
FaaS-Utility
HENRIQUE SANTOS, Instituto Superior Técnico, Lisbon, Portugal
Function-as-a-Service (FaaS) is a cloud computing model that allows de-
velopers to build and deploy functions without having to worry about the
underlying infrastructure. Current challenges such as cold start delay are still
being actively studied, which is seen as a delay in setting up the environment
where functions are executed, and one of the most significant performance
issues. This causes great delays of latency and reduced quality of service
to the customer of this model. It is still difficult for users to allocate the
right resources, namely CPU and memory, due to a variety of function types,
dependencies, and input sizes. Resource allocation errors lead to either under
or over-provisioning of functions, which results in persistently low resource
usage and significant performance degradation. This thesis presents a novel
approach to optimizing the performance of FaaS systems using a utility
function that takes into account customer entries. This utility function uses
feedback from customers, in the form of preferences and pricing goals, to
determine the relative importance of different functions to the overall system.
This information is then incorporated into the scheduling process, ensuring
that the most customer desired functions receive the necessary resources
to perform optimally. This work presents an architecture to successfully
implement the new approach into a scheduler in Apache OpenWhisk that
uses a utility function that receives customer entries to better determine
resource allocation. We also present the evaluation methodology to assess
the implementation and analysis of the overall approach performance.

CCS Concepts: • Networks → Cloud computing.

Additional Key Words and Phrases: Resource Scheduling, Function-as-a-
Service, Pricing, Utility

1 INTRODUCTION
Edge computing [Palade et al. 2019], a development of cloud com-
puting, has benefited from the cheaper cost and improved energy
efficiency of lower-end computation and storage equipment that
are common at the internet’s outer edges. As a result, the edge of
the internet is now richer and loaded with numerous resources that
are yet mostly untapped.

Although users are initially willing to contribute, the sustainabil-
ity of these community edge clouds depends on the users’ access
to interesting, relevant services, which are frequently deployed as
virtualized containers, and their ability to get something in return
(incentives) for letting others use their hardware [Mukundand and
Bharati 2020].
At the same time, more organized and elastic applications, with

reduced latency and better resource use, are made possible by server-
less computing and the Function-as-a-Service model (also know as
FaaS) [Pfandzelter and Bermbach 2020].
Current implementations of the Function-as-a-Service architec-

ture such as Amazon AWS and Microsoft Azure focus deeply on the
optimization of systems resources and performance while paying
little attention to the individual desires of each customer.
Current scheduling mechanisms [Kim et al. 2020; Suresh et al.

2020] attempt to maximize available resources for the least cost, be
that cost resource consumption or execution time. Customers tend
to wish for execution times to be as low as possible, however, this
is in general terms as not all customers are the same when it comes
to urgency.

One customer might just be requesting a project to be done by
the end of the day and has little interest in when it is done in a few
minutes or an hour, while another customer might need a request
to be done as soon as possible; this information can be leveraged by
providers, by employing fewer resources when they are scarce, while
reducing the price charged to users [Simão and Veiga 2016]. We
propose an optimization to the scheduling mechanism in FaaS that
will take into account these customer differences in priority as well
as provide monetary profits for the provider using our proposal by
adjusting the price of the service depending on the priority desired
by the customer. This implies that a customer using our system will
be provided a few additional options, depending on the server’s
state, when attempting to request such as monetary discounts for
slower execution times or extra monetary costs for his request to
be completed promptly. The latter is presented in case the system is
saturated and unable to confidently complete customer requests in
the initially expected time frame.

We propose a scheduling optimization in the Function-as-a-Service
model that receives input from the customer to assist its execution
for a more intelligent and focused quality of service.

2 RELATED WORK
This section will discuss the most cutting-edge techniques and tech-
nologies currently being used in this field.

2.1 Function as a Service
In terms of architectural layers of Cloud Computing, the Cloud
is typically considered as numerous Cloud Services [Mukundand
and Bharati 2020]. In essence, it relates to who will oversee these
Services’ many layers, these can be classified as IaaS (Infrastructure-
as-a-Service), PaaS (Platform-as-a-Service), SaaS (Software-as-a-
Service), BaaS (Backend-as-a-Service) and finally FaaS (Function-as-
a-Service) the main cloud service used of this work.

