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Abstract. Cloud computing is a model for delivering information tech-
nology services in which resources such as storage, computing power and
applications are provided over the internet on a pay-as-you-go basis.
One of its services, Function-As-A-Service (FaaS), allows users to run
and scale code in a serverless way: without the need for provisioning or
managing servers. With the growing concerns about the environmental
impact of data centers, Ecological Function-As-A-Service (Eco-FaaS) has
been proposed as a way to reduce CO2 emissions. This research paper
explores the concept of Eco-FaaS, its potential benefits, current chal-
lenges and potential solutions for sustainable management of ecosystems.
Overall, it aims to demonstrate the feasibility and value of Eco-FaaS as
a sustainable management tool.
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1 Introduction

Cloud computing is a rapidly growing technology that has revolutionized the
way organizations access and manage their computing resources while granting
benefits like flexibility, cost savings and the ability to access the latest technolo-
gies. This article provides a brief overview of cloud computing technology and
delves deeper into one of its services: Function-As-A-Service (FaaS).

Cloud computing has already met the energy efficiency paradigm, from a
financial perspective. The ever growing data centers require more and more
energy which has created an area of focus to achieve significant cost savings.

Now, the increasing pressure on ecosystems and the need for sustainable
management practices has led to the development of a new concept: Ecological
Function-As-A-Service (Eco-FaaS). Eco-FaaS refers to the deployment of func-
tions services with the sustainable perspective to reduce CO2 emissions, in line
of previous [23] and recent work [18]. In this research paper, we explore the con-
cept of Eco-FaaS and its potential to provide mutually beneficial outcomes for
both ecosystems and society. We also examine current related case studies and
challenges in the implementation of Eco-FaaS and suggest potential solutions for
overcoming these obstacles. Overall, this paper aims to demonstrate the value
and feasibility of Eco-FaaS as a tool for achieving sustainable management of
ecosystems.



1.1 Function-As-A-Service

Function-As-A-Service (FaaS) is a cloud computing model that allows developers
to build, run and manage application functionalities, known as functions without
the need for provisioning or managing infrastructure. This means that developers
can simply write their code and deploy it to a FaaS provider such as AWS
Lambda, Google Cloud Functions or Azure Functions and the provider will take
care of the rest [17].

FaaS is a form of serverless computing which means that the underlying
infrastructure is abstracted away and the developer only pays for the resources
and compute time used by their functions. This can result in saving upfront
costs, as well as increased scalability and reliability since the FaaS provider will
automatically handle the scaling and availability of the functions [19].

FaaS functions are typically event-driven which means that they are triggered
by a specific event such as a new file being uploaded to a storage service or an
HTTP request being made to an API endpoint. The function will then run and
perform its specified tasks.

FaaS functions can be written in a variety of programming languages, like
JavaScript, Python, C# and Go. They can also be integrated with a wide range
of services and technologies, like databases or storage services.

In summary, FaaS is a cloud computing model that allows developers to build
and execute functions without the need to manage infrastructure, resulting in
cost savings and increased scalability and reliability. It’s an important service of
cloud computing.

1.2 Motivation

Reducing carbon dioxide (CO2) emissions in the context of cloud computing is
motivated by the growing concern about the impact of climate change and the
need to reduce the carbon footprint of the technology industry. The cloud com-
puting industry is a significant contributor to global carbon emissions, as data
centers consume a significant amount of energy [35]. Reducing CO2 emissions
in cloud computing is also important to promote environmental care and social
responsibility. Climate change is a global problem that affects everyone and we
must do our part to mitigate its impact.

It is also motivated due to the research gap in this area and the necessity
to venture into this recent paradigm. Nevertheless, there are multiple relevant
papers written about adjacent topics which greatly supported this work. One
such example is the paper ”Let’s Wait Awhile: How Temporal Workload Shifting
Can Reduce Carbon Emissions in the Cloud” [31] which also brings a possible
solution to this challenge. This paper builds its own solution in the dimension
of time while mentioning the existing constraints and trade-offs. This work is
similar, but it aims to build a solution through the space dimension, concretely
geographical location. There are also constraints and trade-offs to mention, like
latency due to communication and constraints related to the data center’s region.
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1.3 Objectives

The aim of this work is to propose a scheduling algorithm that brings CO2
emissions into the calculations. In order to accomplish this we set the following
objectives:

1. Examine the latest advancements in FaaS, gather a comprehensive list of
crucial design choices that comprise these systems and comprehend the lim-
itations of existing ones.

2. Develop an environment ready to test the proposed algorithms. The envi-
ronment should approximate reality as much as possible so to enable repre-
sentative results.

3. Design a scheduling algorithm to deploy and test on the environment.
4. Develop a systematic evaluation process for determining if our future work

conforms to our requirements when tested.

1.4 Document organization

This document is structured in the following way:

– Section 2: Describes the current technologies and its maturity in the cloud
computing landscape.

– Section 3: Presents systems related to the topics mentioned and that show-
case results of solutions for similar challenges.

– Section 4: Describes in detail the proposed solution and reflects on all benefits
and shortcomings.

– Section 5: Provides an explanation on how the testing process and data
collecting will execute.

– Section 6: The final words of this work.

2 Related work

In this section we will present the result of our analysis regarding the topics
more relevant to this work. Starting with the related cloud computing service:
Function-As-A-Service. Following it with Edge Computing works since it’s es-
sential for our focus. Finishing with Ecological Efficiency, our main perspective
on how to look at Cloud Computing.

