
Peer-to-peer Overlays for Resource Discovery
Filipe Rocha Paredes

Instituto Superior Técnico, TagusPark Campus
Av. Prof. Dr. Cavaco Silva, 2744-016 Porto Salvo, Lisboa, Portugal

filipe.paredes@ist.utl.pt

Abstract - There are currently a variety of projects that try to

improve the performance of applications by using spare cycles
from other computers connected over the Internet and,
sometimes in return of their own spare cycles in the future.
Nonetheless, none of those projects allows, in large scale, home
users to run unmodified desktop applications faster without an
infrastructure for resource sharing that implies the use of a
specific client-application in the computer host.

To address such problem, this dissertation proposes
mechanisms for resource discovery (e.g., CPU) to exploit
different peer-to-peer network topologies that maximize the
system performance metrics. This solution is part of an existent
project, GINGER, that aims for the synthesis of three
approaches: institutional grid infrastructures, popular cycle
sharing applications and massively used decentralized P2P file-
sharing applications.

The solution seek the development of a P2P middleware
infrastructure based on the concept of a Gridlet, a semantics-
aware unit of workload division and computation off-load.
Several criteria, like bandwidth or resources availability are
subject to analysis for the choice of neighbours in the peer-to-
peer network for the routing of Gridlets.

I. INTRODUCTION

With the growing Internet access and increased capacity

(processing, memory, storage, etc.) of personal computers, the
computational power that can be obtained through the use of
idle resources available in these machines should not be
neglected. Aiming to exploit these resources, infrastructures
and applications of Institutional Grids and Peer-to-Peer (P2P)
overlays have been developed, which have allowed the use of
such resources, including the performance improvement of
parallel applications (Grids) or file sharing between multiple
machines connected to the Internet (P2P).

Many communities in the Internet have witnessed a major
expansion and popularization of P2P applications to share
resources, either of processing cycles (SETI@home [1]) or
from files.

The Grid Computing has been developed as a new
generation computational model, both in the scientific world
and commercial world. The spread of this technology
encouraged the development of various tools in order to
facilitate access to resources in Grids.

The use of distributed processing cycles emerged initially
with applications such as SETI@home that follows a client-
server model, where a central server distributes tasks to
customers who voluntarily offer their cycles. After the
execution of these tasks during idle periods of the machine,
the results are sent to the central server.

Over the past few years a large number of proposals have
been presented that attempt to establish a link between the
institutional grid infrastructures (e.g. Globus [2]), popular
cycle-sharing applications (e.g. SETI@home [1]) and
decentralized P2P file-sharing applications. However, none of
those infrastructures allows common users to exploit parallel
execution for improved performance in popular applications,
by using idle cycles from other users.

Given the increasing development of technologies such as
institutional grids and P2P technologies, this work tries to fill
the gaps left by the infrastructures that try to synthesize cycle-
sharing applications to the previous mentioned technologies.
The solution proposed in this report designs a system for
resource discovery in a P2P overlay aiming to exploit
different network topologies that maximize the system
performance metrics. This system consists in a middleware
P2P infrastructure based on the concept of a Gridlet, a
semantics-aware unit of workload division and computation
off-load. Popular applications, without any necessary
modifications, have their tasks executed by other idle cycle’s
machines by sending the necessary data to the developed
system that creates and submits the Gridlets to the network.
These Gridlets are processed and returned as Gridlet-results to
the original node.

The remaining of this paper is organized as follows. In
section 2, it’s presented an overview of some of the existing
related works. In section 3, a system overview is presented.
Later, in section 4 the system architecture is described. Then,
in section 5, the mechanisms of resource discovery are
explained. Performance evaluation of the proposed system is
presented and discussed in section 6. Finally, in section 7
concludes this work and outline futures directions.

II. RELATED WORK
The P2P computing [3] has promoted a big change in the
patterns of Internet usage in recent years. Its great advantage
in relation to computing client / server, is the possibility of
direct collaboration between users, without relying on
centralized servers. Systems such as the Gnutella network [4],
a virtual overlay network on the Internet, unstructured, totally
decentralized, provides the advantages of P2P technology.

The system Chord [3] is an infrastructure for location and
routing in P2P which performs a mapping of files identifiers.
The location of data passing through implemented in Chord
identification data (files) with keys and saving the pairs (key,
data) mapped the keys in nodes.