IaaS in the context of cloud computing refers to the management
of the hardware and virtualization layer, which includes servers,
storage, and networking, by the cloud provider. Applications devel-
oped over infrastructure built on top of IaaS are managed by the end
user, including virtual instances, operating systems, applications,
availability, and scalability. This service is the closest to the user,
providing the most amount of control over the system to the user
as well as having the lowest transparency [Mukundand and Bharati
2020].
PaaS consists in providing a Service where the cloud provider

can offer a platform that controls the OS, availability, scalability,
and virtual instances of instances built on top of IaaS. A provided
runtime environment can be used if there is no specific runtime
environment requirements [Mukundand and Bharati 2020].

SaaS provides complete abstraction of the software and backend.
These are full programs that don’t require any further effort from
the user and may be utilized remotely. However, the restriction is
that the organization has no control over the application [Astrova
et al. 2021].
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BaaS and FaaS are now two additional service models. Both are
thought to be serverless, as such BaaS and FaaS are frequently used
in conjunction because they share operational characteristics (such
as no resource management) [Janakiraman 2016; Roberts 2018].
Applications that heavily rely on third-party (cloud-hosted) apps
and services to manage the server-side logic and state are referred to
as BaaS applications. The client then houses the bulk of the business
logic, such applications are frequently referred to as “rich client”
applications, including single page applications and mobile apps.
Google FireBase is a prime example of BaaS. It is a complete mobile
development platform that is hosted in the cloud and has direct
client communication capabilities. As a result, there is no server in
the way, and all resource and management concerns are handled by
the database system [Astrova et al. 2021].
FaaS offers the ability to deploy code (also known as functions)

in the cloud and it’s the greatest difference from BaaS. As a result,
the developer can utilize his own programming without having to
handle the hardware itself. An operator of a cloud service platform
does not control everything, because the abstraction with FaaS is
greater than with PaaS. The provider also manages the data as FaaS
must come before PaaS (e.g., the state of the server). Scalability is
another significant distinction between FaaS and PaaS. While FaaS
scaling is completely transparent, PaaS requires the organization
to still consider how to scale. Only the specific functions of the
application are now deployed on FaaS [Astrova et al. 2021].
Low latency is frequently needed for use cases like monitoring

people’s vital signs during emergencies or in daily life [Nastic et al.
2017]. To save lives in the event of a big disaster, paramedic as-
sistance must arrive quickly. User-wearable sensors can offer vital
details about a patient’s health and assist in establishing a priority
list for patient monitoring. Support for low latency is one of the
primary forces for edge computing. In this situation, a serverless
computing framework can handle server, network, load balancing,
and scaling operational tasks [Palade et al. 2019].
FaaS is a scalable and flexible event-based programming model

so it’s a great fit for IoT events and data processing [Pfandzelter and
Bermbach 2020]. Consider as an example a connected switch and
printer. When the button is pressed it sends an event to a function in
the cloud which in turn sends a command to the printer to turn itself
on. The three components are easily connected and only the actual
function code would need to be provided. Thanks to managed FaaS,
this approach also scales from two devices to thousands of devices
without any additional configuration [Pfandzelter and Bermbach
2020].
The cold start delay, which is seen as a delay in setting up the

environment in which functions are executed, is one of the most
significant FaaS performance issues [Van Eyk et al. 2018].

Popular systems most frequently use a pool of warm containers,
reuse the containers, and regularly call routines to reduce cold start
delay. However, these techniques squander resources like memory,
raise costs, and lack knowledge of function invocation trends over
time. In other words, while these solutions reduce cold start delay
through fixed processes, they are not appropriate for environments
with dynamic cloud architecture [Vahidinia et al. 2023].

Although serverless computing reduces some of the major IoT
difficulties, these convergent technologies still have unique limits

such as cold start time that must be addressed holistically. In the
work [Vahidinia et al. 2023], the authors proposed an intelligent
method that chooses the optimum strategy for maintaining the
containers’ warmth in accordance with the function invocations
over time in order to lessen cold start delay and to consider resource
usage. While in the work [Bermbach et al. 2020], the authors assume
that the FaaS platform is a "black box" and use process knowledge
to reduce the number of cold starts from a developer perspective.
They suggested three methods to lessen the number of cold starts
based on indicating the naive approach, the extended approach, and
ultimately the global approach, as well as a lightweight middleware
that can be deployed alongside the functions for this purpose.

2.2 Utility
There is a constant conflict between the provider and the customer
throughout the entire product industry. The supplier must work to
increase revenue while still enhancing its product for the benefit of
the customer. There has been a lot of research done on cloud com-
puting’s optimization [Lin et al. 2018; Madej et al. 2020; Russo et al.
2022], but this rarely or never considers the potential revenue that
these optimizations can provide [Dibaj et al. 2018]. We present both
sides of the conflict in this section. When it comes to scheduling, the
provider can use optimization techniques to improve the customer
experience with little to no thought to the financial implications.
And pricing is the most recent development in cloud computing
pricing methodologies that aim to maximize revenue.