2.1 Function-As-A-Service

Progression strives in Cloud Computing and its pushes in Virtualization and
Software Architecture brought us Serverless Computing [17]. Serverless consists
in a new programming philosophy which distances the developer from the server
concept and its management.
Function-As-A-Service [19] came to be thanks to this new philosophy and the
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technological advances that enabled it. Developing software in this new paradigm
implies abstraction regarding the context in which the application is run.

This brings significant advantages since the development process doesn’t need
to take into account computing resources, like ecological inefficiencies in having
a computer turned on with a very low CPU usage or dealing with bottlenecks
due to high CPU usage.

It also brings disadvantages, for example: developers are mostly restricted to
deploying stateless functions, in which its work is only determined by the input
and easy to handle since they don’t share data structures.

This progression also brought interest for clients with specific demands. For
example, a client with quick and intense workload demands was not satisfied with
Infrastructure As A Service (IaaS) since reserving or launching Virtual Machines
for these cases was not economically friendly. This new type of service: FaaS,
brings a cost-effective solution, with attention to the pricing options and its
current development [3].

There are multiple ways to host a system holding FaaS capabilities, starting
with the major cloud service providers: Google Cloud Functions, Amazon Web
Services Lambda and Azure Functions. These hosts need to support of multitude
of libraries and programming languages to accommodate their client’s demands
and bring them a large offer. At the same time, they need to restrict developers
to certain standards so they can keep accommodating their multitudes of users.
Due to theses restrictions, multiple Open Source frameworks are developing and
exploring this new paradigm with interesting benchmark results in their current
maturity [17].

The common business model states that clients only pay accordingly to their
function’s execution time and memory usage, ignoring the server details’ like
the function deployment, scheduling and orchestration overheads. Therefore,
the cloud providers are economically inclined to reduce these costs [22]. Con-
sequently, this creates an appealing opportunity for computer architecture to
branch itself deeper into FaaS support since there’s a considerate slowdown run-
ning functions in the providers infrastructure. Most cloud providers were focused
on supporting applications with high time usage while FaaS functions are usually
of little execution time. Aspects depending on temporal locality like branch pre-
diction, for example, are severely hurt in the servers running as many functions
as they can [22].

The following sub chapters will approach the state-of-the-art in the following
categories:

– Orchestration;

– Scheduling;

– Security;

– Performance;

2.1.1 Orchestration
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Orchestration consists in the management ability to create connections reac-
tively between containers (representing workloads) in a cloud environment.

In other cloud services, the deployment orchestration was usually in charge
of the Load Balancer, implemented by the client. In FaaS the cloud provider has
greater control over its resources and more responsibility as well since it needs
to manage the Orchestration and Scheduling [26].

Orchestration is a very useful capability that can be implemented on top of
FaaS infrastructures. Creating a workflow with functions (as in functions sup-
ported and deployed in FaaS) is a highly sought after service. The workflow
based on micro services provides an incredibly simple platform to develop that
it’s still capable of providing powerful features.

The first feature is that stateless functions are inherently very parallelizable
due to their inability to synchronously share data structures. This feature is
highly capitalizable from the provider’s perspective when taking care of func-
tion deployment. This segment of the cloud technology can be further developed
since most of the systems available are not utilizing this to its fullest.

There are multiple models to consider when deploying orchestration capabil-
ities, we will mention two:

– The first option is to leave the responsibility to the client. In this case, the
developers must deploy functions that orchestrate other functions. These or-
chestrator functions must manage the connections and deployment of the
other serverless functions. This model increases costs since there are intrin-
sically more functions running. It can be called double billing since both
orchestrator and orchestrated functions need to run in parallel.

– The second option is to create an external orchestrator in charge of accommo-
dating the functions executions correctly. This solution breaks the principle
of a true serverless service [5].

2.1.2 Scheduling

Scheduling is an area where Cloud Providers were already focused on due
to other services supported. Despite that, FaaS introduced big changes to how
Cloud Providers capitalize their resources utilizing management technologies.

The deployed function might find its container in one of the following states:

– Cold Start: The slowest possible, the container needs to load the function
code and all the dependencies required;

– Pre Warmed: A medium state where the environment is correctly set up and
its only missing the code itself;

– Warmed: The fastest conditions, the container has already ran this specific
function and is ready to immediately run it again;
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There are multiple approaches surging regarding all the difficulties mentioned
before:

– Allocation heuristics: Schedulers focused on allocation algorithm responsible
for allocating resources.
For example NOAH [26], a non cooperative game between controllers and
FaaSRank [34], based on monitoring and reinforcement learning.

– Topology Awareness: This perspective takes into account the physical or
logical layout of the underlying infrastructure. In this approach, the scheduler
considers factors such as the location of the nodes and the connectivity
between them, the locality of functions relative to their data sources or
dependencies and the capacity and utilization of different subsections of the
framework when determining where to place functions [8].

– Predictive Scheduling: This proposition utilizes statistical models or even
machine learning to allocate the functions according to their predicted exe-
cution times.
For example, ETAS estimates functions’ execution times based on their his-
tory of previous executions [4].

– Deadline Awareness: This suggestion factors in the time remaining or its life
cycle. It also schedules its functions based on their Service Level Objective
(SLO) and its hardware requirements. Prioritizing the execution of functions
with a sooner deadline ensures that important functions are completed in a
timely manner which can boost the system’s overall performance.
For example, ENSURE [27] develops the focus on Service Level Objectives
(SLOs) while still maintaining acceptable application latency and greatly
boosting resource efficiency while CAS [32] focuses on Cold Start resolution
without adding a significant overhead.

– Quality-of-Service Awareness: These approaches extend the concept of Quality-
of-Service (QoS) to Function-As-A-Service (FaaS). Due to the lack of avail-
ability from the user’s part to enforce QoS requirements, there are multiple
suggestions on systems to enable this without adding a significant overhead
[20].