The Pastry [5] is a basis for scalable routing and location of
objects distributed P2P applications for large-scale. The Pastry

plays the routing in the implementation and location of objects
in a vast network overlay of nodes connected through the
Internet. This can be used to support a variety of P2P
applications, including data storage, data sharing and
communication between groups.

In the Grid technology is distinguished from conventional
distributed computing by its focus on shared resources on a
large scale, innovative applications and in some cases, high-
performance orientation [6].

The Globus project [7] is a project that caused great impact
in the area of Grid Computing. Its system is called Grid
Computing in Globus Toolkit and provides a series of features
that allow the implementation of systems in Grid Computing
as well as the development of applications for such systems.

Currently, we can find a vast computational power of the
hundreds of millions of personal computers around the world.
The computing resources from public gets huge computations
distributed through the collection of resources on idle
computers connected to the Internet.

The BOINC [8] is a distributed computing platform
developed at Berkeley. Exceeded his original project, the
SETI @ home, and now incorporates a large number of
related projects. Its operation is based on the notion of units of
work but is not flexible. All units of work are defined as
having the same computational cost and bandwidth,
determined in each project.

III. SYSTEM OVERVIEW
In the context of the Ginger project [9], this work emerges

from the creation of a platform, capable of synthesize Grid
infrastructures, P2P applications and cycle-sharing
applications, exploring different P2P network topologies that
maximize certain system performance metrics (e.g. bandwidth
consumption or a task’s processing time) intended for the
choosing of neighbours in the network. The importance of
network topology stems from the fact that resource discovery
mechanisms follow the links formed by the P2P overlay
network topology. Thus, the main goal of the system will be
the correct routing of requests that must have into account the
associated computation cost and various performance criteria
that define the best choice, as the bandwidth of the connection
or the available resources in the node.

The system developed is a middleware platform on a
structured P2P overlay network that bases its operation around
the concept of a Gridlet. A Gridlet is a fragment of data,
capable of describing all aspects of a work task, as well as the
necessary changes for processing the data. When a work is
submitted by an application for processing, it is partitioned
into small tasks that are used to generate Gridlets, which will
be submitted into the overlay where will be processed by other
nodes. When the computation is complete, the results can be
sent, in the form of Gridlet-results directly to the sender node
or become available in the overlay.

A. The Overlay
The desired solution requires a robust peer-to-peer overlay.

Pastry [5] is a scalable and efficient peer-to-peer overlay

routing. This P2P network represents a perfect structured
overlay over the Internet for the proposed system since it
contributes with a good quality of P2P properties such as self-
organization of nodes, completely decentralization and fault-
tolerant. Moreover, the Pastry overlay provides with a
neighbour set for each created with a heuristic proximity that
includes a limited number of the geographically nearest nodes.

B. Submission and processing of requests
Each node can submit requests in the form of Gridlets.

These Gridlets will carry the necessary data for the task
computation and the cost associated to it. Since the goal of
this system does not address the interaction with the desktop
application, or the division of tasks and its processing, the
contents of the data that Gridlets transport are irrelevant. Thus,
the cost of computing a Gridlet is pre-set. The processing of a
Gridlet should only result in a reduction of the local resources
indicated by the Gridlet cost and in the consumption of the
Gridlet process estimated time.

C. Resource Discovery
In order to make accessible resources shared by other

machines connected to the overlay,, an implementation of a
resource discovery mechanism is needed so that resources are
found and engaged efficiently. The main functionality of the
solution consists of discovering and to manage the
information related to the resources of a limited number of
nodes in the network, for example, the whole neighbour set
provided by Pastry. By sending update-type messages, each
node will announce its resources, only to those nodes that
belong to the node’s neighbour set. When a request is
submitted by a node, it checks the information provided by its
neighbours and forwards the Gridlet to the node that seems
more capable of process the Gridlet. The selection process of
the best node to forward is a delicate and crucial process that
guaranties an effective and efficient resolution of the tasks.

D. Retrieving the results
Sending the processed results for a cache of files on the

P2P overlay (like PAST [10]) is the most flexible method for
retrieving the results and ensures privacy, since no identifier is
needed in the original Gridlet. However, it presents some
drawbacks, like the latency obtained by the insertion into the
cache and, additionally, the system should provide with an
estimated time of the transmission delay, Gridlet’s process
time and insertion of the result delay to schedule a retrieval of
the results from the cache. For replication purposes, the result
is already stored in cache.