2.2.1 Scheduling. In distributed systems, scheduling is frequently
studied to establish a connection between requests and available
resources. For clusters [Schwarzkopf et al. 2013], clouds [Lee et al.
2011], and cloud-edge (Fog) systems [Pires et al. 2021; Scoca et al.
2018], numerous solutions have been put forth. Load balancing [Lin
et al. 2018], maximizing resource use [Yin et al. 2018] and energy effi-
ciency [Mendes et al. 2019], minimizing execution costs [Choudhari
et al. 2018], and maximizing performance are the typical objectives
of scheduling [Binh et al. 2018]. In edge computing, scheduling
is necessary when services must be successfully offloaded. Offers
scheduling innovations for edge computing that can be used in FaaS
systems for this purpose [Madej et al. 2020]. They provide many
approaches that present a fair priority-based scheduling system by
taking into account the client and each request.

In the work presented in [Russo et al. 2022], they offer a cutting-
edge scheduling system for FaaS that is QoS-Aware and implemented
in Apache OpenWhisk. By adding a Scheduler component, which
takes over from the Controller’s load balancing function and allows
more scheduling policies, they expanded Apache OpenWhisk. In
this new design, incoming requests are routed through the Scheduler
rather than the Controller in order to be immediately scheduled to
the Invokers. This Java-based scheduler, which serves asmiddleware,
is a meaningful inspirational factor in our work. Arrivals and Com-
pletions are the two basic events that the Consumer receives. Upon
receiving fresh requests, the Controller publishes arrival events,
which cause the related activation to enter the Scheduler buffer.
In contrast, when activation processing is finished, Invokers pub-
lish completion events. The Controller in the standard version of
Apache OpenWhisk uses this data, and their Scheduler also makes
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use of it to monitor the workload of the Invoker. While many of
the objectives we hope to attain are illustrated in this study, pricing
approaches are missing.

2.2.2 Pricing. The viability of cloud ecosystems is fundamentally
dependent on service pricing [Dibaj et al. 2018]. Given the size of
cloud computing environments, it is essential to offer an energy-
conscious cloud architecture in addition to a business strategy with
sensible resource pricing and allocation [Sharifi et al. 2016]. The
bulk of studies places a strong emphasis on lowering overall energy
use while paying little attention to other aspects like service pricing
and proper cloud service billing [Dibaj et al. 2018].

One of the most crucial elements that could draw clients in is the
pricing strategy. They consistently seek the best quality of service
at the lowest cost. In contrast, cloud service providers strive to
increase income while reducing expenses by implementing more
modern technologies [Al-Roomi et al. 2013]. For the cloud services
they require, different users ask for different quality service classes.
Both the requested services and their quality are subject to change
over time. Because it lacks the necessary capability to respond to
the dynamic changes in service demands and their quality, the
fixed price strategy, although simple, is not a fair technique for
both consumers and suppliers. Customers prefer to pay for what
they have really used, and service providers prefer to publish a fair
pricing structure so that they can bill their clients fairly and be
competitive [Dibaj et al. 2018].
There are three basic difficulties with pricing models in cloud

computing. Users of cloud services are often unable to understand
billing events since they take place within the cloud architecture. To
do this, a thorough taxonomy that takes into account all significant
aspects of pricing schemes is required. The discrepancy between
resource utilization and billing time is another issue. Bills are issued
far after the use of the resource or service because the billing system
is not synchronized with resource consumption. By reducing the
processing time, using a suitable pricing model can also reduce the
gap that was previously noted [Dibaj et al. 2018].
Not least of all, cloud service providers frequently combine or

aggregate various events into a single line of code by combining the
code of various requests into a single line to be executed. It speeds up
the delivery of consumer bills and lowers the computing complexity
for cloud providers, but accuracy and fine-grained information in
the system are sacrificed. While everyone can agree on a clear fair
pricing strategy that both service providers and customers are happy
with, fair pricing is a subjective idea [Bolton et al. 2003].

3 ARCHITECTURE
In this chapter, we first present an overview of Apache Openwhisk’s
systems, more specifically its scheduling methodology, followed by
our proposed scheduling extension which is subdivided into two
components: during an under-provisioned server state and an over-
provisioned server state.