2.1.3 Security

Security is very important in the cloud computing scope, consequently its
important in the smaller Function-As-A-Service scope.

The first step is to protect the system against possible data breaches caused
by the paralleled and shared nature of the cloud provider layout. Since multiple
entities are placed inside this infrastructure, the risk is bigger since the severity
is intrinsically bigger as well.

The second step is to defend against malicious code execution or unintended
function’s executions. Providing a sandbox environment is a staple in Cloud
Computing to solve this risk.
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The third step is to handle sensitive data in such way that confidentiality and
integrity of the user’s input is retained. Sustaining the General Data Protection
Regulation (GDPR) principles is vital to any Cloud Provider system.

For example, CLEMMYS [28] is a platform conceived with the purpose of
ensuring privacy over client’s functions sources and data through a message
encryption protocol without a considerate overhead.

Concluding, security is vital to the design process of Cloud Computing and
subsequently FaaS platforms.

2.1.4 Performance

Performance in a Function-As-A-Service environment consists in the focus of
minimizing application execution time.

It’s deeply related to the Scheduling and Orchestration contexts since we
already mentioned various systems that focus on performance on those sub sec-
tions. In this sub section we will focus on other techniques:

– Sandbox Design: Sandboxing is vital to any cloud computing infrastructure
as explained in the Security sub section. It also impacts greatly on the per-
formance of the given infrastructure. Some platforms can reuse containers to
run the same specific functions since both the libraries and code are already
imported onto the container.
Other systems propose different sandbox designs such as SAND [1]. SAND
proposes two different types of isolation for its containers. Isolation between
functions from different applications is identical to the standard isolation
practices but isolation between functions from the same application differs.
Making use of the repetitive nature and similarity between these functions,
SAND creates an environment that focus on the locality advantages.

– Communication: Communication between functions with dependencies are
one of the most significant reasons for overhead in FaaS. Usually FaaS plat-
forms work with a centralized message system, there are alternatives being
explored like an hierarchical message bus [1].

– Cold Start Latency: As explained in the scheduling sub chapter, cold start
refers to the time it takes to allocate resources to invoke a specific function.
There are various techniques to mitigate the impact of cold stars on per-
formance such as keeping resources for the most frequently called functions
allocated or using a predicting statistical system or a reinforcement learning
trained agent decide which containers to pre warm [6] [29].
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System Topic Feature Application Focus

NOAH [26] Scheduling Cooperative Game Scheduling Lower resource cost
FaaSRank [34] Scheduling Reinforcement Learning Lower execution time
ENSURE [27] Scheduling Efficient Resource Management Service Level Objectives

CAS [32] Scheduling Lifecycle Awareness Cold Start Solution
CLEMMYS [28] Security Message Encryption Protocol Low Overhead

SAND [1] Performance Isolation and Communication Fast Resource Allocation

2.2 Edge Computing

Edge Computing came to be thanks to the advancements of Cloud Computing
infrastructures and the hardware related to Internet of Things (IoT) devices. It
consists in decentralizing computation in a cloud environment. This means that
part of the computation is brought the cloud center to the ”edge” which most of
the time, represents IoT devices or any system that can run a browser [30] [13].

The advantages of Edge Computing consist mainly in following aspects:

– Latency: in the Cloud Computing context, it refers to the time it takes for
the request to travel between the client and the cloud user summed to the
time it takes to process the request.
With Edge Computing there is a great reduce in latency through its inherent
local processing. Since computation is closer to the data source, there’s a
significant reduction from both the time from communication and the time
for processing [7].

– Efficiency: local processing reduces the amount of data that is transferred
and stored, helping lower the running costs of the cloud center.

– Security: limiting the storage of data and its communication is particularly
useful for reducing the risk of a data breach.
There also difficulties worth mentioning such as the coverage of security
solutions through heterogeneous IoT devices in the Edge and the available
solutions to these devices [7].

– Bandwidth: Edge Computing thrives in low-bandwidth environments due to
the significant reduction in the amount of data that needs to be transmitted.
Data caching and replication are techniques performed in these environments
to both enable and improve performance. This causes lower entry barriers
for community clouds (CN) [21].

The uses of Edge Computing capitalize on these advantages. Some applica-
tions (augmented reality and autonomous vehicles for example) might require
real-time outputs from their functions and local processing brings them the nec-
essary minimal latency.

The following sub chapters will approach the following categories inside the
Edge Computing context:

– Volunteer Computing
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– Orchestration

– Integration with Function-As-A-Service

– Energy Efficiency

– Community Cloud

2.2.1 Volunteer Computing

Volunteer Computing consists in harnessing idle processing resources to com-
pute distributed functions. The amount of IoT devices and of personal computers
represents a colossal untapped resource which can be harvested to greatly boost
performance of specialized systems [2,25].

Volunteer Computing has multiple benefits such as:

– Cost: Offloading computation to otherwise idle devices from volunteers incurs
in significant cost savings. The costs related to obtaining processing power,
mounting it under a private infrastructure and maintaining it represents a
great save in a monetary and time-related perspectives [12].

– Community: Volunteer computing offers engaging options for individuals
to make use of their resources. Creating a simple manner for someone to
contribute to a variety of causes, commonly represented by Community
Clouds [21].

– Scalability: Compared to traditional Cloud Computing an organization uti-
lizing Volunteer Computing can flexibly scale their existing computation
power with minimal cost.
Volunteer Computing also lowers entry barriers for organizations with pro-
pelling causes since it offers computation power with minimal capital invest-
ment. The adherence of volunteers stands in place of most of the processing
power that the organization could require [12].

