
RATEE - Resource Auction Trading at Edge Environments

Diogo Paulo Dias

Thesis to obtain the Master of Science Degree in

Information Systems and Software Engineering

Supervisor(s): Prof. Luís Manuel Antunes Veiga

Prof. José Manuel de Campos Lages Garcia Simão

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves

Supervisor: Prof. Luís Manuel Antunes Veiga

Member of the Committee: Prof. Rolando da silva Martins

January 2021

ii

Dedicated to me

iii

iv

Acknowledgments

I would like to thank my supervisor Prof. Lúıs Veiga for his support and share of knowledge to

make this thesis possible.

Then I would like to thank my family, especially my parents and my cousin, for their support

and encouragement.

Lastly but not less important, I would like to thank Discord’s people (they know who they

are), for their ideas and their support.

Thank you all, I will be here for you.

v

vi

Resumo

Tem havido um aumento do uso da Cloud para multiplos usos, tais como de computação e de

armazenamento. Para conseguir fornecer estes serviços para milhões de pessoas com uma grande

confiabilidade são necessário grande data-centers. Mas isto tem as suas limitações, tais como a

largura de banda, porque os dados são todos transportados para esses data-centers, e também

latência, devido à distância entre esses data-centers e os dispositivos pessoais. Com isso emergeu

um novo paradigma the Edge Computing. Este paradigma envolve realizar computações ou out-

ros tipos de operações em dispositivos mais próximos dos dispositivos pessoais dos utilizadores.

Estes dispositivos tem menos potência que os data-canter mas fornecem um menor latência e

como se encontram mais perto dos end-users, os dados são imediatamente processados. Os re-

cursos destes dispositivos são alocados para hospedar applicações. Estas applicações podem ser

alocadas de várias formas, voluntariamente, ou por troca. A que vamos nos focar é usar paga-

mentos, mais especificamente, o uso de leilões para alocar recursos para uma aplicação. Neste

trabalho criamos um prototipo, chamado RATEE que tem como proposito alocar recursos (que

são usados para fazer deployment de aplicações) usando leilões como mecanismo de troca entre

os recursos e o pagamento para obte-los. Este prototipo é usado em redes Edge, próximas do

utilizadores, e é descentralizado, a informação não se encontra armazenada num ponto.

Palavras-Chave: Edge Computing, P2P, Leilões, Docker, Aplicações Distribuidas.

vii

viii

Abstract

Right now we use the Cloud for multiple operations, such as computing and storage. To be

able to provide these services to millions of people with great reliability, large data centers are

needed. But these data centers have its limitations, such as bandwidth, because the data is

all transported to these data centers, and also latency, due to the distance between those data

centers and personal devices. With that limitations a new paradigm emerged, Edge Computing.

This paradigm involves performing computations or other types of operations on devices closer to

users’ personal devices. These devices have less power than data-centers but provide a shorter

delay and as they are closer to end-users, data is immediately processed. We could use the

resource of those devices in order to deploy applications due to them being underutilized. These

applications can be allocated in various ways, voluntarily, or by exchange. What we are going

to focus on is using payments, more specifically, using auctions to allocate resources to an

application. In this work, we created a prototype called RATEE that aims to allocate resources

(which are used to deploy applications) using auctions as a mechanism for exchanging resources

and paying to obtain them. This prototype is used in Edge networks, close to the users, and is

decentralized, the information is not stored in a single point.

KEYWORDS: Edge Computing, P2P, Auctions, Docker, Distributed Applications.

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xv

1 Introduction 1

1.1 Motivation . 2

1.2 Shortcomings of current solutions . 4

1.3 Document Roadmap . 4

2 Related Work 5

2.1 Edge Clouds . 5

2.2 Market Models . 10

2.2.1 Auctions . 13

2.2.2 Relevant Systems . 16

2.2.3 Analysis and Discussions . 23

3 Solution 25

3.1 Requirements . 25

3.2 Prerequisites . 26

3.3 Operations Supported . 27

3.4 Distributed Architecture . 27

3.4.1 Kademlia DHT . 28

3.5 Algorithm . 28

3.6 Taxonomy Classification . 34

3.6.1 Edge Cloud . 34

xi

3.6.2 Auction . 35

3.7 Summary . 35

4 Implementation 37

4.1 RATEE . 37

4.1.1 Software Architecture . 37

4.2 Swagger . 41

4.3 Tests . 41

4.3.1 Unit Testing . 41

4.3.2 Acceptance Testing . 42

4.4 Simulation . 42

4.4.1 Summary . 42

5 Results 43

5.1 Evaluation Methodology . 43

5.1.1 Allocation Success Rate . 43

5.1.2 Overhead Memory Consumption . 44

5.1.3 Ideal Price Deviation . 44

5.1.4 Scalability . 44

5.2 Experimental Evaluation . 44

5.2.1 Allocation Success Rate . 45

5.2.2 Overhead Memory Consumption . 46

5.2.3 Ideal Price Deviation . 47

5.2.4 Scalability . 48

5.3 Discussion . 49

6 Conclusions 51

6.1 Future Work . 52

Bibliography 53

xii

List of Tables

1.1 Virtual Machine and Container feature comparison, based on [Raj14] 3

2.1 Edge clouds tools dimensions classification . 11

xiii

xiv

List of Figures

2.1 Edge Cloud Taxonomy . 6

2.2 Find the optimal price based on profit maximization, extracted from [Ngu17b] . 13

2.3 Auctions Taxonomy . 14

2.4 Proportional share example . 18

4.1 RATEE components and interfaces relationships 38

5.1 Results of a bid finding an ask for the same resources 45

5.2 Memory consumption of the first instance created 46

5.3 Memory consumption of the first instance with offers created 47

5.4 Results of a bid finding an ask with the cheapest price 48

5.5 Number of messages sent based on the number of offers found 49

xv

xvi

Chapter 1

Introduction

Cloud Computing is a technological environment heavily used because of its properties like global

access, pay for what you use, resource elasticity, and others [Pet11]. To meet these alluring

properties, typically Cloud Computing is supported with big data centers at the Internet’s

backbone. This causes Cloud Computing to work mostly at a long distance from the Internet’s

edge with Wide Area Network latencies and expensive bandwidth for data to reach it.

The Internet Of Things paradigm is rising to new levels, enabling new concepts such as smart

cities. A smart city is one which uses information and communication technologies to make the

city services and monitoring more aware, interactive and effective [Jio14]. This information feeds

the network’s edge with data, which is then transfered to the Cloud data centers in order to be

processed and stored. The transfer of large amounts of data will cause bandwidth saturation

and a high latency [CWSR12]. An effective pre-processing mechanism at the network’s edge

would reduce the amount of data to send (to be processed or stored at Cloud) reducing the

bandwidth consumption and the latency to transport that data. The computing power and

storage are also growing at the networks edge: Raspberry PI [Cla16], [Pao16], laptops, desktops,

routers, hubs and others. Also, those edge devices can be used to do some processing that uses

sensitive data. Instead of all that data goes to the Cloud provider and be processed there. Some

privacy concerns may arise when some sensitive data is processed at the Cloud providers. Most

of the time these resources are actually underutilized. This inefficiency is opening the doors to

new studies, tools and migrations to the Edge Computing in order to provide services with low

latency and low bandwidth requirements.

1

1.1 Motivation

There are still many difficulties in handling edge cloud resources. A structured view of the

existing resources, their characteristics and the role of all entities involved in the edge cloud

environment is vital. In addition, reconfigurations often need to be performed in order to modify

or allocate existing virtual resources, depending on the usage or the service level agreement.

Inefficient allocation of resources has a detrimental impact on performance and costs and also

impact on the usability of the system.

Market-based resource allocation. Developing resource management techniques that guar-

antee scalability, performance, manageability and adaptability for the edge cloud environment

is crucial to resolve the aforementioned challenges. Traditional approaches, such as system op-

timization, focus solely on system performance metrics rather than economic factors, such as

revenue, cost, income, and profit [Ngu17a]. Comparing with the system optimization approach,

economic approaches and pricing can provide the following advantages:

1. The demand for resources depends on the needs of the users. Also, the resources provided

depend on the capacity and needs of the providers. There may be times when the demand

is higher than the supply or vice-versa. Pricing/economical strategies can be used to solve

the problem of scarce or abundant resources originated from dynamic demand and supply

prices.

2. There are various entities, e.g. stakeholders, end-users, cloud providers, in edge cloud

environment that have different objectives, e.g. cost, profit, revenue, income, utility, per-

formance, scalability, as well as different constraints, e.g., the budget and the technology.

There are times when these objectives often clash with each other, and this conflict can

be efficiently overcome with an economical/price model. Using economic/pricing mod-

els for negotiation mechanisms can result in optimal solutions for entities with different

objectivies, achievied in a mostly decentralized manner.

3. In edge cloud environments, the resource providers’ profit must be maximized while ful-

filling the client requirements. For this reason, price models based on cost minimization

and benefit maximization may be used.

4. One of the most important services in the cloud is Video on Demand. This is a service

which offers video for people to watch, e.g., Netflix, HBO, Youtube. These providers

offer tons of terabytes of media, overwhelming the networks’ bandwidth. Price/economic

2

approaches, e.g. smart data pricing, have been used to regulate user demands and have an

efficiently use of bandwidth. For areas with lower resources capabilities may have greater

prices to reduce the consume.

Therefore, economic and pricing approaches for resource management have been researched,

developed and sucessfully adopted to manage cloud computing deployments.

Cloud Containerization. In order to promote the use of multiple technologies and the de-

ployment of multiple technologies in a heterogeneous environment, it is necessary to have vir-

tualization, isolation, and security. The most used tools to promote virtualization are System

Virtual Machines, managed by hypervisors (e.g., ESXi, Xen, QEMU, ...), or containers (e.g.,

Docker1, Warden Container, OpenVZ, LXC containers), which are much more lightweight. In

Table 1.1 we show a comparison between Virtual Machines and Containers in several quality

attributes. The first one compares the operative system that is running in each sandbox envi-

ronment. Then the protocols that can be used to communicate between sandbox of the same

type. The performance by running the same program. The time it takes to startup time. At

the end the storage space.

Parameter Virtual Machines Containers

Guest OS Each VM runs in its virtual hard-
ware and Kernel is loaded into its
memory region

All the guests share the same OS
and Kernel. Kernel is loaded into
physical memory.

Communication Will be through Ethernet Devices Standard IPC mechanisms like
Signals, pipes, sockets, etc...

Performance Virtual Machines suffers from a
small overhead due to the trans-
lation of guest OS instructions to
host OS instruction

Containers provide near native
performance

Startup time Virtual Machines take a few min-
utes

Containers take a few seconds

Storage Virtual Machines have more stor-
age as the whole OS and the pro-
grams that are associated to run

Containers images have lower
storage consumption due to the
base OS being shared

Table 1.1: Virtual Machine and Container feature comparison, based on [Raj14]

Due to the advantages of Containers (mainly performance, startup, and storage), their pop-

ularity is increasing and started being used at large scales in cloud couply deployments.

1https://www.docker.com

3

1.2 Shortcomings of current solutions

There is a lack of decentralized edge-based cloud solutions. Most of cloud solutions: OpenStack2,

OpenNebula3, Swarm4 and others, have centralized architectures and operate only in a controlled

environment (not using volunteer solutions). The use of market algorithms to allocate resources

in a volunteer environment has been studied, and techniques to improve fairness, utility and

truthful price have been applied, but there is a lack of auction-based solutions in a peer-to-peer

environment [Sau11].

1.3 Document Roadmap

The rest of the document is organized as follows: in Chapter 2 it is presented the study and

analysis of related work. In Chapter 3 we explain our solution to address the shortcomings

mentioned before. In Chapter 4 we talk about our code, and the implementation of our system.