3.1 Apache Openwhisk overview
To create new functions, invoke existing ones, and query the out-
comes of invocations, Apache OpenWhisk exposes a REST interface
built using NGINX. Users initiate invocations using an interface,

which is then transmitted to the Controller. To schedule the function
invocation, the Controller chooses an Invoker, which is commonly
hosted utilizing virtual machines. Based on (1) a hashing method
and (2) information from the Invokers, such as health, available
capacity, and infrastructure state, the Load Balancer in the Con-
troller schedules functions invocations. After selecting an Invoker,
the Controller delivers the function invocation request to the cho-
sen Invoker via a Kafka-based distributed message broker. After
receiving the request, the Invoker uses a Docker container to carry
out the function. Functions are commonly referred to as actions
within Apache Openwhisk. The Invoker sends the outcomes to a
CouchDB-based Database after the function execution is complete
and notifies the Controller of its completion. The Controller then
synchronously or asynchronously returns to clients the outcomes
of the function executions [Yu et al. 2021].

3.2 Scheduler extension
In our extended version of the Apache Openwhisk architecture, we
will add a newly updated scheduler with all of our requirements for
the pricing utility function as well as an updated Collector to allow
us to extend the capabilities of warm container creation with no
additional overhead. Both of these extra components are shown in
Figure 1 as the green and blue containers.

Fig. 1. General architecture with newly added scheduler and Collector
component

Firstly the client uses the exposed REST interface built using NG-
INX to make a request. This request is then forwarded to the con-
troller that receives all the relevant information from the CouchDB
for the setup of the activation. It then uses that invocation infor-
mation with the addition of both our new utility function and the
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Invoker Pool state to determine the most suited Invoker to schedule
the request to. After sending it to the specific Invoker through Kafka
it is executed by the containers within it. The completion state is
given to CouchDB directly by the Invoker. An activation ACK will
be sent back to the controller for it to update the scheduler with
additional information for future requests. The enhanced collector
will support more advanced information given by the Invoker and
Invoker Pool. After the operation has been completed the client
will receive the output of the action. We will provide a total of
6 combinations for pricing opportunities, two initial options for
the over-provisioned state and three additional ones for the under-
provisioned state. The client will be able to choose a combination
of the initial and additional one for a more customized experience.

3.3 Pricing options for the client
The two initial pricing options will be provided: (1) a Basic Version
which merely finishes the request with no additional benefits, or
(2) a Premium Version that completes the request with additional
Invokers but the additional resources used for a faster execution of
the request will come at a discounted price. The second option is to
use the request to create warm containers for this particular client’s
repeated uses, resulting in future execution times that are quicker.
The client will receive all of this information for transparency’s sake
and encourage continued use.

The three additional different pricing augmentations will be pro-
vided if the servers are under provisioned meaning some requests
may need to wait in line before being executed: (1) Standard prior-
ity, which offers no priority when it comes to scheduling requests
but still offers the same cost per execution time as when the servers
are under-provisioned; (2) Urgent priority offers increased request
scheduling priority (though not an absolute priority) but at a higher
cost for clients who have self-perceived time-critical actions to be
performed; an example of such client is someone who detected a
mistake in a database and wishes it to be fixed as soon as possible so
that further uses of the database not be compromised; (3) Reduced
priority which offers, for a reduced price tag, a lower priority in
the system for clients that have little interest in the execution delay
of the operations, for example, a student that is ahead of schedule
for project delivery.

3.4 Scheduling during an over-provisioned state
The scheduling system will operate as usual if no pricing mecha-
nism is used, or, in other words, if the deployment uses the standard
fee for the initial pricing option. If an additional premium fee is
requested then the scheduler will attempt to deploy the action to
all Invokers, not just the home Invoker. This scheduling modifica-
tion has two additional benefits for the client: (1) if the action is
repeatedly requested, saturating the home Invoker, it allows for a
much faster execution following the initial deployment. Clients are
further encouraged to use our system repeatedly because doing so
will result in faster execution times; (2) the request will be handled
by the fastest Invoker at that given time which may not be the home
Invoker, while ignoring the overhead of calculating which one it is.
The client may customize the deployment to include both versions
of the pricing mechanism on a case-by-case basis for each action

or trigger. This will allow the client to only include the premium
option on specific actions within the deployment.