This solution fits better with the project goals, giving more
primacy to flexibility and privacy, rather than time efficiency
during the retrieval of results.

IV. ARCHITECTURE
Similarly to the architecture of the project witch this system

is based on, Gigi [9], the architecture of the GiGi application
proposed is structured in layers. The running environment for
this system is controlled by an additional component, the
GiGiSimulator, responsible for establishing and monitoring

the overlay. The proposed system consists in a GiGi
application, an overlay network and a simulator. The
interaction between each component determines how the
system works.

Fig. 1. System Architecture

Fig. 1 shows the architecture of the system illustrating its
components, their interactions and a description of the main
features of each layer. The GiGiSimulator is responsible for
the simulation of the system, creating an overlay network with
a customizable number of nodes and for each node of the
network a Gigi application, which includes the four layers
represented in Fig. 1. Each layer of the application interacts
with the layer immediately above and below.

Following, we have a description of the components that
make part of the system’s architecture.

A. GiGiSimulator
This component simulates the operation of the whole

system and overlay, serving as a support for the network and
enables an interaction through a command interface with the
Gigi application. Its role extends from generation of events on
the network and on the GiGi application that is executed in
each node, until the monitoring of messages transmitted
between the nodes and a gathering of statistics relating to the
activities monitored in the network.

The establishment of the network is launched in the
simulator with the creation of the first node. When a node
starts up, it can either join an existing ringed type network, or
start a new one. If a ring doesn’t exist yet, then the node will
start its own ring. But once the first node has started a ring, all
new nodes will bootstrap off of any one node in the existing
ring, joining the network. After the network is complete, the
Gigi applications are launched on each node of the overlay.
Through a command-line interface in GiGiSimulator, it’s
possible to generate events on the network such as entry or
exit of nodes or in applications such as the submission of
requests.

Since this system only concerns about the network level of
the original project [9] some of the interactions between the
GiGi application and desktop applications or the aggregation
of the results into one complete result are not taken into
account.

B. GiGiApplication
The GiGi application layer has just a representative role in

the structure of the Architecture since there are no interactions
with real desktop applications. This layer was created to
convey an idea of completeness in the GiGi application
structure. Its functionalities are: transmission of data received
from the simulator to the layer of Gridlet Manager and
reception of Gridlet-results from the Gridlet Manager to notify
the simulator of the completion of a task.

Since Gridlet’s data computation is simulated, this process
is executed in this layer and it’s accomplished by reducing the
resources in accordance to the cost of the Gridlet and by the
consumption of time needed to process the Gridlet. No
computation is actually applied to the data.

C. Gridlet Manager
The Gridlet Manager deals with all operations being carried

out with Gridlets. It is in this layer that Gridlets are created
from the data received from the previous layer. After their
production they are sent to the bottom layer, the Overlay
Manager.

All messages of the type Gridlet received from the network
are automatically routed to this layer which will be analysed.
According to the current availability of the local node, a
decision is taken about a Gridlet to be processed by the node
in the layer of Gigi Application or to be sent back to the
Overlay Manager forwarding to another node in the network.

This layer is also responsible for retrieval of results from
the submitting Gridlets. As there is no entity that simulates the
desktop application, the results are just collected and sent to
the layer of Gigi Application which will notify the simulator
about the completing the task.

D. Overlay Manager
The Overlay Manager is responsible for routing and

addressing in the overlay network. The discovery and
management of resources in the network are also made in this
layer. The resources of the local node are controlled by this
component, which performs operations to reduce or increase
their values. When changes in resources occur, they are
announced to the nodes of the local node neighbour set
throughout update messages.

The neighbour set is established and managed at this level.
This set is created based on physical proximity that separates
the nodes. Moreover, this layer maintains all the information
about the availability of resources that each node of his
neighbour set has. During the selection of a node as
destination of a Gridlet, this information will be assessed
according to a set of criteria that aims to obtain the better
available node.

When a Gridlet is received from the Gridlet Manager, a
node with sufficient available resources to address this Gridlet

is selected as target for its routing. The statistics results of
choosing that node for routing a request are stored in a table of
reputation regarding that node. The Overlay Manager uses this
table when, on the whole neighbour set there are no
availability that meet the cost of a Gridlet. In this case, the
selection of a node to route the Gridlet is based on the
reputation table that as information regarding previous
statistics results, as cases of failure and who had less delay in
processing the applications.