In Chapter 5 we describe the metrics and techniques used to evaluate our solution; in Chapter

6 we wrap up all the important information and present some concluding marks.

2https://www.openstack.org/
3https://opennebula.org/
4https://docs.docker.com/engine/swarm/

4

Chapter 2

Related Work

In this section we will discuss Edge Clouds in Section 2.1, describing its taxonomy, what aspects

differ across various environments of Edge Cloud and in the end we classify some tools based

on the taxonomy we proposed. The second theme we explore is the different Market Models in

Section 2.2. There are many different market models, and each one has is own advantages and

disadvantages and differ depending on the usage context.

2.1 Edge Clouds

In this section we will present the main design dimensions of an Edge Cloud environment and

the different values/types for those dimensions. These dimensions are Resource Ownership,

Architecture, Service Level, Target Application and Access Technology. The taxonomy

can be seen in Figure 2.1.

Resource Ownership is the dimension which represents the owner type of the resources.

Resource Ownership can be divided in three types: Single Owner, Volunteer and Hybrid.

In Single Owner, the devices used to support an Edge Cloud environment are owned by a

single entity. Normally these entities already have a group of specific devices and already are

configured for the purpose of sharing their own resources to create an edge network. This type

of ownership is normally used in big companies which implement their own edge computation

infrastructure. They have more control of the system, having more security, reliability and

other quality attributes, due to: controlling all the devices and making their own configurations,

controlling what types of work will be computed, and the protocol used to communicate between

the devices and others.

The Volunteer type differs from the previous one. The resources are shared by end-users

5

Figure 2.1: Edge Cloud Taxonomy

and these resources are normally their personal devices like computers, tablets, mobile phones,

and others (e.g. Costa et al. [Fer13], Cloudlets [Tim12], Satyanarayanan et al. [Mah09],

Cloud@Home [Vin09], Babaoglu et al. [Oza12] and Mayer et al. [Phi13]). One of the biggest

differences in this type is that the devices aren’t owned by a single entity. Due to that, enforcing

a Service Level across multiple authoritative domains is challenging and prone to data leakage.

This type of ownership may have more end-devices if almost every person shares the resources of

their own devices. But these devices (normally personal) could have lower capabilities resources

in contrast with Single Owner because the purpose is to share devices, so, they normally buy

devices with high requirements.

6

The last one is a Hybrid type and is a mix of the last two. In this environment, some resources

belong to a single entity while others belong to users who share their resources voluntarily. This

type of environment with single and volunteer ownership normally happens when comes from

personal devices like computers, mobile phones, and the single ownership comes from Internet

Service Provider devices like routers and hubs (e.g. Nebula [Alb17], Chang et al. [Hyu14]

and Mohan et al. [Nit16]). This type brings much more power resources to the Edge Cloud

but suffers from the disadvantage that some resources may be owned by some malicious users.

Volunteer Ownership also suffers from this disadvantage.

Architecture is another relevant design decision dimension. This dimension can be divided

in two main types: Centralized and Decentralized. When we are speaking about Architecture

we are speaking about the managers/orcherstrators distributed architecture.

Centralized architectures have dedicated nodes to manage and orchestrate all the resources

of the Edge Clouds. One problem that arises with this approach is the bottleneck which can be

created by the large number of messages between the managers and the worker devices. Also,

it suffers from Single Point of Failure issues, i.e., if the managers crash the work stagnates.

Decentralized architectures are the opposite, as all nodes are equal and there isn’t a privileged

group of managers or orchestrators. This type of architecture tends to scale out better for having

a better distribution than the previous one, reducing the bottlenecks and it doesn’t suffer from

a single point of failure. Decentralized architectures type is divided in two categories: Federated

and P2P. In Federated we have autonomous small clouds (also designated zones in some articles

[Ami15]) which provide services. These small clouds can group with other autonomous small

clouds to supply a greater/powerful service. Email is a great example of a federated architecture.

Similar, a Peer to Peer architecture makes all nodes equal in terms of responsibilities/work, even

if some fails the cloud continues operating (e.g. Babaoglu et al. [Oza12]), and they interconnect

themselves creating one Edge Cloud environment. Some nodes may have some special roles like

bootstrap that helps new users to connect to the network. In some works, they use peer-to-peer

architecture to implement federated networks. Moving this topology to a sub-set of peer-to-peer.

Service Level is a dimension that refers to the type of service which is provided by a service

in an Edge Cloud environment. Similar to Cloud Computing, an Edge Cloud infrastructure offers

similar services and for those services different levels. The three main types are Infrastructure-

as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Data-as-a-Service (DaaS).

IaaS provides infrastructure with CPU, RAM and network capabilities. As infrastructure,

we have two different categories: System Virtual Machines and Containers. In the Virtual

System Machine, the devices run a Virtual Machine like VMWare or Oracle Virtual Box, and

7

on top of that runs the operating system and applications supplied by the client. The System

Virtual Machine enables to run the clients’ applications in a sandbox environment, and also,

the client can deploy multiple applications, which can have a relation between them, in one

instance of a virtual machine. Virtual Machines use a component called Hypervisor. It is a

piece of software that enables the virtualization between the machine and the operative system

that they are running. There are two types of hypervisors: type 1 and type 2. In type 1, the

hypervisor runs on bare metal, they are the machine’s operating system, and on top of that runs

the virtual machines. Xen1 is one example of type 1 hypervisor. The type 2, the hypervisor

runs on top of an operative system. Type 1 has better performance results because there isn’t

the overhead of the machine operative system. But type 2 is sometimes more frequently used

because normally we have machines that have already an operating system because they are

also used for other purposes, and not only for virtualization. Using Container technology, the

clients only need to provide the application code and their dependencies. Containers are a newer

technology that is emerging and is being preferred over System Virtual Machines because they

package the application’s code and that image is more lightweight than the full system image

used to deploy in a System Virtual Machine.

This difference in the image size between a container and a system virtual machine is due to

the containers, already use and share the operative system that is running on the machine. Due

to containers sharing the same operative system, it is more prone to attacks than the system

virtual system machines, where each one has its respective operating system (but being much

more heavy-height).

PaaS already supplies the runtime platform (Common Language Runtime, Java Virtual

Machine, WebAssembly which is gaining great popularity, etc) and the client only needs to send

the application code to run remotely. This code differs depending on what PaaS level (which

are two) we are using. If it is Application, the user must send all the application’s code and

its dependencies to be deployed (.jar, .exe, .dll) as a self-contained program. The scalability

is managed by the PaaS’s provider. The other type is Function-as-a-Service (Faas) [Mic17],

[Ale17], a new service with rising popularity, and is also named serverless architecture. In this

type of service, the client only needs to implement some functions to deploy his own application.

These functions only contain business logic and are stateless. All the data is saved persistently

in databases or blobs and all the logic to receive requests and the code to scale out/in is handled

by the FaaS’s provider.

DaaS is a service where the provider is offering data storage to the end-users. In contrast

1https://xenproject.org/users/virtualization/

8

with the other types of services, this service doesn’t involve computation, the user only needs

to provide the data that needs to be stored remotely. The data that is being stored can be

files [Ant01] or structured data [Avi10]. Also, different types of data services offers different

properties. These properties are based on CAP2 theorem, where we can only choose two of

these three quality attributes: consistency, availability and partitioning. For consistency, we

may have strong consistency, where the information is always seen in the same way for all users,

or it can be eventually consistent. Where eventually all users that want to obtain the same

information, will see the same result.

Target Application refers to the type of application we want to deploy on the Edge Cloud.

These applications take advantage of some characteristics of Edge Clouds, like low latency. We

have five types of relevant applications which could use Edge Clouds: Data Intensive, Mobile

Offloading, IoT, Data Storage and General Purpose.

Data Intensive applications are applications that process large chunks of data. These pro-

cesses may be cleaning, transformation to other data type/models or aggregation. The chunks

of data can’t all be processed in one device, so, they are divided into multiple end-devices to

distribute the work, augmenting performance. By distributing the data chunks, the network will

suffer a higher bandwidth demand which will also cause latency by the processing of moving

data. To reduce these disadvantages, data intensive applications exploit the geo-location [Alb17]

of the data sources themselves and try to process the data on the closest nodes to avoid the

overhead and cost of transfering the data.

Mobile Offloading applications are primarily used by mobile devices or devices which have

lower hardware specifications than those required to compute some work. These lower specifica-

tions result from the trade-offs in small and mobile devices. To do heavy work in these environ-

ments, mobile phones offload their work to end-devices residing on an Edge Cloud infrastructure

to make computations on behalf of them. This preserves the battery of mobile phones and the

computation is much faster due to better hardware specifications. The Cloudlet work [Tim12]

attempts to offer a transparent method for offloading mobile application components to Edge

Clouds so as to use the apparently vast amount of resources.

IoT applications are similar to data intensive applications but in this case, while the messages

have a smaller payload, the number of messages is much higher. IoT devices try to have a long

lifetime to reduce the maintenance and to do that, they take into account the battery drain

on daily use. To reduce the battery consumption they send, periodically or eventually, small

messages. But a city can have a big number of IoT devices, resulting a large number of messages,

2https://en.wikipedia.org/wiki/CAP_theorem

9

https://en.wikipedia.org/wiki/CAP_theorem

burdening the network. In order to reduce this burden, some applications aggregate the data in

the network’s edge before reaching the Cloud [Nit16].

Storage applications [Lan03], [Ant01] differ from the previous ones because they don’t have

computation. Their purpose is only to store and retrieve data. Using the millions of devices of

an Edge Cloud environment they can replicate the data having high availability and reduce the

consistency. One downside is also the data may be inspected when stored in malicious’ users

end-devices. To have fast retrieval, data’s location can be used to find the nearest nodes with

the required data.

General Purpose applications are the last all-encompassing type. This type covers all the

other applications that didn’t fit the previous types. These types of applications can be simula-

tors, servers, and others.

Access Technology is the dimension referring to the technology used to access edge cloud

services. One way is by using Ethernet protocol, if the service is near and a physical connection

can be used. Another similar approach, but without any physical connection, is by using Wi-Fi,

more practical to the end-users (being wireless) but can suffer more attacks from spoofing.

Mobile devices can also use 4G/5G communication, for example, to offload work to edge cloud

end-devices. IoT devices can also use Wi-Fi, but this type of protocol has a high battery

consumption. To get high efficiency in the communications other communications protocols like

SigFox3/LoRa4 which target IoT devices specifications.

Of the design choices of the work In Table 2.1 we have a summary. This classification is based

on the taxonomy presented in Figure 2.1. Fields with value ’-’ mean no information was found

or given about that entry. Because of the frequent lack of specific information about Access

Technology (relying on higher level protocols such as TCP/UDP over IP), this dimension was

removed from the table.

2.2 Market Models

Market models have been used to solve many issues in cloud environments, solving some chal-

lenges and having the advantages mentioned in Chapter 1. Different market models offer different

characteristics and provide different specifications. To choose the market model to use in one

service it is first necessary to make a study about the domain where that application will exist

and the consumers of that service.

In this section, we will study different market models, their characteristics, and their advan-

tages and disadvantages. We divided the market models into two categories, based on how the

10

System/Tool
Resource

Ownership
Architecture

Service
Level

Target
Application

Edge-Fog Cloud [Nit16] Hybrid P2P - IoT

Chang et al. [Hyu14] Hybrid Federated Containers General Purpose

Cloudlets [Tim12] Volunteer Federated Application Mobile Offloading

Cloud@Home [Vin09] Volunteer Centralized SVM General Purpose

Satyanarayanan et al. [Mah09] Volunteer Federated SVM Mobile Offloading

Mayer et al. [Phi13] Volunteer P2P Application General Purpose

Nebula [Alb17] Hybrid Centralized FaaS Data Intensive

Babaoglu et al. [Oza12] Volunteer P2P SVM General Purpose

Samsara [Lan03] Volunteer P2P DaaS Storage

Past [Ant01] Volunteer P2P DaaS Storage

Table 2.1: Edge clouds tools dimensions classification

prices are set: Provider-Based Pricing and Auction-Based Pricing.