2.2.2 Orchestration

Orchestration is critical in the Edge Computing context to guarantee that
the resource management and communication is efficient despite all the hetero-
geneity and the geographic distribution of the computing devices.

Let’s enumerate the main characteristics of Orchestration in our particular
context:

– Deployment: Deployment in centralized cloud environments usually has a
considerate overhead which does not adhere to the computation restrictions
in IoT devices.
A lightweight solution to not only deployment, but management and moni-
toring is needed to effectively utilize IoT devices [30].
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– Reliability: Relying on distributed resources implies that there’s a need
for mechanisms that permit correct operations even after faults in edge
nodes [14].
One commonly used solution is replication which consists in creating redun-
dant nodes to achieve fault tolerance [7].

– Complexity: It’s challenging to effectively manage resources with the possible
magnitude of computing nodes in an Edge Cloud.
The additional layer of computation or even multi-layers in Fog Computing
generates gaps in the current research in the Monitoring and Management
fields [7].

An effective orchestration consists in the following steps:

– Resource discovery: This sub process is responsible for perceive new nodes
that can join the Fog infrastructure. These nodes can declare their own
availability to the orchestration framework or can be found by scanning the
Internet which involves security protocols [7].

– Provisioning: After the node integration in framework, the orchestrator is
responsible for the resource allocation needed to support the functions de-
ployment [7].

– Scheduling: This step is in charge of obtaining the best viable performance
with the available resources acquired earlier [7].

2.2.3 Integration with Function-As-A-Service

The Function-As-A-Service model fulfills various needs for Edge Computing
and sustains its benefits.
First off its simplicity makes it easy for developers to create and deploy func-
tions thanks to serverless abstraction layer. Edge Computing focus on real-time
processing and the dynamically scalability in the FaaS model can fulfill that
need. [33].

To address a real integration, the following design principles must be sus-
tained:

– Heterogeneity:. The computing nodes on the edge environment can consist
of a large variety of different devices. The orchestration must coordinate all
these different devices in a harmonious way [33].

– Scalability: The flexibility when provisioning devices must be sustained when
handling the increase of available devices. The system must ensure that the
recognition and allocation of a new node doesn’t affect the performance of
other nodes [33].

– Performance: Usual FaaS models operate with powerful machines, whereas
Edge Computing mostly supports lightweight devices. The fast execution
time procured in FaaS is especially challenging in an Edge infrastructure [33].
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– Reliability:. When considering multiple devices and without being able to
ensure their timely functionality in Edge Computing, there’s a significant
effort made for reliability. Fault-tolerance techniques must account for device
failures, network disruptions, data loss and resource constraints and still
manage to provide QoS thresholds [33].

2.2.4 Energy Efficiency

Energy efficiency refers to the ability of a system to perform its intended
function using as little energy as possible. In the context of edge computing,
energy efficiency is an important consideration because edge devices are often
battery-powered and may be deployed in locations where access to power is
limited or unavailable.

There are a number of approaches to improving energy efficiency in edge
computing systems:

– Optimizing resource utilization: By optimizing the use of resources, it is
possible to reduce the amount of energy that is required to perform a given
task. This can involve techniques such as minimizing the amount of data
that is transmitted and processed, reducing the number of idle resources
and scaling resources up or down as needed based on demand [16,11].

– Energy-efficient hardware: Another approach is to use energy-efficient hard-
ware such as low-power processors and energy-efficient storage devices, to
reduce the amount of energy that is required to perform a given task [11,23].

– Power management: By using power management techniques such as turning
off or hibernating idle devices, it is possible to reduce the amount of energy
that is consumed by edge devices [11].

– Energy and Compute co-harvesting: In some cases, it may be possible to
use energy harvesting technologies such as solar panels or kinetic energy
generators, to power edge devices [11], or use abundant energy to process
computation that brings value to the network [24]. This can be particularly
useful in remote or inaccessible locations where access to power is limited.

Improving energy efficiency is an important consideration in the design and
operation of edge computing systems. By implementing appropriate techniques
and technologies, it is possible to reduce the energy consumption of edge devices
and improve the overall sustainability of edge computing systems.

2.2.5 Community Cloud

A community cloud is a type of cloud computing infrastructure that is shared
by a group of organizations with similar requirements and concerns. In the con-
text of edge computing, a community cloud can provide a way for organizations
to share resources and infrastructure in order to support the deployment and
operation of edge functions [21].
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Community Clouds bring great impact in response to both urban and rural
areas’ increasing demands for network access. This type of cloud computing is
typically build from the bottom-up, due to the involvement and the community’s
members and their wiring and building process.

The largest Community Cloud in the world Guifi.net, an effective example
of this paradigm. Guifi.net is described as an open, free and neutral Commu-
nity Cloud being developed by its users. In other words, individuals and groups
pool their resources and work together to create and maintain a local network
infrastructure. The ultimate goal of Guifi.net is to build a usable digital ecosys-
tem that serves a very small geographic area. This is very challenging, since
that when looking at the Internet services consumers mainly require streaming
services causing a heavy weight in the internet links. This situation generated
the creation of Micro-Clouds. A Micro-Cloud resides inside a Community Cloud
with the purpose of creating a sort of small clusters to provide services to its
users. Services like video streaming or personal storage sharing. The goal is to
give a better service and reduce overload on the backbone links by utilizing the
shorter and faster communication between customers.

2.3 Green Energy

Energy efficiency is a challenge tackled by many research fronts in the past years.
It has been mainly driven by the business perspective which focuses on reducing
the cost as most as possible while still maintaining a desirable performance [35].