E. Communication Service
The Communication Service layer deals with all

communications between the Gigi application and overlay
network. The effective transmission and receiving of
messages to and from the overlay is in this layer. All messages
received from the Overlay Manager are sent to the network.
The network contacts the Communication Service layer when
there is a message addressed to the node associated with the
application. This message is received and forwarded to the
Overlay Manager.

The overlay also notifies this layer about any joins or exits
from nodes, all of which occur in the vicinity of that node.
The actions to these changes are performed by the Overlay
Manager layer.

F. Overlay
The DHT network overlay used is Pastry [5]. The network

nodes are connected in a ring-based topology in the order of
its identifiers. In the Ids space a node links to other two nodes,
one with the previous node that has the Id immediately lower
and the later node that has the Id immediately higher. The
assignment of identifiers is done randomly meaning that nodes
closed in the Id space can be geographically dispersed.

This type of structure provides a set of properties key to the
sustainability of the system: decentralization, the nodes self-
organize amongst themselves without the need for any kind of
central coordination or the a super-node; scalability, the
network will operate properly for large numbers of nodes;
faults tolerant, the network will be reliable even with the
constant input, output and failures of nodes.

G. Messages Types
In this system there are two main types of messages that are

sent across the network: the Gridlets and the update messages.
The Gridlets form the basic unit of work requests generated by
the simulator. Later, these messages are put on the network, to
be processed by nodes with sufficient availability, depending
on the cost that is associated with each Gridlet. In turn, update
messages, whose goal is the dissemination of resources and
the availability of a node, are transmitted when changes occur
in a node’s availability. The message contains the available
resources of the sender node and, optionally, the duration of
that availability (as described in [11]). Each node sends only
information about their own resources and propagates these
messages only to nodes listed in its set of neighbours.

There are more two types of messages propagated by the
Gigi application, the Gridlet-results and ContentResult
messages. The Gridlet-results are Gridlet-type messages,

varying only the purpose of its content. The data field have
results of the computation on the data from the original
Gridlet and the cost associated refers to the effective cost of
the processed task. Messages from ContentResult are
messages that encapsulate the Gridlet-results so they can be
sent through the system cache used, the PAST [10].

V. RESOURCE DISCOVERY
The Gigi’s Overlay Manager layer is primarily responsible

for the discovery and management of available resources in
the overlay. The concept of Gridlets, used this system, cannot
be reduced to the simple injection of such messages on the
network and expect their propagation throughout the nodes
until it finds a node available to handle the job. Thus, it is
necessary to know forehand the availability of the network
before tasks are submitted.

Each node announces its resources, by sending update
messages, only to nodes that belong to the node’s neighbour
ser. When a node has pending requests for submission, it
checks the information about its neighbours and forwards the
Gridlet to the node that find it more suitable for the job. If
none of the neighbours have necessary availability to process
the request then it is sent to the node in the neighbour set that
will have better chance (based on previous records) from
forwarding the request to other nodes with availability.

A. Neighbours set
Right from the beginning, crucial elements to allow

resource discovery are initialized in the Overlay Manager. In
the final phases of network creation the nodes announce their
presence and their resources through update messages and
each one build its neighbour set. This set of nodes is provided
by Pastry and is built on a metric of proximity between nodes,
including the n (value varies depending on the configuration
and size of the network) geographically closest nodes, that is,
with the lowest values of RTT.

However, there may be situations where a given node has
in its neighbour set nodes that do not see him as a neighbour.
For example, to sets where n equals 20, the node A can see the
node B as one of its 20 closest and node B can have 20 nodes
which are closer than A. These situations become very
commonly for large networks. To ensure a minimum of
symmetry in the relationship between the neighbours a
method was defined that when the node A announce its
availability to node B, B will accept A as his neighbour
adding it to his neighbour set and announces his availability to
node A. To limit the uncontrolled growth of the sets, a criteria
for choosing a node as a neighbour was defined: B will only
accept A as a neighbour if A possesses an identifier
numerically smaller than B; this ensures convergence to
stability. Otherwise node B returns the update message to A.
The node A, upon receiving his own message it realizes the
rejection of B and excluded him from his set.