Provider-Based Pricing

In Provider-Based Pricing, the prices are set by the resource provider. We address three types

of provider-Based Pricing, e.g., cost-based pricing, differential pricing, and profit maximization,

where the prices are set by the provider but the approach to find these prices differs from each

other.

Cost-based pricing: This technique is a popular pricing strategy to calculate a resources’

price based on calculating the resources’ total cost and adding, as a desired benefit, a value

e.g. percentage of the cost or constant value. The objective of this strategy is for the resources’

provider, ensure some revenue or, in the worst case, guarantee the minimum price to be equal to

the cost of providing the resources. The total-cost is created from the fixed cost and the variable

cost. The fixed cost is the cost that does not change depending on the supply or the number

of requests. These are normally hardware costs, e.g. RAM’s price, CPU’s price, disk storage’s

price. In contrast, the variable cost varies with the number of requests or the service provider,

e.g. bandwidth used, the disk used, number of servers, and energy.

One of the advantages of the cost-based pricing is the easy way of setting the price, being

one function of the internal cost, e.g. the cost to generate the service [Cos03]. One of the

disadvantages is that the price does not take into account the price of other providers (provider

A may offer the same service with the lowest pricing, getting more sells) or the value which the

users are willing to pay. Another disadvantage may be the precision to calculate the variable

cost. It is necessary to have good metrics and a good monitor to convert those metrics to a

cost. This technique has been mostly used to calculate the service cost in geo-distributed data

11

centers [Alb08], [Sha10].

Differential pricing: the previous market model, cost-based pricing, does not take into ac-

count the value users are willing to pay. This misuse of information reduces substantially the

market area of users we want to target. To maximize the profit of providers, it is necessary to

attract these types of users. Therefore, it is necessary to know the requirements of these users,

know how much they are willing to pay, and find a good price for them.

This technique is called differential price because the provider, may offer resources at different

prices to different users, depending on the information aforementioned. The user surplus here

is the difference between the overall amount of money users are willing to pay and the total

amount of money they pay.

This strategy brings a greater profit for the provider can be considered unfair to the users,

e.g. one user may pay a much higher value than another for almost similar services. One of the

examples of differential prices in the cloud market is the Alibaba5 group, which offers a discount

to use their services, but they need to pay for one year. Another application of differential

pricing is used in bandwidth location for dynamic demands in data center networks [Din14].

Profit maximization: The profit maximization is the usual technique used to maximize the

number of resources shared and the corresponding price to get the highest profit possible to

the provider. To apply that technique we assume we have the number of resources shared,

denominated Q, and the price to share each resource, denominated P. The profit of a provider

is given by the formula, π = R(Q,P) - C(Q), where the π is the profit, the R is the revenue of

one provider based on a number of resources shared and the price to share that resources, and

the C is the cost to operate and share the resources. The cost could be divided into fixed cost

and variable cost (these costs were explained in the Cost-based pricing technique).

We want to find the optimal Q* where the profit is maximized Q* = max(π). With the

optimal Q* we find the optimal price, to share our resources, based on demand curve. The

demand curve is a linear function and represents how much the clients are willing to pay for a

resource based on its quantity. The demand curve is represented by the following expression:

P = a - bQ. The constant a and b are proper parameters. If we find the optimal Q* using the

demand curve we find the optimal price P* = a - bQ*. To find the optimal Q*, we first compute

the revenue function and the cost function. Using these functions we obtain the profit function,

we just need to subtract the revenue function from the cost function. After obtaining the profit

function, we find the Q* where the profit was highest. Then, we use this Q* value and obtain

the optimal price (P*) by intercepting the Q* value (which is a straight line) with the demand

5https://www.alibabacloud.com/

12

curve.

These iterations of steps can be seen in Figure 2.2. One downside it’s the price that doesn’t

take into account the market competition. One difficulty in this approach is to determine the

demand curve. To create this curve, different techniques are applied, some use randomness,

others follow a distribution function like gaussian.

Figure 2.2: Find the optimal price based on profit maximization, extracted from [Ngu17b]

2.2.1 Auctions

Auctions are one very relevant type of Market model. An Auction, in its simplest form, is a

process where one item is being bid by a group of buyers and the item is sold to the highest bid

[Hui14]. This is one of the processes of the auction but there are others with different actions

and we will speak about it bellow. In an auction, we may have up to four types of peoples

involved in a transaction. The bidder is the person who wants to buy the product and bids to

obtain it, e.g., end-users, cloud tenants. The seller is the person who offered the product to

be sold to obtain some profit, e.g., cloud provider. Sometimes the seller is the same person as

the auctioneer. The auctioneer is normally an intermediary agent that conducts the auction

and ensures a winner is decided. In this section we will speak about the different dimensions an

13

auction algorithm it can have. These dimensions are Confidentiality, Direction, Unity and

Symmetry. The taxonomy structure can be seen in Figure 2.3.

Figure 2.3: Auctions Taxonomy

Confidentiality: this dimension refers to if the price that the bidder’s bid, is known by the

other participants or not. It is open-cry if the bids are known by all participants. If the bidders

don’t know the bids of the other participants are called sealed-bid.

Direction: this type of dimension focus on where the competition comes from. It is a

forward auction if the bidders fight among themselves for getting the item. To do that the

winner must bid the highest value. It is called reverse auction, when we only have one buyer,

and the sellers, compete among themselves, by lowering the price of their product, until the

buyer choose the item with the lowest price.

Unity: this dimension classifies whether the good being bought is a solo unit, or a combi-

nation of items. In a single item the customers only bid for one item, for combinatorial, they

can make combinations of goods and buy them as a bundle.

Symmetry: this dimension is related to whether the competition is only among the buyers

or between the buyers and the sellers. It is referred to as one-sided if the competition is only

between the bidders or the sellers (never both at the same time). It is called double-sided if the

competition is between bidders and sellers, meaning, the buyers submit bids and the sellers can

submit asks.

There are many of one-sided auctions. Some of them are: English auction, Dutch auction,

first-price sealed-bid auction and second-price sealed-bid auction (the second-price sealed-bid

auction can also be named Vickrey auction).

In an English auction, the auctioneer starts to sell an item from a low price (normally this low

14

price is protected to ensure some return to the seller) and the buyers bid the item by ascending

the price. When no more buyers bid the item, the last bidder or the person who bid a higher

value wins the item. It is also open-cry, forward auction and can be a combinatorial or single

item.

A Dutch auction is also open-cry, can be combinatorial or single item and also follows a

forward auction, but the price to buy the item is descending. The auctioneers start selling the

item from a high value (normally higher than the real value), and at each time reduces the value

until some buyer bids the item to buy. Normally this type of auction is faster than the English

auction because there is no possibility of recursing competition of bids between buyers; the first

one to accept the price, wins the resource.

The first-price sealed-bin differs from the previous ones, in the the confidentiality dimension.

The first-price sealed-bid is sealed, meaning, bidders don’t know the value of others’ bids. Each

bidder secretly bids an item. After all the buyers bidding, the seller/auctioneer, orders the bids

based on the price bid, and the buyer with the highest bid wins the item, paying the value

bidded. There only exists one bid per buyer.

In second-price sealed-bid, the process is the same as the first-price sealed-bin, the difference

is that the winner of the auction, does not pay the value of his bid, but pays the value of the

second highest bid.

In double-side auctions, the buyer bids and the seller asks, creating more competition com-

pared with one-sided auctions, and much more fairness due to both participants, the seller and

the buyer, participate actively in the auction, generating a demand and supply profiles. The

winner of this type of auction depends on two different aspects: aggregation and resource di-

visibility. If aggregation is not allowed, for each ask, only one bid can be assigned. Resource

divisibility means whether the resource can be divided among multiple buyers. Gode and Sun-

der [Dha04] further divide double auction into three categories: synchronized double auction (or

discrete-time double auction), continuous double auction (CDA) and semi-continuous double

auction (or hybrid double auction). In a continuous double auction, a buy order or sell order

can be submitted at any time, and if there is a match between the buyer and the seller, the

trade can be made at that exact moment. In contrast, in synchronized double auction, traders

move at the same time.

In combinatorial auctions. The users may want to bid multiple resources like CPU time,

memory, and network bandwidth. The buyers normally, in this case, bid a bundle that contains

multiple resources/goods. The advantage of this approach is that, in order to obtain a group of

resources, the bidder only needs to attain to one auction, in contrast to participating in multiple

15

auctions, in each one, obtaining just one type of resources. The disadvantage is the difficulty

to obtain the correct price for multiple combinations of resources/goods, then it is hard to find

the set of bids that maximizes the revenue generated. This problem is considered a NP-Hard

problem [Mur05].

2.2.2 Relevant Systems

In this section we will speak about systems who proposed different auctions algorithms (of-

ten based on one-sided or double-sided but with some nuances) or use other type of market

mechanisms.

Envy-Free Auction Mechanism

The mechanism proposed by Bahreini et al. [Tay18] handles allocation of resource available at

two levels of the system by combining two auctions, position and combinatorial auctions. The

position auction disables the use of resources from different levels (levels represent where the

resources are located, in edge or cloud). The combinatorial enables to bid a bundle of resources

in contrast to bid n times for n different/equal resources.

A bundle is composed of a set of virtual machines. A virtual machine is composed of three

types of resources that will be used to allocate: CPU, memory, and storage. A bundle request

that is allocated to a user, is never associated to more than one level. They defined a preference

factor for a given level (edge or cloud) based on the distance between the users and resources

that are associated with that level. They assumed that the users are single-minded, they only

have interest in a single bundle and all super-sets of that bundle. Valuing the other bundles as

0. They do not target truthfulness for their mechanism, focusing on more two other properties:

individually-rational and produces envy-free allocations. The first one is to guarantee that users

participate in the mechanism and the second that no user would be happier with the outcome

of the mechanism of another user.

Multi-Round-Sealed Sequential Combinatorial Auction

A multi-round-sealed sequential combinatorial auction mechanism is proposed by Zhang et al.

[Hel]. This auction is combinatorial, meaning the good can be a bundle of items, also it is

multi-round. In one-round auctions, all the bidders submit their bids at the same time, and

the auctioneers choose the winners and match them with the resources. This approach was not

used because the architecture proposed by Zhang uses multi-service providers, and one-round

16

auctions need one controller following a centralized architecture.

The auction mechanism is thus divided into three stages: bid strategy, winner determination,

and payment rule. At each round, the users send their resources requirements and bids to all

auctioneers (service providers) (bid submission). After that, the service provider chooses the

winner based on who brings the highest utility to the service provider. The utility is based on

the bidding value provided by the bidders. The bidders who fail to obtain one service provider

are moved to the loser vector. The bidders from the loser vector will bid again in the next

iteration/round receiving a bid improvement. The iterations finish when the number of max

rounds has been achieved or the difference between the utility of the current round with the

previous round is lesser than a threshold. In the last stage, payment rule, the bidders who won

the auctions pay the value equal to the second-highest bid, following the sealed second-price

auction (Vickrey Auction) approach.

Tycoon

Tycoon [Kev] is a distributed market-based resource allocation on an Action Share scheduling

algorithm. In their architecture, the authors separated the mechanism from the strategy. The

strategy interprets users’ and applications’ specifications and the resources desired. One example

of that is: one web server may have more concern about latency than throughput and is,

therefore, willing to consume lesser resources, but that resources should be located near the

clients. The mechanism provides incentives for users truthfully value the resources, and the

providers provide good resources. Their Auction Share is similar to proportional share, but

enables them to specify how they trade-off throughput, latency, and risk.

