the 6th ACM SIGCOMM conference on Internet measurement, pages 189–202, 2006.
50. I Storj Labs. Storj: A decentralized cloud storage network framework. 2018.
51. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. Freenet: A distributed

anonymous information storage and retrieval system. In Designing privacy enhancing technolo-
gies, pages 46–66. Springer, 2001.

52. Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM computer
communication review, 31(4):149–160, 2001.

53. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable
content-addressable network. In Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pages 161–172, 2001.

54. Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and John D
Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal
on selected areas in communications, 22(1):41–53, 2004.

55. Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A scalable and dynamic emulation
of the butterfly. In Proceedings of the twenty-first annual symposium on Principles of distributed
computing, pages 183–192, 2002.

56. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing, pages 329–350. Springer, 2001.

57. Kazaa fle sharing network, 2002.
58. Maxwell Ogden, Karissa McKelvey, Mathias Buus Madsen, et al. Dat-distributed dataset

synchronization and versioning. Open Science Framework, 10, 2017.
59. Nick Lambert and Benjamin Bollen. The safe network: a new, decentralised internet. 2014.
60. João Antunes, David Dias, and Lúıs Veiga. Pulsarcast: Scalable, reliable pub-sub over P2P

nets. In Zheng Yan, Gareth Tyson, and Dimitrios Koutsonikolas, editors, IFIP Networking
Conference, IFIP Networking 2021, Espoo and Helsinki, Finland, June 21-24, 2021, pages 1–6.
IEEE, 2021.

61. Philipp Gackstatter, Pantelis A Frangoudis, and Schahram Dustdar. Pushing serverless to the
edge with webassembly runtimes. In 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), pages 140–149. IEEE, 2022.

27

62. Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana
Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-source benchmark suite for
microservices and their hardware-software implications for cloud & edge systems. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 3–18, 2019.

28

A
S
ch

e
d
u
le

F
ig
.
7
.
G
a
n
tt

C
h
a
rt

S
ch
ed

u
le

P
la
n

29