Algorithm 1 Over-provisioned scheduling algorithm

Algorithm 1 shows the pseudo-code that the new scheduler uti-
lizes. It will still queue the action if all Invokers are semi-saturated
(the sum of busy and free pool containers is equal to the max pool
size), while the original scheduling algorithm will only queue if all
Invokers are saturated (busy pool is equal to themax pool size). How-
ever, this challenge should rarely arise during an over-provisioned
state in which this algorithm is designed for. Themain changesmade
to the algorithm are the ones highlighted in blue and red. Since the
purpose of this new functionality is to create new containers we
forced the scheduler to ignore pre-warm containers when outside
of the action’s home Invoker to create warm containers on the other
Invokers for future use, as highlighted in blue. As highlighted in
red we adjusted the original algorithm to continue to search for
non-fully saturated Invokers instead of simply exiting when the
scheduler found a single available Invoker.
All of the results of the multiple executions of the action are

received by the controller. The cost of the requested deployment by
the client is calculated as a ratio between the cost without the extra
Invokers and the total cost of all resources used. Consequently, the
cost the client will charge is given by

𝑓 𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝛼 𝑐 + (1 − 𝛼)𝐶, (1)

where 𝛼 is the ratio of the cost that remains static, 𝑐 is the cost of
the deployment under default conditions, and 𝐶 is the total cost of
all resources used.
This creates a situation where if no additional actions were de-

ployed on other Invokers the final costs are equal to the normal
pricing model.

3.5 Scheduling during an under-provisioned state
A First-In-First-Out (FIFO) priority method is used in case action
starts being queued due to the server being saturated, this in turn
results in a very low urgency methodology for the clients. This work
proposes a more advanced priority-aware system that allows more
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time-critical situations to be more hastily resolved for an additional
cost. It also allows the inverse situation where a client might want
a discount if the need arises.
The algorithm is based on a priority value coined by us aPrio,

standing for absolute priority. If two actions have the same values
of aPrio the FIFO priority will be applied. This aPrio value will be
updated every second while the request is in the queue. Given a
request’s priority ranking of reduced, standard, and urgent the aPrio
value will be incremented by +𝑝1, +𝑝2, and +𝑝3, respectively.

Figure 2 exemplifies four seconds of this algorithm in progress
where 𝑝1 = 1, 𝑝2 = 2 and 𝑝3 = 5, and 𝑡 represents the timestamp
used in the system in seconds. Yellow requests are in the queue
while red requests are the selected actions for when resources are
freed.

Fig. 2. Four seconds of execution of the priority queue algorithm

The pricing model utilized is similar to what is offered during the
over-provisioned state. The final cost is given by

𝑓 𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝛼 𝑐 + (1 − 𝛼) 𝑐 𝑝
𝑝1

, (2)

where 𝛼 is the percentage of cost that remains static, 𝑐 is the cost of
the specific action, 𝑝 represents the value of the priority system used
for the action, and 𝑝1 is the value of the reduced priority system.

4 IMPLEMENTATION
This Chapter will go over the development steps we took to achieve
our realization of the architecture. Starting with an explanation of
the two environments we developed in, followed by an in-depth
dive into the adjustments and extensions made to the source code
of Openwhisk.

4.1 Apache Openwhisk deployment overview
Apache Openwhisk is a combination of various existing compo-
nents such as CouchDB and NGINX with the unique addition of
the Controller and Invoker. For this reason, docker deployments
are heavily suggested for its use, given their ease of generation of
complex environments and connections between multiple types of
components. We started development in a Kubernetes cluster due
to it being the most common approach in other works. However,
after we took a deeper look into multiple other tools we finalized
our development in a Docker-compose environment.
The new deployment was directly on Docker-compose where

each component of the Openwhisk architecture was a container

node. This allows for easy version checking of the images, quick and
clean logging information as well as proper port flow management
that tools such asWireshark and other network-related tools require
for ease of packet checking. This allows for a much easier and
stronger development environment where we can test and manage
changes to the Apache Openwhisk components.
Docker-compose came with its fair share of limitations such as

lack of proper Kubernetes availability and scalability. If a node was
to fail the system would need to be restarted manually since failure
in a node’s health check would not prompt its reconstruction. As
well as lacking the capability to deploy additional Invoker and con-
troller components mid-execution as resources are needed. Both of
these concerns need to be taken into consideration when deploy-
ing in a proper production environment. Since our work wants to
test and improve the system in both over-provisioned and under-
provisioned states both of these concerns can be ignored for the
most part. They must still be taken into consideration as any test in
a production environment might alter the amount of resources for
unrelated reasons to the cluster itself, such as power failures and
manual resource allocations. We imitated them as much as possible
a Kubernetes deployment as that was never the issue. So we created
one controller and three distinct Invokers as well as all other compo-
nents each in their own containers. For new image development and
conservation, we utilized a docker assisted image-registry where
we made available our images for docker of both new versions of
the Invoker and controller components by using the wsk-dev tool.