In proportional share, a group of buyers offers some value to buy a group of products

that are divisible. Then the products will be divided into the buyers based on their bids. The

percentage of products provided to each buyer is proportional to the bid value in comparison to

other bid’s value. This mechanism maximizes the allocation of the product to a buyer because

everything will be assigned to one buyer. In Figure 2.4 we can observe three end-users bidding

for a memory RAM of 100GB. After each one bid his own price, the auctioneer divides the

RAM proportional based on the bid’s value. Proportional share has various variants, another

type of use is, instead of dividing resources to multiple buyers, the buyers always obtain the

total resources, and what they are buying is the time of CPU usage, each one obtains the CPU

proportionally to the bidding price.

One of the advantages of Proportional Share is that it offers a higher time of utilization and

lower time of reservation.

17

Figure 2.4: Proportional share example

Two drawbacks are that the product must be divisible for a group of bidders to bid, the

product will be divided, based on the bidder’s value, to all the bidders, and the totality of the

resource is not guaranteed. the totality of the resource is not guaranteed because one may want

to rent all the products or none, but using the Proportional Share, if another buyer bids too,

one will lose some products to that bidder, ruining one goal of getting all or none.

For fine-grained resources, it is used as a first-price sealed-bid auction or the second-price

sealed-bid auction. The bidder with the highest bid wins allocation to a window slice time

processor (each buyer gets their respective time to run their applications on device’s cpu).

Because of being distributed, the system is fault-tolerant and allocates resources with low latency.

PeerMart

PeerMart [Dav05] is a distributed technology which enables trading of services using Double

Auction algorithms over a peer to peer network. Their goal was to maximize the consumers’

utility and find sellers offering a particular service at a low price, and the providers goal is to offer

their services at the highest price possible and maximize their profit. The intermediary peers

are responsible to match consumers with the providers respecting the consumers’ and providers’

requirements efficiently.

The authors chose using pricing mechanisms to incentivize peers to provide services, like file

storage. By choosing a peer to peer architecture, they don’t have a central authority to maintain

the prices bid by the bidders or the sellers. One way to communicate could be using broadcasts,

but this does not scale and doesn’t guarantee that all peers are reached. They proposed to

18

maintain routing tables at intermediary peers. Then peers use these routing tables to find the

peer who offered a given service for a given price. The use of double auctions is derived from

single-sided auctions and it has the disadvantage of being consumer- or provider-oriented. One

of the problems of implementing a peer to peer infrastructure is that malicious or faulty users

may exist. To solve this problem, PeerMart uses PKI (Public Key Infrastructure) to identify

the sender.

The auction algorithm works as follow: A provider (consumer) who wants to provide its

service (consume a specific service), sends an offer (request) to the respective broker, which is

composed of a set of peers. The broker replies with the highest buy price (lowest sale price)

offered by another peer. After the provider (consumer) receives the information, it sends a bid

to the broker applying its own strategy. Then the broker receives the bid and with that, chooses

one of the two options: After receiving the offered price, there is no match if the offered price

is higher (lower) than the current bid price (ask price). Therefore, the offered price is either

dropped or stored on the table for future use. If there is a match, the price is sent to the peer

who has the highest bid. The price paid to the provider by the buyer, is the mean between their

offered prices.

To implement a peer-to-peer network, they choose to use FreePastry6. It is a tool that is

implemented in Java and the the overlay of the network is based on Pastry.

Bellagio

Bellagio [Alv04] is a resource management tool that allocates resources using combinatorial

auctions. To discover the resource existing in the network they use SWORD [OAPV04]. The

users submit the bids to a centralized auction, and they use XOR language as the bidding

language in order to simplify the learning curve of the end-users. The auction is periodic and

receives requests for heterogeneous resources like disk space, memory and bandwidth.

Lin et al.

Lin et al. [Wei10] propose a dynamic auction mechanism to allocate resources in a edge comput-

ing environment. They made two contributions: i) the introduction of peak/off-peak concepts

into the resource allocation, ii) the system contains two types of tasks, background, and float.

The first contribution enables the cloud provider to increase efficiency and its revenue in a

varying demand environment. The second contribution enables the devices to distribute the

resources to end-users and have its own background process. The revenue is obtained from the

6https://www.freepastry.org/

19

inputs to the background task and also the resources shared with the users. They use second-

price sealed bid, each user bids to a cloud service provider. The cloud service provider collects

the bids and orders them. They find how much capacity they can provide, e.g. k, and from

this capacity, they say the price is the (k + 1) highest bid. The k highest bidders obtain the

resources with the price from the (k + 1) highest bid. They employ a truth-telling method due

to the price to pay being determined by their own bids.

Double Multi-Attribute Auction

Wang et al. [Xin14] proposed a resource allocation model based on the Double Multi-Attribute

Auction (DMAA). Their model focus on three important steps. Firstly they transform the

non-price attributes in a Quality Index that represents the assesment to the previous trans-

actions. After that, they use Support Vector Machines to predict the price. Lastly, they use

Mean-Variance Optimization to obtain an efficient solution to allocate the resources (choose the

winners) to different users.

Their system is divided in three actors: the Cloud Resource Provider (CRP), Cloud Resource

Consumer (CRC), and Auction Organizer (AO). The CRP provides the resource in exchange of

a payment. The CRC pays to a CRP to allocate resources. The AO is the auction organizer

responsible to collect the bids and asks, match the transactions, and select the winners.

To calculate the price submited by the CRP/CRC a group of steps are necessary. In CRP,

they obtain three non-price attributes, namely, Quality of Service (QoS), Level of Delivery (LoD)

and Level of Spiteful Quote (LoSQ). The CRC also follows the same logic but doesn’t have the

QoS attribute. Then they use these attributes and transform them in a Quality Index by using

a neural networks algorithm. The activation function used was the Sigmoid function.

After having the quaility index, they use Support Vector Machines to predic the price. In

order to find the estimated transaction price, they also use quality index and other metrics

(created by themselves) like reserve price of provider, ration supply demand and expected sale

amount of provider. After that, the CRP/CRC obtains the estimated transaction price. To train

the Support Vector Machine classifier, they use historical samples from the previous auctions

and input information.

Then, the AO makes the match between the CRC and CRP based on this information, and

determines the winner by using Mean-Variance Optimization. This algorithm enables to find

the most efficient way to distribute the resource to the users.

20

Auction Based Resource Co-Allocation

Auction Based Resource Co-Allocation (ABRA) [Ali09] is a model that improves upon a previous

novel combinatorial auction model called multi-unit nondiscriminatory combinatorial auction

(MUNCA). The new model penalizes the non-allocated resources after an auction, having a

better resource utilization and hence increasing the revenue. Their model can be mathematically

formulated by using integer linear programming. In the paper, it was also proposed a set of

five new heuristic algorithms that are based on well-known meta-heuristic techniques. These

five heuristics are: (i) simulated annealing, (ii) threshold accepting, (iii) list based threshold

accepting, (iv) variable neighborhood search and (v) genetic algorithm.

Reverse Batch Matching Auction

Wang et al. [Xin12] proposed a Reverse Batch Matching Auction (RBMA), that is based on

reverse auction, but has additional features like batch matching, to improve the reverse auction

efficiency, and twice-punishment mechanism to prevent fraud and malicious users. RBMA has

three participants in the system: Cloud Resource Consumer (CRC), AI (Auction Intermediary)

and Cloud Resource Provider (CRP). AI the is key component to control the system. It stores

the resource information, applies the reverse auction, batch-matching, and twice-punishment

mechanism. The CRC and CRP send their tendencies/intent (e.g. bids, resource ammounts) to

the AI. Then, the AI starts the auction process that is divided in three stages: waiting period,

preparation period and auction period. The waiting period is the period that the buyers and

the sellers send their tendencies/intent to the AI, and these are ordered in ascending order, if

are seller bids, and in desdending order, if are buyers bids. The start of the auction is marked

when the system receives the first buyer’s parameters. In the preparation period, it is where

the AI selects the buyers and sellers that can participate in the auction. This selection is a

time-restriction. Auction period is the last stage. There is a matching between the CRC and

CRP based on the bidding prices. At the end of the auction it is used the twice-punishment

mechanism. The first punishment comes at the end of the auction round, the program will

enforce to the CRP to bid its CP (cost of the rented resource), and enforces CRC to increase its

RP (Reserve Price). The second punishment comes if the auction hasn’t come to an end after

receiving the first punishment. It will set The price of every CRP bid and the reserve price of

every CRC to be the unified median price. After that, the resource allocation mechanism uses

Immune Evolutionary Algorithm and the transaction price to otimize the resources allocation.

Also, the CRP service is graded to improve future services that CRC obtains. To evaluate the

21

auction, three evaluation criteria were applied by them: market efficiency, user satisfaction and

quality service.

Combinatorial Double Auction Resource Allocation

Samini et al. [Par16] proposed a Combinatorial Double Auction Resource Allocation (CDARA).

To simulate the prototype of this auction, it was used CloudSim, which is a Java-based simulator

for simulate cloud environments in order to extract metrics and evaluate the efficiency of the

auction algorithm. In their environment, there are four entities: the user, the broker, the cloud

provider, and the cloud market place. The cloud market place is composed of cloud information

service (CIS) and auctioneer. From the article, it stems the cloud market place as being a

centralized entity. CDARA is divided into seven communication phases.

At first phase, the cloud providers send their resources, and their respective prices, to the

CIS. The users send their tasks to the broker and, for each task, the broker gets the list of

resources that match the requirements to run that task.

The second phase, the broker generates bundles (a combination of resources) and the price for

each bundle. The cloud provider does the same action. Both send price (bids) to the auctioneer.

In the third phase the auctioneer communicates to the broker and the cloud providers the

end of the auction.

In the fourth phase, the winner is determined. In this phase, the users and cloud providers

are ordered depending on what resources they are bidding/sharing and the respective price.

In the fifth phase (called resource allocation), the auctioneer checks if the cloud provider has

the necessary requirements, requirements defined by the user, to run the tasks. If the first cloud

provider cannot fulfill the requirements, the auctioneer passes to the second cloud provider.

After the requeriments of the first user are satisfied, the auctioneer applies the same procedure

for the next user.

In the sixth phase it is selected which pricing model to use to decide the payable price by

a user to a cloud provider for allocating resources. To use this model, it is used the number of

requested items by the user and the number of offered items by the cloud provider.

In the last phase, the user sends the task to run in the cloud provider’s resources. And the

user makes the payment to the cloud provider.

22

2.2.3 Analysis and Discussions

After studying and classifying taxonomically the edge cloud environment, in our solution, it

will be followed a distributed nature, more precisely, we will aim to implement a peer-to-peer

architecture. The reason of this choice is because, peer-to-peer is much more scalable and our

solution will target all end-devices that users use, which could be millions of devices. Of course,

this choice also brings disadvantages, and one of them is the existence of malice users. This is

more dangerous in peer-to-peer because we don’t know the reputation of the other peers, which

could affect the application’s behaviour as a whole.

On top of our overlay network, it will be used an auction mechanism to match the resources

being sold to a buyer. The auctions follow more a price/demand curve comparing with the other

market mechanisms because multiple sellers or providers influence the price

It was hard to choose which type of auction we will be based on to implement. This difficulty

was due to the different characteristics they have between them, and these differences aimed to

solve different problems. We decided to adapt auction mechanisms, that would fit better in our

domain (sharing resources) and our architecture (peer-to-peer).

23

24

Chapter 3

Solution

In this chapter, we will present present the architecture of our solution which will be called

RATEE (Resource Auction Trader at Edge Environment). RATEE is a decentralized trader

that matches users that want to deploy docker containers and users that are selling its resources

to deploy a docker container in trade-of money. The mechanism used to make this transaction

is based on auctions. The solution target primarily edge cloud environments/end-users. After

studying the existent technologies (previously talked in Section 2.2.2), we will first discuss the

desired requirements that our solution should have and the conditions a user must comply to run

applications in the proposed solution. The algorithms and data structures of the solution are

then discussed. At the same time explaining the components of the system and their interactions.