Data centers represent a significant slice of the world’s consumed electrical
energy [35], so there’s a significant incentive to find better solutions to the current
technological landscape.

Energy efficiency refers to the use of technologies and techniques that min-
imize the amount of energy required to perform a specific task or achieve a
specific goal. This can be applied in various fields, one of them being informa-
tion technology. Here we will discuss the energy efficiency related to the cloud
computing context.

Despite all, there’s a research gap in the ”greenness” of the energy consumed:
the energetic profile. The CO2 emissions represent harmful consequences to the
planet and not all electrical energy is derived from polluting sources. The en-
ergetic profile of data centers may vary in their clean energy ratio. Renewable
energy production changes dynamically during time. Atmospheric conditions and
daylight hours affect its production. These variants might be taken into account
for new research to delve into ”greener” data centers with an environmental
perspective, instead of a business one.

2.3.1 Data centers

Energy-efficient data centers is a key topic in the field of energy efficiency
in cloud computing. The design of energy-efficient servers, storage devices, data
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centers and the use of energy-efficient cooling and power systems can significantly
reduce the energy consumption of cloud computing systems.

One aspect of energy-efficient hardware is the design of servers and storage
devices that consume less power. This can be achieved through the use of energy-
efficient hardware, like processors, memory and other components.

Another aspect of energy-efficient hardware is the design of data centers that
consume less energy. This can be achieved through the use of energy-efficient
cooling and power systems [23]. For example, using fresh air cooling, instead of
traditional air conditioning units, can reduce the energy consumption of a data
center. Additionally, using efficient power supply units, like 80 plus, that provide
high-efficiency power conversion, can also help reducing the energy consumption.

Moreover, research in this area also looks into server and data center power
management to reduce energy consumption through the use of dynamic voltage
and frequency scaling and other techniques [23].

Overall, designing energy-efficient hardware and data centers is an important
step in reducing the energy consumption of cloud computing systems which can
help to decrease the carbon emissions and make the cloud more sustainable.

2.3.2 Virtualization and consolidation

Virtualization and consolidation are two key techniques that can be used
to increase the energy efficiency of cloud computing systems by reducing the
number of physical servers required to run a workload.

Virtualization is a technology that allows multiple virtual machines (VMs)
to run on a single physical machine [15]. Each VM functions as a separate and
isolated operating system environment with its own applications, resources and
system settings. This means that a single machine is capable of running multi-
ple container instances. This approach reduces the number of physical servers
required to run a given workload and can lead to significant energy savings.

Consolidation is a technique that enables multiple servers to be combined
into a single, more powerful server [15]. This can be done through the use of
virtualization. The goal of consolidation is to reduce the number of physical
servers required to run a workload, resulting in an energy consumption reduction.

The combination of virtualization and consolidation allows server manage-
ment to efficiently manage and allocate resources to a large number of VMs
running on a smaller number of physical servers. This can lead to a reduction in
energy consumption and cooling needs as well as a decrease in the overall cost
of operating a cloud computing infrastructure.

There are strategies that combine of virtualization and consolidation tech-
niques to optimize the allocation of resources to virtual machines [15].

2.3.3 Renewable Energy Sources

Renewable energy sources like solar, wind and water are becoming increas-
ingly important in the field of energy efficiency in cloud computing. The use
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of renewable energy sources reduce the need for fossil fuels which consequently
decreases the carbon emissions of cloud computing systems.

One way to integrate renewable energy sources into cloud computing systems
is by using them to power data centers. For example, solar panels or wind tur-
bines can be installed at a data center site to generate electricity which can then
be used to power the data center.

Different Data Centers are fueled by different energetic profiles which can be
exploited to achieve environment sustainability.

It’s important to consider that the integration of renewable energy sources
into a data center can also bring some challenges such as the high initial cost of
equipment and installation and the need for energy storage to smooth out the
variability of renewable energy sources.

3 Relevant Systems

In this section we provide an overview of current systems related to the paradigm
being discussed. These systems contain resourceful material to support the per-
spective brought by this work itself.

3.1 Let’s Wait Awhile: How Temporal Workload Shifting Can
Reduce Carbon Emissions in the Cloud

”Let’s Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon
Emissions in the Cloud” is a research paper that proposes a technique called
temporal workload shifting to reduce carbon emissions in cloud computing sys-
tems.

The technique involves shifting workloads to times when renewable energy
sources are more plentiful, in order to reduce the need to use fossil fuels. This
can be done by scheduling jobs to run during periods of low demand or by using
machine learning algorithms to predict and optimize energy usage.

This paper categorizes workloads in various aspects:

– Duration:

• Short-Running Workloads: These workloads represent the majority of
workloads executed in data centers. FaaS tasks are included in this cate-
gory and usually don’t offer great flexibility for shifting since its purpose
is to meet SLAs and execute as fast as possible.

• Long-Running Workloads: These workloads contain a high potential for
shifting. They usually are very energy intensive and expect runtimes of
several days. Usually representing machine learning or big data tasks,
the deadlines are also moderately flexible.

• Continuously Running Workloads: These are not further discussed in the
paper since they do not have a deadline date by inherent design.

– Execution Time:
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• Ad Hoc Workloads: These workloads can include both FaaS and machine
learning tasks. The scheduler should decide whether to postpone or start
its execution immediately. Due to definition, these can only be taken into
account with estimation techniques like forecasting.

• Scheduled Workloads: Usually periodic backups or batches which can
be taken into account beforehand. These contain a significant shifting
potential due to the large time constraints.