4.2 Development of Action-Spreading
Firstly we must fully comprehend what the attempted solution pre-
sented in the Architecture Chapter 3 entails. The goal is to (1) set up
containers for future workloads as well as if possible (2) combine the
work of all Invokers for an even faster possible execution. Therefore
we tackled both of these problems separately starting from the more
architecturally taxing, problem (1).
As Invokers are unaware of each other’s conditions, we are un-

able to generate containers at will depending on the states of each
other. Invokers also can’t create empty warm containers. The best
we could do would be to employ more pre-warm containers which
are already greatly optimised by Apache Openwhisk. So we should
look at the controller as it is aware of some of the Invoker pool’s
state information. However, as described in the previous section
it does not hold all information such as Invoker pool states. Since
we assume the global Openwhisk state is in an over-provisioned
state we can safely invoke additional actions without taxing already
existing actions due to the containers and their executions being
isolated 1. The only overhead generated would be the increased
controller message load which is synced as well as Kafka’s addi-
tional messaging. Kafka however is known to be made to be a high
throughput, low latency, and ability to handle large volumes of data,
making any increase of workload during an over-provisioned state
largely irrelevant, but something to be aware of during evaluation
nonetheless.

1During an over-provisioned state Invokers will have an abundance of resources avail-
able and due to containers being isolated from each other, creation of additional con-
tainers should not result in a degradation of the Invoker’s performance
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The initial approach would be to alter the algorithm in
ShardingContainerPoolBalancer.scala to not stop at its search
at the first available Invoker, but instead, keep searching available
Invokers to induce the action. Since our goal is to prepare the action
within all possible Invokers, be that in generating ready-to-use
warm containers or simply creating cache data for the Invoker our
best solution would be to execute the action in all possible Invokers.
This would also solve our problem (2) presented in the goals. Since
all possible Invokers will attempt to execute the action not simply
create a warm container, the fastest container at that moment will
return the result to the controller. For our goal to be met we must
spread the action to all available Invokers. We must then change the
schedule function’s return condition to only when all Invokers have
been seen and registered all possible Invokers that the action could
be scheduled. We also want to maintain the home Invoker metric
stable in case our user does not request this additional functionality.

To fully ascertain our goal we must also alter the sending opera-
tion to take into consideration our extra Invokers "if any". Consid-
ering that the activationID is the same for all, the controller knows
where to send them back when it receives the response from all
Invokers. With this, the action will safely be spread to all Invokers
and be executed by such in order to both create additional contain-
ers for future use (1) and collect the fastest activation (2), since they
all have the same activationID.

4.3 Development of Action priority
When the system is under-provisioned, we would like to implement
action priority as described in our architecture. The main goal is
to create a sense of user agency for these situations but provide a
priority-induced queue when executing actions. There are two main
places where queueing is present in Apache Openwhisk, the Kafka
and Invoker components.

Kafka is a distributed event streaming platform designed to han-
dle real-time data streams. However, Kafka is not designed to offer
priority when distributing its messages. Unlike other message bro-
kers such as RabbitMQ and ZeroMQ, Kafka follows a FIFO message
processing model, where messages are typically consumed in the
order they are received. This comes with multiple advantages to
FaaS systems where high availability and fault tolerance are key.
There are solutions to make Kafka “support” message priority,

such as multiple topics per consumer and partitioning. Generating
multiple topics per consumer seems to be the most promising due
to Openwhisk already creating topics per Invoker. However, this
method greatly tarnishes Kafka’s speed due to the fault tolerance
procedures it takes and it is heavily discouraged unless speed is
truly not relevant, which is false in our case. FaaS is meant for event-
driven procedures and prides itself on availability, so major hits to
the speed of the system would greatly reduce its availability. Par-
titioning is simply sectioning a topic through multiple consumers,
which in our case wouldn’t work since each topic only has one
singular Invoker.
Substituting Kafka for other brokers such as RabbitMQ would

be a grand undertaking as Kafka is one of the core components of
ApacheOpenwhisk and the source code would have to be tremen-
dously changed but even assuming that would be possible, other

brokers that have focus on message complexity which would only
be valuable for this circumstance, and we would be losing on the
scalability, high throughput and data retention provided by Kafka
which are main points for FaaS related systems.