Finally, we will classify our system based on the taxonomy presented in Chapter 2.

3.1 Requirements

Our target is the edge environment, meaning we want to support thousands of users. Volunteer

Networking and Computing platforms, like the GUIFI.net1[BRFN15] community network, is

growing constantly. So, our solution must be able to scale with the demand of the users to

deploy containers or sell resources. This is important because, since it is a solution that depends

on supply and demand trade-offs, the more users we have using the better is the solution, also, if

we are sharing resources machines to deploy containers, we don’t want our solution to consume

a large part of those resources.

We are enabling the possibility of deploying a container in a machine, but the buyer has

its own requirements to deploy the application. It must be possible to define how much our

1guifi.net

25

application requires resources to be deployed in order to be flexible and support variable groups of

services. With these different requests, it is also possible to have different prices, and depending

on the request we can target all groups of users. So we need to define when we are making a

request the amount of CPUs and RAM that we need. Depending on that, different prices will

appear. An offer is composed by a price and a resource. A resource is defined by the amount of

memory RAM and CPU.

From the execution platform point of view, and to target all users, we need to have interop-

erability and the possibility to run workloads in all environments, independently of the operative

system, and hardware architecture. This applies also to the application that has to be deployed

to containers in order to run in all systems.

3.2 Prerequisites

The user to use our application must fill in predefined conditions such as:

• If we are sharing our resource to other people deploy their applications, we must have

docker installed locally. If we are only buying this is not needed.

• Run our application (RATEE) in the background in order to facilitate the deployment of

other containers and help other users to make the fastest trades.

• Have internet access or at least have a private connection between the peers that are

going to be part of the network, because the system uses peer-to-peer communication

mechanisms.

Other mechanisms may be needed in case this solution is deployed live to production, but

due to limited time and be out of scope they weren’t implemented and will be added to future

work):

• Reputation system that gives points to the uses when a trade happens and both parts do

the agreement. And the users with higher reputation will only trade with other users with

also high reputation. This will mitigate and remove malicious users.

• A high distributed file system in order to persist the container’s image and facilitate the

download in a decentralized way. This case is for edge application and if we want to

support more than one container technology.

26

• A client to make transactions using virtual currency. This would decouple the application

for a payment provider and obfuscate the users that are participating in the transaction,

protecting their identities and information.

3.3 Operations Supported

By using our tool, the users can share their resources, in trade of money, or buying the resources

of other users (that are sharing). The two main operations supported are:

• Creation of a bid. This is translated by searching in the network for producers that are

selling that resource. After founding it, the user pays and the application is deployed.

• Creation of an ask. This is the reverse process, we sell our resource for a given price. After

finding a buyer, we deploy its application.

We also support other auxiliary operations such as:

• Get all bids/asks created that are in pending state (no matching offer was found).

• Remove bids/asks.

• Configure banking account number information.

3.4 Distributed Architecture

In order to have an application that scales and supports thousands of users, having a decentral-

ized architecture is better because we are diving the computation between the parties. These

parties are consumers or providers that will support with storage of information. If we need

more resources, we just need to add more parties. Our tool work is based in a peer-to-peer ar-

chitecture, meaning all nodes have the same code and responsibility. There are a lot of different

approaches to implementing a peer-to-peer architecture. Each approach has its own network

structure of way of sending messages and responsibility, instead of a random approach of broad-

casting to all peers. To add a peer-to-peer network structure we will use a third-party library

Libp2p2. This library creates a p2p network where its structure is based on Kademlia DHT.

2https://libp2p.io/

27

3.4.1 Kademlia DHT

Kademlia[ME02] is a peer-to-peer distributed hash table. Like many other peer-to-peer dis-

tributed hash table implementations, this one also has Keys of 160-bit, each node that par-

ticipates on the network is also identified by an ID of 160-bit and values are stored on nodes

with IDs close to the key. One of the benefits of Kademlia is the use of a novel XOR metric

for the distance between points in the keyspace, XOR is symmetric allowing the participants of

the network to receive the same number of queries for lookup. In contrast with other types of

peer-to-peer which have an asymmetric structure which leads to rigid routing tables. Kademlia

consists of four RPCs (Remote Procedure Calls): ping, store, find node and find value. The first

one is used to check if a node is alive. The store is used to save information ¡name, value¿. Then

we have find node to obtain the address of a node, and find value that returns the value that

was stored with store RPC. Its routing table is a binary tree where each leaf is composed of

k-buckets. These k-buckets contain nodes that start with the same prefix for the ID. Like any

other decentralized peer-to-peer system, some security issues have been identifier. This caused

the creation of a secure key-based routing based on Kademlia, S/Kademlia [BM08]. They imple-

mented parallel lookups, limiting the free node identifications generation with a group of crypto

puzzles. To store and replicate the data in a safe way it is used a reliable sibling broadcast.

3.5 Algorithm

The system uses an auction mechanism with bidders and askers. Each user can be a bidder and

an asker at the same time, or just be one of the two. Also, our solution is peer-to-peer so we

need to send messages to other peers in order to trade information. And due to the complexity

of the transaction, a state machine will be useful to help in these cases.

When we start our application, the first thing RATEE does is connect to the peer-to-peer

network. A connection is established with the boot peer. This boot peer is an application that

already is running and is the entry point for the nodes to connect between themselves. Due to

being a boot peer, all other peers know its IP in order to establish the connection. With a small

number of boot peers, this doesn’t scale at production environment, being easier with a higher

number of that peers. Another solution that could be used is each node has a discover algorithm

to find each other, not being dependent on an entry point. The last one scales better, because

we would reduce the number of messages sent to the boot peers (to join the network) which is

a point to create a bottleneck.

Libp2p supports both approaches but the second one has a lot of problems in public networks

28

1 {

2 "id": Guid

3 "price": number

4 "resource": {

5 numbersOfCpu: number

6 memorySpace: number

7 }

8 "isBid": boolean

9 "offerResourceHash": string

10 "isReserved" : boolean

11 "lastReserved" : Date

12 "peerReserved" : {

13 "id" : string

14 }

15 }

Listing 1: Offer structure

due to firewalls and NATs. Because of that, we used the first approach. Then, in case we have

multiple users using our application, we may use the first with the second approach in order to

have the advantages of both worlds.

We first start the offer received by the user, in this case, a bid. A bid is similar to an ask,

so the same structure is used. We just need a boolean to differentiate between themselves, and

a bid also receives as information the docker image application that will be deployed after the

transaction is made. We can see in Listing 1 the structure of an offer. The bid is composed

by an id which is a Guid and is used to identify the offer, different offers should have different

identifiers. Then the price represents the amount that we are willing to pay/sell in our offer.

We have a boolean isBid that represents if that offer is a bid or an ask. The offer contains

an object that saves the resources that we are selling or buying. The offerResourceHash is the

mapping of our resource plus if is a bid or not. Lastly we have the fields that represent if an

offer is reserved, the last time that was reserved and if it is reserved, the peer that was made

the match. We can observe in Listing 1 the offer’s structure.

After receiving an ask, the system searches if there are peers that are buying that resource.

For that we map that resource to an Identifier, and using the libp2p we search for buyers. Due

to being the first user in the network, no bidders are found, so we save our ask and notify that

we are selling that resource (using a libp2p method). In this step, the Identifier/key created

previously is converted to a DHT Id. Using that DTH id tries to find the closest peers to that

id. Those peers will save the association between the DHT id and the provider of that id. To

29

1 {

2 "requestResourceId": string

3 "isBid": boolean

4 }

Listing 2: Get Price request message

find providers the process is identical, but instead of sending a command to save the key, we

send a command to obtain the providers that have that key.

Suppose a buyer wants to buy that resource. In case the user wants to buy another type

of resource, the process will be the same, what happened with the seller will happen with the

buyer, no sellers will be found for that resource, so the bid will be saved and notified to other

peers. In this case, he wants to buy the same, so the application will receive a request for that

bid, then it will try to find if sellers are selling that resource. In this case, it receives the IP

of the other seller, (if other sellers were offering the same resource, we would also receive that

information). After getting the address, it sends a get price request. We can observe in Listing

2 that the message is composed by a boolean to say if is a bid or not, and then a Guid that

represents that resource that we want to bid.

After sending the message the seller will receive it and check what message type is. It will

deserialize the message and based on the type redirect to the correct handler. In this case, the

request is to obtain the price, the seller will prepare the response message with the asks with

the resources that the buyer wants and send it to the buyer. We can observe in Listing 3 the

response message.

Algorithm 1 Handler of a get price request command

1: function GetPriceHandler(resourceId, isBid)
2: allOffers← isBid?askTable : bidTable
3: requiredOffers ← allOffers.filter(a => a.resourceId == resourceId)
4: response ← createReponseMessage(requiredOffers)
5: return response
6: end function

The response contains the information about the owner, and the offers that were associated

with that resource id, its price and id to be identified in future uses. In case there are multiple

sellers for the same resource, the buyer will send Get Price Request to all of them, and after

that aggregate them in an array and sort them based on price. The resource that are being sold

with the lowest price will have an higher priority to make a transaction.

After receiving and aggregate all the prices, it will start to send to the cheapest one a bid

30

1 {

2 "offersList": [{

3 "id": string

4 "price": number

5 }]

6 "offersOwner": {

7 "id": string

8 }

9 }

Listing 3: Get Price response message

1 {

2 "owner" : {

3 "id" : string

4 }

5 "bidOffer" : {

6 "id" : string

7 }

8 "askOffer" : string

9 "resourceRequestId" : string

10 }

Listing 4: Send bid request message

request. In Algorithm 1 we can observe the bid request handler. The format of the bid request,

presented in Listing 4, includes we send our identification, our bid offer and the ask offer that

we are trying to match. Then the seller will receive this bid request, and check if its offer is

not reserved to any other user. If it isn’t, it sends a response saying if the bid was accepted

or not. If it was accepted, the seller adds information to the offer that he is selling, the buyer

identification and the time when it received the message.

This timestamp is the amount of time that the ask is reserved for that bid. In case the buyer

does not want anymore this offer, due to a big number of reasons (e.g. he has found another

seller that is selling the same or for a cheaper price), another more drastic case, he has network

problems or is instance/machine goes down. This way the seller or buyer doesn’t depend on

the other to trade with other people. This way, if the defined time was exceeded, suppose that

the user is not interested, or another problem has happened. But we don’t have any kind of

obligation with him, because the transaction it didn’t happened at that point, so we will search

for another user that matches with his offer. The time we specified was 4 seconds. We think this

31

Algorithm 2 Handler for bid request command

1: function BidRequestHandler(bid)
2: ask ← askTable.single(a− > a.id == bid.askId)
3: if ask! = null & ask.lastReserved.getT ime() + 4000 < Date.now then

askTable.Remove(ask)
ask.lastReserved← Date.now
ask.ownerId← bid.ownerId
response← CreateSuccessResponseMessage(ask)
return response

4: end if
5: return CreateErrorResponseMessage()
6: end function

1 {

2 "bidOffer": {

3 "id" : string

4 }

5 "offerSold": {

6 "id" : string

7 }

8 "bidAccepted": boolean

9 }

Listing 5: Send bid response message

32

1 {

2 "owner" : {

3 "id" : string

4 }

5 "askOfferId" : string

6 "dockerImage" : string

7 }

Listing 6: Send transaction request message

1 {

2 "transactionAccepted" : boolean

3 "message" : string

4 "iban" : string

5 }

Listing 7: Send transaction response message

is enough time to send a response (even with network problems) in case the other user wants

that offer. The identification, which is saved in peerReserved field in offer structure, helps to

know the buyer, in case this user receive another bid from another user, this bid is discarded

because had already reserved for another user. And in the future, the bidder instance will receive

the transaction request from that user and based on the id we accept the transaction.