– Interruptibility:

• Interruptible Workloads: This possibility is usually only included in Long-
Running Workloads and enables a high control over temporal shifting.
The overhead of stopping and restarting the task is negligible.

• Non-Interruptible Workloads: Some workloads don’t contain the possi-
bility of stopping and restarting due to the significant overhead. For
example, FaaS functions are not interruptible due to relative overhead
when compared to the full execution time.

The results achieved with temporal shifting when taking into consideration
real world data are astounding. A 20% savings is credible in the regions tested.

3.2 An Experience-Based Scheme for Energy-SLA Balance in Cloud
Data Centers

The research paper ”An Experience-Based Scheme for Energy-SLA Balance in
Cloud Data Centers” proposes a scheme for balancing energy consumption and
Service Level Agreement (SLA) in cloud computing data centers. The authors
propose an experience-based algorithm that uses historical data to predict future
workloads and adjust the resource allocation accordingly.

The algorithm is divided into two stages: the learning stage and the prediction
stage. During the learning stage, the algorithm analyzes historical workload data
and builds a model to predict future workloads. In the prediction stage, the
algorithm uses the model to predict future workloads and adjusts the resource
allocation to balance energy consumption and support SLA constraints.

The authors evaluate the proposed scheme using a simulation of a cloud data
center with a varying workload. The results show that the proposed scheme can
effectively balance energy consumption and SLA, with a minimal SLA violation
rate. The scheme also reduces energy consumption to very desirable levels.

3.3 A green energy optimized scheduling algorithm for cloud data
centers

The research paper ”A green energy optimized scheduling algorithm for cloud
data centers” presents a scheduling architecture aiming to reduce energy con-
sumption in cloud data centers. The authors also propose an certainty and un-
certainty algorithm that enables live VM merging and reallocation with the same
goal of saving energy.
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In summary, the scheduling architecture consists of three phases: user, re-
source and scheduling. The resource phase is divided into VM level and host
level, the VM layer is scaled up and down based on workload. The scheduling
phase includes Scheduling Task Queue (STQ) and Non-completed Task Queue
(NTQ) where new tasks, urgent tasks and waiting tasks are incorporated through
the queueing mechanism. Tasks that are not completed in STQ are held in NTQ
and are given priority by the scheduler. Urgent tasks are compared to previous
tasks in the queue and are given priority over non-urgent tasks. Tasks that fail in
STQ due to insufficient resources are transferred to NTQ for further scheduling.

According to the demands of the hosts in the data center, VMs are created
and destroyed in the resource phase. Job allocation is done in the VMs based
on the certainty and uncertainty algorithm. VMs can fail due to a shortage of
resources in the data center. The paper goal also includes following Service Level
Agreement (SLA) to ensure job allocation through VMs with the best assignment
policy that manages to reduce energy consumption in the data center. The more
refined the SLA, the better the job allocation in VMs is performed.

4 Architecture

This work proposes a thesis focused on exploring the challenging problem that
is: a Green Function-As-A-Service.

My proposal aims to expand on the ecological perspective in the Function-
As-A-Service context. It is going to explore scheduling algorithms and fine-tune
its parameters through extensive testing. The testing should consider different
layouts and ecological scenarios to obtain insightful results. The results are go-
ing to be weighted against traditional algorithms provided by OpenWhisk. All
trade-offs should be considered when exploring the solution such as the finan-
cial perspective, communication latency, function execution time and function
deployment time.

4.1 Distributed Architecture

Let us start with the global layout present in the following figure.
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In this figure we can observe multiple nodes that form a decentralized net
composed of Clusters, each one with a central Controller node and various In-
voker nodes. Each node represents a device capable of computation and correctly
integrated in the net. There are only two node categories: Controller and Invoker.
These categories represent different responsibilities for the device in that same
position in the net. Detailed descriptions are present in the following sub sec-
tions.

We will describe this architecture from a bottom-up perspective through the
following order: Invoker, Controller, Cluster and Top Level View.

4.2 Invoker

In OpenWhisk, an invoker is a component that is responsible for the actual
execution of actions. When a client sends a request to invoke an action, the
controller schedules the action for execution on an available invoker. The invoker
then retrieves the code for the action, loads it into memory and executes it. The
invoker is also responsible for managing the resources allocated to the assigned
workload such as CPU and memory. It is also responsible for monitoring the
execution of the action. If the action exceeds its allocated resources, the invoker
kills the action and returns an error to the client.

In this system, the Invoker node is adapted to the proposed architecture. he
Invoker nodes are still responsible for running the actions, collecting the logs
and metrics and returning the results to the client or Controller. They also
communicate with the Controller node, by reporting the usage statistics of the
invoker which can be used for monitoring and billing purposes. In this proposal,
the metrics used are represented in the following figure.
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The available parameters studied in the Invoker node are:

– Workload: A workload in an Invoker node refers to the set of actions that
are being executed by the Invoker at any given time. The workload can be
analyzed on various metrics, for example:
• CPU Usage: represents the percentage of time that the CPU is busy ex-
ecuting instructions. A high CPU utilization indicates that the instance
is heavily utilized and may be running at capacity which could lead to
poor performance and slow response times. A low CPU utilization could
indicate that the instance is underutilized and that the instance’s work
is not optimal.

• CPU Load: it’s measure of the number of processes that are waiting to
be executed by the CPU. A high CPU load indicates that there are more
processes waiting to be executed than the CPU can handle. A low CPU
load, on the other hand, indicates that the CPU has enough resources
to handle the current workload.

• Memory usage: This metric measures the amount of memory that is
being used by an instance or container. It is a good indicator of the
workload on an instance or container and a high memory usage indicates
that the instance or container may be running at capacity.