B. Select best available node
The definition of a node with better availability is one that

has higher availability according to a weighted measure of the
defined metrics (proximity, CPU, memory and bandwidth).

Each metrics used to define the available resources
contribute, in general, with similar weight in the weighted
calculation of a node’s availability. These metrics represent
the resources available in this node, so it is the preferred a
choice to a node capable of meeting the demands and continue
with available resources. The factor of proximity may also
have great importance on this choice, to the extent that we
nodes placed relatively close and with availability to handle
the tasks, avoids the spread of such requests or long
transmissions over the network and thus restricting the
allocation of resources into the closest nodes.

C. Select best unavailable node
When there are no nodes with sufficient availability to

handle a task, the selection of a node should is carried based
on the node’s ability to forward the request to other nodes that
are able to process the task. This ability can be found on the
historical records of results statistics from requests previously
sent.

Historic records of statistics results from past routes
through a certain node are maintained in a reputation table.
These records indicate the number of failed results, the
number of times that a request back to sender node and the
number of attempts used to retrieve the results. These
measures, being measures of failures or inefficiencies allows
setting a level of rejection on a node through the following
weighted calculation:

 Failures x 0.7 + Back to origin x 0.05 + Retries x 0.25

The bigger the result value, the higher the level of rejection
for that node. For this reason, greater weight is given to the
number of failures. It would be obvious from the outset, to
exclude those nodes from where they had found many failures,
however, this is not advisable since these are measures based
on past actions and the actual performance does not depend on
the node in question, but on its neighbours where the entry of
a new node neighbour or an increase in availability in the
vicinity of the node allows the recovery of reputation on it. As
for the other measures, both ensure that the work will be
properly done and returned with only implications of time or
excessive number of retransmissions, in the case of Return to
the Source with less importance on this last one.

VI. SIMULATION AND PERFORMANCE EVALUATION
Various tests have been executed for measuring and

evaluating the performance of the created system. Such tests
consist on simulating the flow of messages throughout the
network on distinct scenarios that the simulator allows
through the modification and combination of network
parameters and variations in the system configuration
parameters. For this objective, we used the Freepastry’s
simulator were a Pastry P2P overlay network can be simulated
with the platform developed in this report.

During the simulations, the nodes in the system will be
divided into 2 groups: a group of host nodes, which provides
its processing cycles for performing work from others and

another group of client nodes, who will submit requests to
prey on idle cycles available in the overlay.

Each test shall have control over the following
configuration parameters:

1) The number of nodes in the network;
2) The percentage of the types of nodes, host or client;
3) The total availability in the network;
4) The number of Gridlets the submit;
5) The submitted Gridlet computing cost (in units);
6) The number of client nodes, that is send requests.

In addition, variables which influence the routing of tasks

within the system can also be configured, with the aim of
revealing the best option values. At the results of each test are
analysed and evaluated.

All tests were performed on a single machine with the
following characteristics: an Intel Core 2 Duo T8300 2.40GHz,
3070 MB of RAM and OS Windows Vista 32-bit. The system
was implemented on the implementation of Freepastry version
2.0_01, running on the platform NetBeans IDE 6.0.1 with
Java JDK 1.6.0_06.

A. Procedure
The gain provided by the resource discovery mechanisms

in the process of nodes selection to forward the requests can
be obtained by considering the difference between the normal
execution of the system and the execution of the system
changing configuration values or disabling the existent
mechanisms.

Two aspects that influence the node selection to forward to
were tested: a) measurement of the information about the
neighbour’s availability; b) the ability that nodes have to learn
about their neighbours by keeping historical records of
statistics results.

In the first test a), the information about the availability of a
node is obtained from a weighted measure on the resource’s
node and its proximity to the local node. It were tested various
executions with different weights in the calculation of this
measure. For effective measurements, tests should occur in
scenarios were the system provides with enough resources,
were the availability in the whole network meets the demand
(point of saturation) and situations of excessive demand that
the network can not immediately provide. Variables: the
number of Gridlets to submit range from 300, 500 (1st point
of saturation), 700, 900, 1000 (2nd point of saturation) and
1200 Gridlets; and the variation of the weight of metrics (CPU,
memory and bandwidth band) and proximity in the node
selection calculation;

The second test b), concerns about the reputation system
maintained in each node, where they acquire information
about the statistics results of their neighbours in the past and
learn the best ways as they send more requests to the network.
The gain of using this mechanism can be obtained from the
difference between the performance of the system with and
without the execution of the reputation mechanism, given that
each simulation should occur sequentially and should always
be the same node to send requests to allow that the system

evolve and learn about the neighbours where the tasks were
submitted. Variables: execution with and without the
reputation mechanism enforcement.