The buyer receives that the bid is accepted and send a transaction request. The schema

of the request is presented in Listing 6, where it sends the ask that was reserved and also

the information about the container image, that will be running in the seller machine. After

receiving this message the seller will check if, the offer is reserved for that buyer, if it is, it sends

a response of success, and deploys the container.

The response contains the IBAN that will be used to pay to the seller, and a boolean saying

if the transaction was accepted or not. The message can be seen in Listing 7. In case the buyer

can not make a transaction with the first seller, it will send the request to a second one, and so

on, iterating the array with all the prices that was obtained in the get price request, that was

sent to all providers of given resource. If is refused by all sellers, the behaviour is the same as

if no seller was found. Algorithm 3 summarizes the bid creating process.

33

Algorithm 3 Node behavior after a user creates a bid

1: function CreateBid(bidOffer)
2: bidsTable← bidOffer
3: resourceId← ResourceMapper(bidOffer)
4: providers← libp2p.getProviders(resourceId)
5: for each provider ∈ providers do
6: prices← libp2p.getPrices(resourceId)
7: end for
8: for each price ∈ prices do
9: response← libp2p.sendBid(bidOffer)

10: if response == ACCEPTED then
11: libp2p.StartTransaction(response, bidOffer)
12: end if
13: end for
14: end function

3.6 Taxonomy Classification

Based on the Edge Cloud taxonomy defined in Section 2.1, RATEE has the following classifica-

tion:

3.6.1 Edge Cloud

This is RATEE’s classification about Edge Cloud taxonomy defined in Section 2.1 of related

work:

• Resource Ownership: About resource ownership we classify it as Volunteer. We are

trading money for resources, and in Single Owner it doesn’t make sense this trading,

because we own the resources. It is Volunteer because users share their resources with

other users in trade of money.

• Architecture: Our application is decentralized, more precisely peer-to-peer, meaning the

information is not stored in a single point. Each user runs the same code base.

• Service Level: We support IaaS by deploying containers applications. This type of

applications are much smaller than virtual machines.

• Target Application: We can target many types of applications, so we focused primarily

in General Purpose. It can also be used for data intensive workloads, if that application

can be deployed through a container.

• Access Technology: Our application uses TCP to communicate with other peers. Due

to this restriction, it is necessary to use Wi-Fi, Ethernet, our another technology that

34

supports TCP.

3.6.2 Auction

This is RATEE’s classification about Auction taxonomy defined in Section 2.2.1:

• Confidentiality: About confidentiality we are Open-cry. Each user knows the bids of

others, which leads to a much more dispute in the environment.

• Direction: The direction is Forward. When we want to match with other bid or ask, we

will increment it, to have a higher bid/ask.

• Unity: For now a user can only bid to a unit/resource. If it wants to get another resource,

it needs to send another bid (which in our system is a new offer). So we classify it as Single

item, each request must contain the memory and the CPU needed.

• Symmetry: About symmetry we are Double side. A buyer can send bids to a given item,

and the seller can send asks to a given item that is selling.

3.7 Summary

We started talking about the requirements that we had to built our tool. It needs to scale, due

to targeting a great number of users, and supports different environments. Then we specified the

pre-requesites that need to be full-filled in order to run our application. If those requirements

aren’t meet, all features may not be full filled due to dependencies. Also we described the

operations that we support in our tool. After that we talked about our distributed architecture,

that we use libp2p, which is based on the Kademlia DHT. Then we discussed about the RATEE’s

behaviour, its algorithms, the message contracts that they need to respect, and some scenarios

that may happen. At the end we made a taxonomy classification based on the domains that

were identified in Chapter 2.

35

36

Chapter 4

Implementation

The algorithms presented in the previous chapter where used to develop a prototype of the

RATEE system. This application was written in Typescript. There were a lot of programming

languages to choose from, predominantly Java, Go, JavaScript, Python, etc. One difficulty to

use Java was the scarce number of frameworks to create a peer-to-peer application. The ones

that exist were out-dated in terms of technology and lacked documentation. The other languages

had some frameworks that were recent, but right now, JavaScript is the most used and popular

language, having many more tools and features lately. Another advantage, comparing with other

programming languages, it can be used to run back-end programs or servers, using Node.js, or to

front-end running code at browsers like Microsoft Edge and Google Chrome, which is easier to

migrate an application from back-end to front-end and vice versa. But we didn’t use JavaScript

purely, our main program is written in Typescript, which is another language that extends

JavaScript but adds typification. A typified programming language brings much more stability

to the code, reducing the number of errors at run-time. It was not used TypeScript completely

because some dependencies were written in JavaScript. In the following sections, it will be

described the architecture of RATEE, its modules, and its major responsibilities.

4.1 RATEE

4.1.1 Software Architecture

RATEE has the functionality to do trades of system-level resources, such as CPU and memory,

based on an auction mechanism. This tool is peer-to-peer, so each instance will have the same

code running (in contrast with client-server architectures that have different code for client and

server). This code is divided into different modules (or components), each one with is own

37

Figure 4.1: RATEE components and interfaces relationships

responsibility, This modularity helps to have code more maintainable, modifiable, and testable.

When writing code, SOLID principles[Mar00] were also taken into account, they also bring

positive properties for the code. So, RATEE is composed of seven modules: Auction Con-

troller, Resource Mapper, Container Controller, User Controller, P2P Controller,

View Controller, and WebApi Controller. In Figure 4.1 change we can observe each mod-

ule and interactions between themselves. This visual help will simplify the understanding of the

following sections where we will talk about each module.

Auction Controller

This is the most important module and the center of our tool. It is responsible to save the

bids/asks of the user and run the logic to make the trades between other users, respecting

the auction mechanism. Implements interface IAuctionController and other modules that

depend on this one, use that interface to call it. It depends on Container Controller on in-

terface IContainerController and uses to deploy a container after the user has sold his

resources successfully. After receiving a bid request, it needs to map it to a Hash. Those

mappings are made by Resource Mapper, through Interface IResourceMapper. And also uses

the View Controller to create JSON objects to be returned to the user. This controller im-

38

plements two interfaces IAuctionController and IAuctionProxyMessageHandler. The first

one (IAuctionController) is consumed by the Web API module, to apply the commands

(create a bid, create an ask, and others) it calls the Auction Controller. The last interface

(IAuctionProxyMessageHandler) is used by P2P Controller in order to call after receiving

commands. These commands are part of the Auction domain, so it was decided that the logic

should be contained in the auction module. It also depends on the P2P Controller to send the

commands to the other peers.

Resource Mapper

This module is responsible to map a given Resource to an Identifier. Based on a concrete class

we could have different mappings, one could take that object that applies a hash after serializing

the object and that hash could be the identifier. Others could take the Resource object and

create a Guid. The IResourceMapper interface is the contract that different implementations

must follow. Right now, we are getting the resource object and a boolean to represent if its a

bid or an ask. Based on this, the number ’0’ or ’1’ is concatenated with the hash of the resource

object, previously stringified. The result will be used to find other peers with the same intention.

Container Controller

It is responsible to manage the containers that are deployed. These containers are from the

user that are buying resources and, after being matched to a seller, this controller deploys the

container in the machine. This class implements the IContainerController interface. Right

now we only support deploy docker, but other types of technologies can be used easily, RATEE

already has an interface to abstract the implementation. It is only necessary to have the concrete

class with the logic to deploy the types. Container Controller depends on a third-party library

(node-docker-api1) in order to deploy the docker containers.

User Controller

This module is responsible to save and manage user information. One functionality it could

be about the user credentials and authenticate the user before starting the application. This

is exposed by interface IUserController. It also saves other pieces of information like IBAN

that is used to make the transaction between the buyer and the seller. This is hidden by the

interface IAccountController and is consumed by the Auction module to send to the seller.

1https://www.npmjs.com/package/node-docker-api

39

P2P Controller

This module is responsible to communicate with other peers. In order to communicate we are

using a JavaScript library libp2p2 that creates a P2P network stack. The API supplied by

libp2p, abstracts the programmer from all TPCs semantics, displaying P2P semantics in their

methods. This controller also depends onIAuctionProxyMessageHandler which is responsible

to know what to do after receiving a message. Those messages are strings that are parsed

to JSON objects and treated as commands each one with his own information. It exposes

IP2PController interface.

View Controller

This module is responsible to create the views that will be returned to the user after being

made a request. This representation is a JSON object that will be serialized before sending it.

The principal class is ViewFactory that has a method that receives the necessary parameters to

fill the JSON object and then returns that object already serialized. For different views/JSON

objects, we have different methods to be called. The AuctionController uses this view to return

to the WebApi, so it depends on its interface IViewFactory. In the future, if we want to change

from JSON to HTML we just need to create a new class that does that functionality, because

we already have the abstraction.

WebApi Controller

It is the entry point of our program and it is responsible to handle the HTTP requests made by

the client. The main functionality of our application is to receive requests to allocate resources,

so We need to know, the resources and the price that the users are willing to pay/sell. This

information could be read from a configuration file. But it is not dynamic, we need all the time

to change it, and the application needed to read it and check if no error was present. This flow

was not fluid. So we have an HTTP server with routes, where the routes are the commands send

by the user like creating a bid, set IBAN, and others. Then the WebApi Controller redirects

this information to the respective module. In case of creating a bid it calls Auction Controller

through interface IAuctionController, and for the IBAN command it calls User Controller

through IUserController.

2https://libp2p.io/

40

4.2 Swagger

Has it was said previously to communicate or issue commands to our tool, it needs to be through

an HTTP request. So, we need an application that works as an HTTP client. One way could

be to create a small application that receives commands through the Command Line Interface,

and for each one maps it to HTTP requests commands. But there is also another possibility

that has much more reduced time to implement. Is by using Swagger3 technology. This library

helps with creating an HTML page with all routes, their behavior, the necessary information

to make the request (like parameters and body), and the possible returns. This information is

added by two options. It is possible to annotate the code with the metadata of the API, or or

we create a swagger.json file with all the information to be represented in a page. The Swagger

makes the request for you to the API and returns the response to the page. This library has

interoperability, the only problem is we can’t have any logic in the client (because we don’t have

a client). Either way, the CLI tool is still supported and can be easily implemented in case of

necessity.

4.3 Tests

When we are implementing it is normal to create bugs and has the code grows, the harder is

to maintain it without any assurance that everything is correct without an automated process

to do that check. That process is testing. After we code, by adding new functionality, we add

some tests to test that code and check if is doing what was supposed to do. In that way, in the

future, if we change that part of the code and add a bug, the test will fail and we know what

we need to fix. If we apply this rule to all parts of the code after made some alteration we have

the assurance that everything is alright with a small delay.

There are a lot of categorizations of tests: the unit tests, the integration tests, and the

acceptance tests. In our project, we used unit tests and acceptance tests.

4.3.1 Unit Testing

Unit tests are tests made against the smallest unit of code, in this case, the methods of a

class. In order to test the methods of a class, all its dependencies are mocked, objects that

we control their behavior, and call that method and check if the dependencies were called and

the method did the desired behaviour. With this type of test, we have much more control and

3https://swagger.io/

41

better verification if all the changes made were correct. As downside, because all dependencies

are mocked, we don’t test the behavior with integrations [Rog04].

4.3.2 Acceptance Testing

In contrast with unit tests, in acceptance tests, we don’t mock anything and we test the tool

as a single black box. One example is we run our tool in two different instances, and create a

scenario wherein instance A we make a bid request and in instance B we make an ask request,

and we check if the transaction happens. With the acceptance tests, we test scenarios, user

actions, and observe the behavior that the user is observing is the desired one. The tool that

was used to make the HTTP requests was POSTMAN4, and it is great to make HTTP requests

and after that write code to test the response. With this, we tested the integration between

peers.