• Network traffic: This metric measures the amount of network traffic that
is being sent and received by an instance or container. It is a good
indicator of the workload on an instance or container and a high network
traffic indicates that the instance or container is heavily utilized.

– Carbon Intensity: The amount of carbon dioxide emitted per unit of energy.
This can vary during time due to conditions involving the electricity source.
This variable is updated regularly and communicated to the Controller so
that it can be taken into the calculation for the scheduling algorithm. Ex-
pressed in grams of carbon dioxide per megajoule.

– Total Energy: The amount of energy spent during a specific time slice.
– CPU units: A CPU unit represents the ability to execute one thread of

code at a time. The number of CPU units that are allocated to an instance
or a container can affect the performance of the instance or container. A
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higher number of CPU units means that the instance or container has more
processing power available to it which can result in faster execution times for
CPU-bound workloads. The amount of memory, I/O and network bandwidth
also play an important role in the overall performance of the instance or
container. It’s also worth mentioning that different cloud provider may have
different naming conventions and ways to define CPU units. As an example,
Amazon Web Services (AWS) and Google Cloud Platform (GCP) use the
term ”vCPU” to refer to a virtual CPU core while in Azure it’s called ”Core”.

– Memory units: The memory unit represents the capacity of an instance or
container to store and access data in the form of random access memory
(RAM). The amount of memory allocated to an instance or container can
affect its performance. A higher amount of memory can result in faster ex-
ecution times for memory-bound workloads and also allows more applica-
tions or processes to run at the same time. Most cloud providers use ”GiB”
(gibibytes) to represent memory unitswhich is the unit of memory in the
International System of Units (SI). It’s also worth mentioning that some
providers also offer burstable instances or containers, in which instances or
containers are guaranteed a baseline amount of memory and CPU, with the
ability to burst above that baseline as additional resources become available.

The Invoker node also provides isolation between different actions, ensuring
that one action does not interfere with another action.

One of the benefits of these nodes is that it allows OpenWhisk to scale hori-
zontally, meaning that new nodes can be added to the system to handle increased
load. Additionally, these can be automatically added or removed depending on
the system’s usage patterns, allowing the system to scale up or down as needed.

Overall, the Invoker node is a critical component in OpenWhisk that is re-
sponsible for executing actions and communicating important metrics to the
Controller. It allows OpenWhisk to run actions in different environments and
platforms and provides isolation between actions. It permits OpenWhisk to han-
dle increased load by scaling out their number nodes.

4.3 Controller

The Controller node functionality consists in managing the lifecycle of actions,
triggers and rules. The controller also manages the underlying infrastructure
such as allocating resources for actions and monitoring their execution.

The controller is responsible for coordinating the execution of actions which
are the basic units of computation in OpenWhisk. An action is a piece of code
that can be invoked with a set of inputs and returns a set of outputs. The
controller receives requests to invoke an action and then schedules the action for
execution on an available invoker.

Triggers and rules are used to automatically invoke actions in response to
certain events. A trigger is an event source, representing a change relevant to
the execution of specific application. A rule is a mapping between a trigger
and one or more actions. It specifies which actions should be invoked when a
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specific trigger is fired. The controller is responsible for managing the lifecycle of
triggers and rules. It is also responsible for making sure that the correct actions
are invoked when a trigger is fired.

This work’s adaptation consists in the following. The Controller also has the
functionality of maintaining the systems’ information of Invokers. When making
the decision of where to distribute its attributed workload, it has two possible
options: send to other Controllers node or send to one of its assigned Invoker
nodes.

The approach to incorporate carbon intensity into a FaaS scheduling function
is to use data on the carbon emissions of different Invoker nodes and factor that
data into the decision-making process for where to provision a given function.

The Carbon Footprint (CFP) of an Invoker node is derived from the following:

– Total Energy: The total amount of energy that the machine consumes in a
given time slice.

– Carbon Intensity (CI): Represents the amount of carbon dioxide released to
the atmosphere per unit of energy is commonly expressed in grams of carbon
dioxide equivalent per megajoule (gCO2e/MJ). For example, a data center
located in a region with a high percentage of renewable energy sources such
as wind or solar power, will have a carbon intensity really close to zero. A
data center located in a region where the majority of energy is generated
from fossil fuels, the value will be significantly higher [9].

CFP = ETOTAL × CI

Each Invoker must also keep track of its own Workload (WL). The WL can
be estimated with registered millions of instructions per second (MIPS).

WL ≈ MIPS =
InstructionCount

ExecutionT ime× 106

Conjugating these two metrics we can calculate a good estimation for an
energetic profile in every Invoker. This energetic profile (EP) is defined as the
carbon emissions related to the work realized. In this situation, the total energy
taken into account when calculating the CFP should correspond to the same
time slice in which the MIPS was measured.

EP =
CFP

WL
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4.4 Cluster

Each cluster is assumed to be geographically close forming a low latency net.
The Controller knows all Invokers in this net and can integrate new Invokers.
The devices fulfilling the Invoker role might be fueled by different energy sources,
with different carbon footprint profiles. They are also are defined by their het-
erogeneity in all parameters: energy efficiency, computation power and memory
capacity. The Controller must take into account all of these parameters when
making the decision on how to distribute its assigned tasks.

The Controller should calculate its own Energetic Profile (EP) for its own
Cluster and keep estimations of the EP for the others:

EPCluster =

∑
EPInvoker + EPCluster

NInvoker + 1
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4.5 Top Level View

At the end of our bottom-up description we can finally piece the whole pro-
posed system together.