Adjusting the controller to become the queueing system would
be disastrous as the controller component is synced and would lack
scalability even if additional controllers were created. This makes
any avenue to implement priority inside Kafka fruitless if we want
to maintain the system as a FaaS system.

Another Queuing opportunity is within the Invoker. This queue
is used for incoming requests that arrive from Kafka. Adjusting
this queue from a simple First-Come-First-Serve (FCFS) queue to
a priority queue is a simple task as Scala itself provides a priority
queue component. By changing this queue into a priority queue we
could safely alter its functionality.

When observing the logs the priority queue of the Invoker would
never exceed two items within it, while Kafka had over 100 items
in the queue. This observation was also detected when testing the
original version of the Invoker queue. This perceived inconsistency
is answered through Kafka and the Invoker interaction. When an
Invoker has completed an activation as space within it can be used
it alerts Kafka, which then Kafka sends the message to the Invoker.
This process is made before setting up the return message to the
controller. The Invoker will only start processing the next item in
the feed/queue after it has successfully sent the message to the
controller. This means that the requests in the Invoker queue only
exist to more easily parallelize the message retrieval and sending
from and to Kafka. Changing its queue to a priority queue would
be an easy task but would not even remotely accomplish our goal,
as we would be applying an advanced queuing system to a group
consisting of 1 or 2 requests instead of the hundreds that Kafka
handles.
While a priority-aware scheduling system was a valuable and

interesting opportunity it brought an immense overhead and a
much higher complexity than initially expected during research and
architecture development. As previously explained since Kafka was
not originally designed for priority-aware systems and its use is
integral for Openwhisk architecture a great undertaking would need
to be done to fully remodel the architecture. As such we will leave
the possibility of a priority-aware scheduling system for possible
future work as the topic itself still is a valuable research direction for
the FaaS system. As such we decided to instead focus the rest of this
document on analyzing the development of the Action-Spreading
functionality.

5 EVALUATION
In this chapter, we will go into depth about the system goals and
the assessed metrics. We will implement the system by deploying
Apache Openwhisk on a development environment based on Docker.
The base open source code of Apache Openwhisk is extended to
the requirements presented by the architecture in Section 3. Data is
assumed to be stored locally or on some cloud storage in the same
location.
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5.1 FaaS Benchmarks
Four diverse FaaS workloads are used in the evaluation of our system
those being Sleep functions, File hashing, Video transformation, and
Image classification [Dukic et al. 2020]:

Sleep functions are a good FaaS benchmark because it is a
simple, low-overhead operation that can be used to measure
infrastructural overheads, in our case the scheduling infras-
tructure, of a FaaS platform.

File hashing is also a good benchmark because it is a relatively
simple operation that can be used to test the ability of the
system to handle file inputs and outputs.

Video Transformation is a good benchmark for FaaS systems
because it exercises many of the key features of the sys-
tem, such as scalability, concurrency, and performance. Video
transformation tasks, such as transcoding, are typically com-
pute-intensive and require parallel processing. This makes
them well-suited for testing the ability of the FaaS system to
handle high levels of concurrency and scale horizontally.

Image classification is a good FaaS benchmark for our evalua-
tion as well due to it being a complex operation that requires
significant computational resources and can be used to test
the ability of the system to handle more demanding work-
loads. Additionally, Image classification is a common use case
for FaaS [Russo et al. 2022], especially in machine learning
applications [Tu et al. 2018; Xu et al. 2021], so using it as a
benchmark can help to evaluate the system’s ability to handle
real-world workloads.

5.2 Metrics
Latency, Scheduling delay, and Resource usage are the three main
metrics considered to determine the overall success of our system:

Latency is a metric that represents the amount of time it takes
for a request to be processed and for a response to be received.
It is an important metric for evaluating the performance of
a system because it directly measures how long it takes for
the system to respond to a user’s request. Systems that have
low latency can respond quickly, which can lead to a better
user experience. Systems that have high latency may result
in slow response times and cause user frustration.

Scheduling delay is a metric that assesses the amount of time
that elapses between when a user request is ready to be exe-
cuted and when it is allowed to run by the scheduler. It is an
important metric for evaluating the performance of a system
because it measures how well the scheduler can distribute re-
sources and manage the execution of tasks. A low scheduling
delay indicates that the scheduler can quickly and efficiently
assign resources to tasks, which can lead to better overall
system performance. On the other hand, a high scheduling
delay can lead to poor resource utilization, decreased system
throughput, and increased response times.