4.4 Simulation

After implementing our tool we need to have a way to measure non-functional aspects like, the

number of requests processed per second, memory consumed, the number of messages sent, and

other metrics that can be used to now if our tool is robust and it can scale. To do these types

of tests in an easy way, it was necessary to simulate an environment to stress our tool. After

some research, I could not find any tool that could simulate a peer-to-peer environment. There

are some technologies that create that environment (PeerSim) but aren’t for JavaScript and the

technology is old. So to simulate that, we will create some scripts PowerShell to make a lot of

requests and also use postman to create scenarios to make requests to our application.

4.4.1 Summary

In this section, we explained the RATEE’s components, their responsibility, and interactions

between themselves. Also, it was showed the interfaces used to abstract each component in

order to facilitate other types of concrete implementations to be added in the future. It was

described our client tool to interact with our tool, and also it can be expanded to other tools

(they just need to support HTTP communication). In the end, tests were made, giving more

relevance to unit tests and acceptance tests.

4https://www.postman.com/

42

Chapter 5

Results

In this chapter, we will evaluate our tool (RATEE). For that, we defined a group of criteri-

a/methods of evaluation which will help to know what are the strengths and weaknesses. First,

we will explain what will be the methods used to evaluate, applying those methods what are

the results, and based on that results, discuss them.

5.1 Evaluation Methodology

This section discusses the methods that will be applied in order to evaluate our project.

5.1.1 Allocation Success Rate

As it was stated before, our application is peer-to-peer, which brings some difficulties. One

of these is to find auctions that are selling the respective resource that we want. In contrast,

with a centralized approach, all the information of bids and asks are saved in a server, and the

users only need to interact with that server and now for sure, if the server did not return a

match, it is because it did not exist. But in a peer-to-peer environment, we do not have all the

information centralized in an endpoint, each user has partial information, and to know all the

information of the system, we must get it from all nodes, which is not scalable. We assume a

normal environment with some users already with some bids and asks, when we had new offers,

and we now those offers have a match in the system. We want to evaluate if these offers match.

This will measure the effectiveness of our system.

43

5.1.2 Overhead Memory Consumption

It is important to know how much memory an application consumes, mainly if that application

will run in user’s devices which are known for having different capabilities. In summary, if the

system has hard memory requirements, which are difficult to comply with, we will only target a

small market’s piece. Another requirement is due to the nature of our application being peer-to-

peer, as more users we have using our service, more transactions will happen, even if they only

used as mediators. Therefore, we will calculate how much memory our application consumes

and check as we add more nodes to the peer to peer network, how the memory of the previous

nodes increase.

5.1.3 Ideal Price Deviation

We already calculate the match success using the Allocation Success Rate. But we can be more

precise, and after finding a match check how much more the buyers had paid to get a resource

that was being sold at a lower price somewhere else in the network. One example is we have

two users, selling the same amount of memory (1GB) but one for 10e another for 5e. Then

a buyer arrives and offers 10e for 1GB of memory. In an ideal environment, the transaction

should happen with the user that is selling for 5e, but because of the absence of centralized

control in a peer-to-peer architecture, he could buy from the user that is selling for 10e. This

raises a problem where buyers may not buy the cheapest resource because of the distributed

environment.

5.1.4 Scalability

As it was previously said, nodes communicate between themselves using messages. These mes-

sages grow as the number of offers grows. This could bring a bottleneck to our application, if

for each offer created, the number of messages sent to other nodes grows exponentially, we will

burden the network, and the application will no scale. Based on this point, is necessary to know

if how much the number of messages grows, and if it is a limitation when we have thousand of

users, each one creating offers.

5.2 Experimental Evaluation

This computer had all the technologies used to run the application, and also it was installed

PowerShell to automate the evaluation. The computer has 8 GB of memory and a dual core i7

44

Figure 5.1: Results of a bid finding an ask for the same resources

as processor. Some limitations in the number of instances created for the results were due to

limitations of the machine used to test. The following section presents the results obtained for

each of those aspects mentioned before.

5.2.1 Allocation Success Rate

In order to test the Allocation Success Rate, dummy users were created which would have offers

that would not be matched with any other offer. Then, create an ask, and next a bid that will

be matched with the ask created. This is the worst case because of all the offers that exist

in the system, only one can be matched with ours. We have done this experiment something

progressively doing it 8 runs of it. At each run, we will only have one match, one ask will be

associated with one bid, and at each run we will add dummy users with dummy offers. The first

run will start with 10 dummy users, each one will have three asks offers, and then we will add

our ask offer that will be matched, and add the bid offer. In the second run, we will increment

the dummy users from 10 to 20, until the max of dummy users that will 80. We will add 10

dummy users each run. In Figure 5.1, we can observe the results of those runs (we didn’t show

all the results of the eight runs, due to results being equal).

From the results we can observe that even by incrementing the number of dummy users with

45

0 20 40 60 80
40

42

44

46

48

50

Number of instances createdM
em

or
y

co
n

su
m

ed
b
y

th
e

fi
rs

t
in

st
a
n

ce
(M

B
)

Figure 5.2: Memory consumption of the first instance created

dummy offers, the user that created the bid, always found the respective ask. Resuming, for the

8 runs, the hit success rate was 100%.

5.2.2 Overhead Memory Consumption

To test the memory consumption, we created a PowerShell script, that will create instances of

our tool. The program started, the process id will be printed, and at every 100 instances created,

using this process id we will get the memory consumption, also using PowerShell commands.

We will calculate the memory used by the first instance that was created, which should be the

one that consumes more memory due to the time that was running.

We can observe in Figure 5.2 as we had more nodes, the memory used doesn’t grow. In this

experiment, we didn’t create any offer.

In the next one, we created some offers (without being matched in order to be persisted in

memory). We can see the results in Figure 5.3. Those results simulate the behaviour observed,

and not the real memory consumed for a given of number of instances created.

The memory of the first program also didn’t grow. But we can see in the graph it seems

similar to a sinusoidal function. First of all, the memory consumption of the first node doesn’t

grow as we had more offers requests because we created those offers in the other nodes. When we

46

0 20 40 60 80
0

20

40

60

Number of instances createdM
em

o
ry

co
n

su
m

ed
b
y

th
e

fi
rs

t
in

st
an

ce
(M

B
)

Figure 5.3: Memory consumption of the first instance with offers created

create an offer, that offers is saved in his own application/device. So, if we create one thousand

offers in a node, the other nodes will not be affected by those offers.

Having these centralized/non-redundant offers brings an advantage against the malicious

users that want to pollute our system. If those offers were saved in other nodes, a user could

create a great number of dummy offers and increase the consumption of memory without any

objective, just to degrade the system’s performance.

But we can see some increase in memory, this is explained due to when we create an offer,

we check with the others if there is an offer that could match ours. To do that is necessary to

create a connection and send some messages. But after finding there isn’t any other node with

offers that could match, those objects are disposed, therefore reducing the memory used.

5.2.3 Ideal Price Deviation

A test similar to the scenario of Allocation Success Rate it was made calculate the Ideal Price

Deviation. with the one made in Allocation Success Rate. We also made 8 runs, in the first run

we started with 10 dummy users, whose offers will not be matched. Created two asks for the

same resource where one was cheaper than the other. After that, we created a bid offer for that

resource and observed if the offer that was associated with that bid is the cheapest one. At each

47

run we increment the dummy users, adding plus 10, we also added one more asks, for the same

offer, but with the cheapest price, and added a bid for the same resource. The offers that were

created by the dummy users, will not be matched.

Figure 5.4: Results of a bid finding an ask with the cheapest price

As we can observe in Figure 5.4, we had a 100% matches success. Meaning, for a bid searching

one given resource, it found an ask with the cheapest price.

5.2.4 Scalability

This test is different from the other because it doesn’t involve getting results, we know how many

messages we send for each offer created, by reading the code. The higher number of messages

we sent is when we complete a transaction. The number of messages is 3: get price request, send

bid, and start transaction, to one node. Supposing that we have x users that have an offer that

matches with ours, and they will succeed to make the trade with the user with the cheapest

offer, we will send x get prices plus 2 to finish the transaction. In Figure 5.5, we can observe

the equation that corresponds to the number of messages sent.

Based on the graph, we could conclude that the number of messages sent to the user grow

linearly with the number of offer that match with ours. One calculation that was not added

in this function, was the number of messages sent to find all the offers that match with ours,

48

0 10 20 30 40 50 60
0

20

40

60

Number of offers that match with ours

N
u

m
b

er
of

m
es

sa
g
es

se
n
t

Figure 5.5: Number of messages sent based on the number of offers found

more precisely, to find the providers for a given offer. For that would be necessary to explore

the libp2p code.

5.3 Discussion

After testing and observing the results, we can extract some conclusions:

• The amount of memory consumed by our application is independent of the number of

peers that participate in the network. As it was explained before, the offers are not shared

between users, only connections. And in the results we could observe that adding more

users didn’t result in an memory consumption increase, only some memory increase and

after that, that memory was freed. That behavior is explained based on the creation and

destruction of objects to make connections.

• Also we had a 100% to correct matches between offers. Meaning our system, even if it

is peer-to-peer, can find the user that should be used to obtain the offer (if that user

exists). Of course, this statement is for environments with a low number of users. In an

environment with a higher number of users, it wasn’t possible to test, so we can’t make

that statement.

• The number of messages that RATEE sends, grows linearly, which is better than expo-

49

nentially but worse than logarithmic. Another way can be used to reduce from linearly

but would slowly reduce the time it would take to make a transaction.

50

Chapter 6

Conclusions

We started talking about the Cloud Computing that exists and the features they offer. The

advantages and some of their limitations. Those limitations brought some changes, like shifting

the computation and data storage to the edge environments, where personal devices could be

used to assist that computation volunteering or by receiving any benefit.

This brought us to our work where we proposed to study the share of resources, to deploy

applications, in an edge environment by using auction mechanisms. To reach that object we first

have done a study about edge could and auction mechanisms to allocate resources. Creating

a taxonomy evaluation for both topics. After that, we created a prototype, RATEE, which

would have the previous features, an application that its purpose is to deploy applications using

auction as a trade mechanism.

We implemented RATEE as an application that scales, it should handle a thousand requests,

and low resources consumption because it will be stored in end-user devices. We showed the RA-

TEE’s dependencies to run in end-user devices, its operations to create offers and manage them,

and the process that will match offers between themselves. RATEE is a peer-to-peer application

using libp2p to implement all peer-to-peer logic and abstracting us from that complexity. Its

P2P overlay network is based on Kademlia DHT which is also used by BitTorrent. In order to

communicate with other peers, we use a message approach. Using libp2p a user provide a given

resource and other user searches for that resource, which will get the user address. Using that

address sends a message to communicate with it (getting a price, send a bid, etc).

In order to have some insurance that the application is working with the desired behavior

tests were designed so that, in the future, if some change affects our functionality, those issues

can be easily found by running the tests.

Finally, after design and implement RATEE, it was time to evaluate it. To evaluate we

51

used PowerShell scripts in order to create an environment that was necessary to make that test

and obtain its results. Based on the results we could conclude that our application has a high

success match rate (for the environment that was used to test), meaning all buyers found their

respective sellers and vice-versa. Also, the memory consumption doesn’t grow with the number

of nodes that exist in the overlay.

6.1 Future Work

Like any other project, it is hard to say that something is finished, we could always improve or

consolidate some feature. Bellow, we have a list of suggestion or improvements that would be

interesting to make:

• One area that could be greatly improved is security. RATEE is a decentralized application

that runs in user-devices, which can be easily manipulated by malicious users. We should

ensure that malicious users could not create dummy offers.

• Also in part with security, add a Karma system which would penalize users that in the

last instant of a transaction, they didn’t deploy the container or didn’t pay.