In this architecture, every Controller node knows every other Controller node.
This system is not meant to achieve maximum scalability in the Controller hi-
erarchy. In such a case where that could be needed, an additional hierarchical
layer of Controllers could be created.

The main objective is to aim to achieve a better energetic profile through
the available options in the net created. Assigning tasks to less carbon intensive
devices while possible and doing so while carefully observing the all trade-offs.

One possible overhead will consist in the scheduling algorithm which repre-
sents the decision on whom to assign the functions to. Another possible overhead
can exist due to the latency in sending batches of functions to other Clusters
with a better ecological profile to execute them.

The geographical dispersion of Cluster intends to bring diverse ecological
profiles for the available computation power. The geographical disparity will
inherently bring changes in ecological efficiency with variants such as time and
weather.

When taking the decision of which device to assign a function or whether
to send it to other Cluster, the Controller (responsible for making the decision)
must keep and estimate and update that estimate so that is doesn’t overload the
ideal candidate. There are multiple solutions to test when solving this problem:

– Increment the workload assigned to the Cluster that received the tasks sent
with an effective estimation.

– Distribute the workload through the best candidates, not only focusing on
one Cluster.

AnyWorkload can be sent to any Cluster and that Cluster’s Controller should
schedule it according to the best Energetic Profile (EP).
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The approach proposed is described in Algorithm 1. This algorithm makes the
scheduling decision of where to send the Workload received by a specific Cluster.
The Workload can either be sent away to other Cluster in the case that there
is another node with better energetic profile with relative low utilization. Else,
the Workload must be executed locally which involves choosing the best Invoker
for that matter. The Controller is unable to send Workload to another Cluster
whose capacity is over the threshold. Additionally, the Controller must update
upon each Workload sent with an estimation corresponding to the increase of
the capacity threshold. The algorithm is based on the best effort principle. In
this case the focus is not to ensure QoS terms.

There is also a principle of communication between Clusters to propagate
the EP values of each one. This should enable eventual consistency so that the
values are represented correctly, even when given long intervals of time. This
communication step should also update the current capacity of each Cluster so
that the estimations don’t drift too far off from reality.

Other interesting option for the scheduler could factor in the idle resources
conjugated with the energetic profile when making the decision of whom to send
the workload too.

There’s also room to expand with other ideas. For example, considering in-
terrupting workloads and migrating workload when another cluster achieves a
severely beneficial position.

Algorithm 1 Eco-Scheduler

ClusterBest ← ClusterSelf

for Cluster ∈ N et do
if CapacityCluster < Threshold then

ClusterBest ← min(EPClusterBest , EPCluster)
end if

end for
if ClusterBest is ClusterSelf then

for Invoker ∈ Pool do
if CapacityInvoker < Threshold then

InvokerBest ← min(EPInvokerBest , EPInvoker)
end if

end for
Send Workload to Invoker
Update EPClusterSelf

Update CapacityClusterSelf

else if
thenSend Workload to Cluster
Update CapacityCluster

end if
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5 Evaluation Methodology

This section will describe the evaluation process proposed for this system. It
aims to assess the effectiveness and environmental impact of Eco-FaaS through
a systematic and structured approach.

5.1 Test-Bed

To achieve the desired results for testing the following steps will be performed:

1. Set up a test environment that simulates the desired ecosystem with a net-
work of cluster like described in the previous chapters. Initially, this network
will consist of a simulation [10], and then of a small local deployment. In
further testing it can be augmented to a larger deployment with the use of
specialized tools such as Testground.

2. Implement the Eco-FaaS scheduler and deploy it correctly to all the Con-
trollers.

3. Test the scheduling process with different parameters given to the Cluster
network.

4. Balance possible weights or threshold accordingly to the test results.
5. Iterate multiple times the last previous two steps.

The metrics collected from the testing process are: CPU Usage, Memory Us-
age, Allocation Success Rate (during the workload migration decision making),
Function Execution Time, Function Allocation Time, Total Energy consumed,
MIPS, Network Traffic. The following metrics can also be derived: Energy Effi-
ciency (instruction/J) and Eco Efficiency (instruction/gCO2e).

5.2 Workloads and Data Sets

To extensively test the proposed the system, the following workloads will be
executed.

– CPU Bound:

• Rendering complex 3D graphics or animations.
• Encrypting or decrypting data.
• Performing image or video processing tasks.
• Running machine learning algorithms.

– Memory Bound:

• Database management.
• Data analysis.

These workloads represent different possible needs for a FaaS system. We can
expect interesting results analyzed through the use of the metrics defined in
the previous sub section. Experiments will be carried out in desktop and server
machines, as well as in cloud deployments or simulations [10].
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5.3 Results

The expected results consist in a high ecological benefit to the environment.
This benefit would be composed of a significant reduction in the production of
carbon dioxide while executing the exact same load of work.

The inherent trade-off is expected to be divided in the communication latency
and the execution latency. A desirable result would aim for a minimal increase
in both these latencies.

6 Conclusion

Cloud computing is a rapidly growing technology that has revolutionized the way
organizations access and manage their computing resources. Delving deeper into
Cloud computing we find Function-As-A-Service: a service that enables server-
less computing which is abstraction from the server management while providing
function execution capabilities. This work presented Eco-FaaS, a scheduling ap-
proach to Function-As-A-Service from an ecological perspective. We explored
the concept of Eco-FaaS and its potential to provide beneficial outcomes for
both ecosystems and society. We also examined current related case studies and
challenges in the implementation of Eco-FaaS and suggested potential solutions
for overcoming these obstacles. In conclusion, this paper goal is to demonstrate
the feasibility of Eco-FaaS as a tool for achieving sustainable scheduling in the
Function-As-A-Service landscape.
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