TABLE I

PARAMETER OF RESOURCE DISCOVERY MECHANISM TEST
Parameters Value Parameters Value
Number of

nodes 1000 nodes Node types 500 clients
500 hosts

Network
availability

[4000, 4000,
4000]

[CPU, memory,
bandwidth]

Gridlets cost High Cost
[8,8,8]

Client nodes 100 nodes - -

The major goal of this test is to evaluate the performance

and the extra efficiency obtained from the discovery and
resources management methods used in this system.

B. Test results
For test a) on the measurement of availability, three

different weighted calculations were set on the node‘s
availability metrics. The first calculation only evaluates the
availability in terms of resources, distributing the weight
equally for the metrics: 33% for the CPU, 33% for memory
and 33% for bandwidth. The second calculation only
evaluates the proximity of the node. And finally, a last
calculation weights the two measures, favouring resources:
40% to proximity and 60% to resources shared equally for
each metric in 20%.

Fig. 2. Average number of hops in test a)

In Fig. 2 is possible to observe the resource discovery
quality obtained by the three calculations. Analysing shows
that for tasks for a number of Gridlets less than or equal to
500 the calculation based only in resources obtained the worst
results, but above the 500 requests it has improved, compared
with other calculations performance. Please note that until the
point of saturation (500) there isn’t any lack of resources in
the network, but from that point on the lack of resources is a
constant. Therefore, we can infer that the calculation based on
resources is favourable for situations of solicitation in excess
of resources. The calculation based on the nodes proximity,
has good quality efficiency as long as there are many
resources available on the network and very low quality in

situations of immediate lack of resources, since it is from 700
Gridlets submitted that gets a more growth on worse results.

In situations of massive demand for resources, the nodes
that we choose with the increased availability will have
greater chances of being successful, since sending a request
for a node with a capacity to treat only one Gridlet, may occur
that another node also has sent a request at the same time and
consequently, who arrives first will be the chosen, relaying the
other. Choosing the node with increased availability will have
more chances to process an application, and a greater
likelihood of this node, if fully occupied, finishing a task and
be able to process the request as soon as possible. In such a
situation, the proximity between nodes does not affect in any
way the node’s ability to handle or not a request, and in some
cases may even hinder the discovery of resources if the only
available ones are distant.

In a situation of abundant availability, the calculation based
on resources is irrelevant. Then, the calculation based on
proximity gains efficiency since we chose the closest available.

Fig. 3. Total simulation time in test a)

In terms of time required for completion of the 700 Gridlets,
we can see in Fig. 3 that the calculation based on resources
can be time consuming, in all situations. Even in situations of
lack of resources this calculation that promotes efficiency (see
Fig. 2) has higher time consumption. This cost corresponds to
the wasted time in wrong choices due to favouring of nodes
with more resources that can be geographically more distant
(higher latency). But the calculation by proximity, as expected,
has the best times in all situations cause gives primacy to the
selection of the closest nodes. The weighted calculation gets
intermediate values comparing the two previous calculations.
Also with great resource consumption the weighted decision
also produces the lowest time.

Thus, the weighted calculate based on resources and
proximity (favouring the resources) provide the best results in
most cases, as it takes the best of the two measures in both
situations with and without availability. We can thus conclude
that the calculation would be ideal with dynamically adjust the
values of the weights on the resources and proximity
according to the availability in the network. When the network
abounds in resources, should be given a greater or total weight
to proximity, taking advantage of its speedy completion of
requests over the time lost in the discovery of nodes with

greater availability for selection based on resources. In
situations of scarcity or lack of resources in the network
should be assigned a greater weight to resources and a
significant weight to the proximity, taking the selection on
nodes with more resources and taking advantage of the time
factor in the selection by proximity.