• Right now, we only provide a Web API to interact with our application. It would be great

to add a user-friendly interface, which would increase the usability of the end-users.

• Adapt libp2p, making some changes in order to be more efficient for our use case. We

found a lot of limitations in libp2p, one of them is the use of messages not being typified.

We could only send a string (with JSON format) and deserialize it to an object.

• Create a robust simulator tool in order to create all the types of environments which could

help in a better test of our tool.

52

Bibliography

[Alb08] Albert Greenberg, James Hamilton, David A. Maltz, Parveen Patel. The Cost of a

Cloud: Research Problems in Data Center Networks. ACM SIGCOMM computer

communication review, vol. 39, no. 1, pp. 68–73, Jan. 2008, 2008.

[Alb17] Albert Jonathan, Mathew Ryden, Kwangsung Oh, Abhishek Chandra, Jon Weissman.

Nebula: Distributed Edge Cloud for Data Intensive Computing. 2017.

[Ale17] Alex Glikson, Stefan Nastic, Schahram Dustdar. Deviceless Edge Computing: Ex-

tending Serverless Computing to the Edge of the Network. Proceedings of the 10th

ACM International Systems and Storage Conference Article No. 28, 2017.

[Ali09] Ali Haydar Özer, Can Özturan. AN AUCTION BASED MATHEMATICAL MODEL

AND HEURISTICS FOR RESOURCE CO-ALLOCATION PROBLEM IN GRIDS

AND CLOUDS. Fifth International Conference on Soft Computing, Computing with

Words and Perceptions in System Analysis, Decision and Control, 2009.

[Alv04] Alvin AuYoung, Brent N. Chun, Alex C. Snoeren, Amin Vahdat. Resource allocation

in federated distributed computing infrastructures. In Proceedings of the 1st Workshop

on Operating System and Architectural Support for the On-demand IT Infrastructure,

2004.

[Ami15] Amin M. Khan, Felix Freitag, Lúıs Rodrigues. Current Trends and Future Directions

in Community Edge Clouds. 2015.

[Ant01] Antony Rowstron, Peter Druschel. Storage management and caching in PAST, a

large-scale, persistent peer-to-peer storage utility. Proceeding, SOSP 01 Proceedings

of the eighteenth ACM symposium on Operating systems principles, Pages 188 - 201,

2001.

53

[Avi10] Avinash Lakshman, Prashant Malik. Cassandra - A Decentralized Structured Storage

System. ACM SIGOPS Operating Systems Review, Volume 44 Issue 2, April 2010,

2010.

[BM08] Ingmar Baumgart and Sergio Mies. S/kademlia: A practicable approach towards

secure key-based routing. volume 2, pages 1–8, 01 2008.

[BRFN15] Roger Baig, Ramon Roca, Felix Freitag, and Leandro Navarro. guifi.net, a crowd-

sourced network infrastructure held in common. Computer Networks, 90:150 – 165,

2015. Crowdsourcing.

[Cla16] Claus Pahl, Sven Helmer, Lorenzo Miori, Julian Sanin, Brian Lee. An Information

Framework for Creating a Smart City Through Internet of Things. 2016.

[Cos03] Costas Courcoubetis, Richard Weber. Cost-based Pricing. John Wiley & Sons, pp.

161–194, 2003.

[CWSR12] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. The brew-

ing storm in cloud gaming: A measurement study on cloud to end-user latency. In

2012 11th Annual Workshop on Network and Systems Support for Games (NetGames),

pages 1–6. IEEE, 2012.

[Dav05] David Hausheer, Burkhard Stiller. PeerMart: The Technology for a Distributed

Auction-based Market for Peer-to-Peer Services. IEEE International Conference on

Communications, 2005.

[Dha04] Dhananjay (Dan) K. Gode, Shyam Sunder. Double auction dynamics: structural

effects of non-binding price controls. Journal of Economic Dynamics and Control,

Volume 28, Issue 9, July 2004, Pages 1707-1731, 2004.

[Din14] Dinil Mon Divakaran, Mohan Gurusamy, Mathumitha Sellamuthu. Bandwidth allo-

cation with differential pricing for flexibledemands in data center networks. Computer

Networks, vol. 73, no. 1, pp. 84–97, 2014.

[Fer13] Fernando Costa, Lúıs Veiga, Paulo Ferreira. Internet-scale support for map-reduce

processing. Journal of Internet Services and Applications, vol. 4, no. 1, pp. 1-17,

2013.

54

[Hel] Heli Zhang, Hossein Badri, Heli Zhang, Fengxian Guo, Hong Ji, Chunsheng Zhu.

Combinational Auction-Based Service Provider Selection in Mobile Edge Computing

Networks. IEEE Access.

[Hui14] Hui Wang, Huaglory Tianfield, Quentin Mair. Auction Based Resource Allocation in

Cloud Computing. Multiagent and Grid Systems, 2014, Volume 10, Number 1, May

2014, pp. 51-66, 2014.

[Hyu14] Hyunseok Chang, Adiseshu Hari, Sarit Mukherjee, T.V. Lakshman. Bringing the

Cloud to the Edge. 2014.

[Jio14] Jiong Jin, Jayavardhana Gubbi, Slaven Marusic, Marimuthu Palaniswami. An Infor-

mation Framework for Creating a Smart City Through Internet of Things. 2014.

[Kev] Kevin Lai, Bernardo A. Huberman, Leslie Fine. Tycoon: a Distributed Market-based

Resource Allocation System.

[Lan03] Landon P. Cox, Brian D. Noble. Samsara: Honor Among Thieves in Peer-to-Peer

Storage. Proceeding, SOSP 03 Proceedings of the nineteenth ACM symposium on

Operating, systems principles, Pages 120-132, 2003.

[Mah09] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, Nigel Davies. The Case

for VM-based Cloudlets in Mobile Computing. 2009.

[Mar00] Robert C. Martin. Design principles and design patterns. 2000.

[ME02] Petar Maymounkov and David Eres. Kademlia: A peer-to-peer information system

based on the xor metric. volume 2429, 04 2002.

[Mic17] Micha l Król, Ioannis Psaras. NFaaS: named function as a service. Proceedings of the

4th ACM Conference on Information-Centric Networking, Pages 134-144, 2017.

[Mur05] Muralidhar V. Narumanchi, José M. Vidal. Algorithms for Distributed Winner Deter-

mination In Combinatorial Auctions. Agent-Mediated Electronic Commerce. Designing

Trading Agents and Mechanisms pp 43-56, 2005.

[Ngu17a] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Wen Yonggang, Zhu Han. Resource

Management in Cloud Networking Using Economic Analysis and Pricing Models: A

Survey. IEEE Communications Surveys & Tutorials, Volume: 19, Issue: 2, Sec-

ondquarter 2017, 2017.

55

[Ngu17b] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Wen Yonggang, Zhu Han. Resource

Management in Cloud Networking Using Economic Analysis and Pricing Models: A

Survey. IEEE Communications Surveys & Tutorials, Volume: 19 , Issue: 2 , Sec-

ondquarter 2017, 2017.

[Nit16] Nitinder Mohan, Jussi Kangasharju. Edge-Fog Cloud: A Distributed Cloud for Inter-

net of Things Computations. 2016.

[OAPV04] David Oppenheimer, Jeannie Albrecht, David Patterson, and Amin Vahdat. Scalable

wide-area resource discovery. In USENIX WORLDS, volume 4, 2004.

[Oza12] Ozalp Babaoglu, Moreno Marzolla, Michele Tamburini. Design and Implementation

of a P2P Cloud System. 2012.

[Pao16] Paolo Bellavista, Alessandro Zanni. Feasibility of Fog Computing Deployment based

on Docker Containerization over RaspberryPi. 2016.

[Par16] Parnia Samimi, Youness Teimouri, Muriati Mukhtar. A combinatorial double auction

resource allocation model in cloud computing. Information Sciences, Volume 357, 20

August 2016, Pages 201-216, 2016.

[Pet11] Peter Mell, Timothy Grance. The NIST Definition of Cloud Computing: Recommen-

dations of the National Institute of Standards and Technology. 2011.

[Phi13] Philip Mayer, Annabelle Klar, Rolf Hennicker, Mariachiara Puviani, Francesco Tiezzi.

The Autonomic Cloud: A Vision of Voluntary, Peer-2-Peer Cloud Computing. 2013.

[Raj14] Rajdeep Dua, A Reddy Raja, Dharmesh Kakadia. Virtualization vs Containerization

to support PaaS. IEEE International Conference on Cloud Engineering, 2014.

[Rog04] R. Owen Rogers. Acceptance testing vs. unit testing: A developer’s perspective.

Springer Berlin Heidelberg, 2004.

[Sau11] Saurabh Garg, Rajkumar Buyya. Market-Oriented Resource Management and

Scheduling: A Taxonomy and Survey. Cooperative Networking, Chapter 14, 2011.

[Sha10] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman,

Harbinder Bhogan. Volley: Automated Data Placement for Geo-Distributed Cloud

Services. NSDI, San Jose, California, USA, Sep. 2010, pp. 17–32, 2010.

56

[Tay18] Tayebeh Bahreini, Hossein Badri, Daniel Grosu. An Envy-Free Auction Mechanism for

Resource Allocation in Edge Computing Systems. 2018 Third ACM/IEEE Symposium

on Edge Computing, 2018.

[Tim12] Tim Verbelen, Pieter Simoens, Filip De Turck, Bart Dhoedt. Cloudlets: Bringing the

cloud to the mobile user. 2012.

[Vin09] Vincenzo D. Cunsolo, Salvatore Distefano, Antonio Puliafito and Marco Scarpa.

Cloud@Home: Bridging the Gap between Volunteer and Cloud Computing. 2009.

[Wei10] Wei-Yu Lin, Guan-Yu Lin, Hung-Yu Wei. Dynamic Auction Mechanism for Cloud Re-

source Allocation. Proceeding CCGRID ’10 Proceedings of the 2010 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing Pages 591-592, 2010.

[Xin12] Xingwei Wang, Jiajia Sun, Min Huang, Chuan Wu, Xueyi Wang. A resource auction

based allocation mechanism in the cloud computing environment. IEEE 26th Inter-

national Parallel and Distributed Processing Symposium Workshops & PhD Forum,

2012.

[Xin14] Xingwei Wang, Xueyi Wang, Cho-li Wang, Keqin Li, Min Huang. Resource Allo-

cation in Cloud Environment: A Model Based on Double Multi-Attribute Auction

Mechanism. IEEE 6th International Conference on Cloud Computing Technology and

Science, 2014.

57

58

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Shortcomings of current solutions
	1.3 Document Roadmap

	2 Related Work
	2.1 Edge Clouds
	2.2 Market Models
	2.2.1 Auctions
	2.2.2 Relevant Systems
	2.2.3 Analysis and Discussions

	3 Solution
	3.1 Requirements
	3.2 Prerequisites
	3.3 Operations Supported
	3.4 Distributed Architecture
	3.4.1 Kademlia DHT

	3.5 Algorithm
	3.6 Taxonomy Classification
	3.6.1 Edge Cloud
	3.6.2 Auction

	3.7 Summary

	4 Implementation
	4.1 RATEE
	4.1.1 Software Architecture

	4.2 Swagger
	4.3 Tests
	4.3.1 Unit Testing
	4.3.2 Acceptance Testing

	4.4 Simulation
	4.4.1 Summary

	5 Results
	5.1 Evaluation Methodology
	5.1.1 Allocation Success Rate
	5.1.2 Overhead Memory Consumption
	5.1.3 Ideal Price Deviation
	5.1.4 Scalability

	5.2 Experimental Evaluation
	5.2.1 Allocation Success Rate
	5.2.2 Overhead Memory Consumption
	5.2.3 Ideal Price Deviation
	5.2.4 Scalability

	5.3 Discussion

	6 Conclusions
	6.1 Future Work

	Bibliography