Fig. 4. Average number of hops in test c)

In test c) the reputation system, the simulation is executed
always with the same network nodes and the tasks are all
submitted from the same node. The rate of tasks is always the
same, 700 Gridlets in order to test the behaviour of the system
when there is a lack of resources on the network. Just for these
situations the mechanism target can operate in a relevant and
influence the results.

According to Fig. 4, it is possible to observe the routing
quality obtained using the reputation mechanism. The smallest
difference occurs during the first iteration since the reputation
system has not yet acquired the information about their
neighbours. In the second iteration is already visible a large
reduction in the number of retransmissions made, remaining at
that level from that point. So we can say that this mechanism
converges very quickly to his best performance.

Fig. 5. Total simulation time in test c)

However, the great routing efficiency with reputation loses
the time required for completion of tasks (see Fig. 5) for the
execution without reputation. But it is important to note that
the difference is very low, for example, for the first iteration,
the difference is only 400 milliseconds.

VII. CONCLUSION
The great achievement of this work resides in the fact that

popular applications can improve, in a transparent manner, its
performance through parallel execution of their tasks using
processing cycles of surplus from other machines belonging to
the same overlay. In contrast to previous approaches in this

area, the proposed solution enabled successfully exploitation
of idle resources on the network by users with common
generic applications without the need of any modifications or
use of API, Libraries, or specific programming languages.

The execution of tests on the system developed has shown
the success of the proposed features (discovery of resources
and efficient delivery of Gridlets) in operating the network
topology based on performance metrics (CPU, memory,
bandwidth and vicinity). The use of reputation mechanisms
also allowed to achieve more efficient with regard to the
delivery of Gridlets.

VIII. FUTURE WORK
With the future pointing to a greater interconnect between

all types of machines and devices the attention to the level of
security should not be neglected for such applications. From
shared data protection by the network to the control of access
to resources from other machines, we must prevent the system
from an array of threats that exist in networks today.

The tests show us various performances for different
weights values in the calculation of the selection criteria. The
study of the state of the network and consequent configuration
of variables at run time could improve performance in
abnormal conditions. Variables like the weights assigned
calculate the performance metrics are examples of changes
that would raise significant variations the final results.

REFERENCES
[1] D.P. Anderson et al., “SETI@ home: an experiment in

public-resource computing,” Communications of the
ACM, vol. 45, 2002, pp. 56-61.

[2] I. Foster e C. Kesselman, “Globus: a Metacomputing

Infrastructure Toolkit,” International Journal of High
Performance Computing Applications, vol. 11, 1997, p.
115.

[3] S. Androutsellis-Theotokis e D. Spinellis, “A survey of

peer-to-peer content distribution technologies,” ACM
Computing Surveys (CSUR), vol. 36, 2004, pp. 335-371.

[4] Y. Chawathe et al., “Making Gnutella-like P2P Systems

Scalable.”

[5] A. Rowstron e P. Druschel, “Pastry: Scalable,

distributed object location and routing for large-scale
peer-to-peer systems,” IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), vol. 11, 2001, pp. 329-350.

[6] I. Foster, C. Kesselman, e S. Tbecke, “The anatomy of

the Grid,” Grid Computing: Making the Global
Infrastructure a Reality, 2003.

[7] I. Foster e C. Kesselman, “Globus: a Metacomputing

Infrastructure Toolkit,” International Journal of High

Performance Computing Applications, vol. 11, 1997, p.
115.

[8] D.P. Anderson, “BOINC: A System for Public-

Resource Computing and Storage,” 5th IEEE/ACM
International Workshop on Grid Computing, 2004, pp.
365-372.

[9] L. Veiga, R. Rodrigues, e P. Ferreira, “GiGi: An Ocean

of Gridlets on a" Grid-for-the-Masses",” Proceedings of
the Seventh IEEE International Symposium on Cluster
Computing and the Grid, 2007, pp. 783-788.

[10] A. Rowstron e P. Druschel, “Storage management and

caching in PAST, a large-scale, persistent peer-to-peer
storage utility,” ACM SIGOPS Operating Systems
Review, vol. 35, 2001, pp. 188-201.

[11] I. Filali, F. Huet, e C. Vergoni, “A Simple Cache Based

Mechanism for Peer to Peer Resource Discovery in
Grid Environments,” Proceedings of the 2008 Eighth
IEEE International Symposium on Cluster Computing
and the Grid (CCGRID)-Volume 00, 2008, pp. 602-608.