Resource usage is a good metric to evaluate FaaS systems be-
cause it provides insight into how efficiently the system is
utilizing resources such as memory and CPU. By measuring
resource usage, one can identify any bottlenecks in the system
and make adjustments to improve performance and reduce

costs. Additionally, monitoring resource usage can help in
identifying and troubleshooting issues such as resource leaks.

For Memory consumption and overload management metrics we
require the access and analysis of the logs provided by the Open-
whisk components. These logs can be found in the file location
described in the "volumes" section of the docker-compose.yml.
Each service has its logging location and these must be checked to
have an understanding of both sides of a request.

These metrics are measured and compared with the Apache Open-
Whisk default scheduler.

6 EVALUATION ENVIRONMENT
The environment used for evaluation of the newly enhanced Apache
Openwhisk scheduling is similar to the one presented during the
Implementation Section 4. The cluster size was kept low, easily
overloading the system if need be for testing. One container for each
required component of Openwhisk plus three invokers managed by
one controller. The main testing variables are actions used, number
of requests, and number of parallel users. Since the core of our work
is to offer the user agency within the execution of his actions, we
need to simulate different users requesting the server. We assume
the server state is fresh at the start of each evaluation. Each test was
made in either a cold environment state or a warm environment
state. Both of these are more deeply explained in the subsections
below. Authentication of the requests required for each evaluation is
made by the first request made to the server and is preserved within
the cache of the controller needing no additional authentication for
the remaining duration of the test.

We used JMeter an open-source performance testing tool designed
to test the performance, load, and stress of web applications, APIs,
databases, and other network services. It allows you to simulate a
large number of users interacting with your application to measure
its performance and identify potential bottlenecks or issues under
different load conditions. JMeter supports a wide range of protocols
and technologies, including HTTP, HTTPS, FTP, JDBC, SOAP, REST,
JMS, and more. This makes it suitable for testing various types
of applications and services, just like Curl. JMeter can simulate
thousands of virtual users concurrently, allowing you to test how
your application performs under different levels of load and stress.
To fully use Jmeter in our evaluation process we first had to create
a testPlan. Each test can be saved separately and rerun in the future
for further data analysis. Within a testPlan our main tool is the
threadGroup, allowing large amounts of controller instances of
HTTP requests in our case. We can adjust both the number of
concurrent threads (users) as well as the number of executions. This
will allow us to easily keep track of different test cases. Within
the threadGroup we need three main components: HTTP Header
Manager, HTTP Authorization Manager, and HTTP Request.
For evaluation, we will vary our testing by using a variety of

actions. These actions as described in Section 5.1, have varied per-
formance differences and seek to analyze our system in as many
ways as possible. For fast and simple actions F1 was used. This ac-
tion seeks to represent fast trigger executions and is the common
staple of FaaS user event systems. It represents operations like File
hashing. For sleep type functions F2 and F3 were utilized. These
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functions simply sleep the system for either 5000 ms or 10000ms and
will allow us to accurately detect scheduling delays present within
the system if the system is not performing any CPU or Memory
operations. F4 was used for CPU-intensive functions to let us know
of any overall performance degradation throughout the system. The
F4 function used was a recursive Fibonacci series. The Fibonacci
series is a sequence of numbers in which each number is the sum
of the two preceding ones. It starts with 0 and 1, and then each sub-
sequent number is the sum of the previous two. In our evaluation,
the Fibonacci of 42 was used due to it being a high number for the
complexity desired for our executing times. This operation heavily
simulates image classification workloads due to its computational
complexity.

For all actions, there exists the Default, Base, and Spread versions.
The Default version is the action on the original version of Open-
whisk. The Base version is the same type of action as the Default
but it is run on our version of the system with no additional inputs
or modifications to the invocation. Both of these should offer the
same execution results, in both result and execution time. It is used
to measure our system scheduling delay compared to the Default
version of Openwhisk. The Spread version is the same action as both
the Default and Base version but its invocation requests the use of
our newly added functionality. The action result should be the same
but the execution time may vary depending on the circumstances.
These circumstances are extensively explored during the tests.

All actions are created during the setup of the test and this extra
execution time is not considered for the test as it bears no interaction
with the modified locations of our newly updated system.

A set of two sub-environments were made to test our enhanced
scheduler. These sub-environments reference the initial state of the
system immediately before the execution of a given test.

Cold Sub-enviroment "C": we sought to evaluate our system
as the worst case possible where all currently existing warm
containers within the invokers mismatch the invoked action.
This will allow us to evaluate our system when handling cold
invocations, and how well it successfully warms up the sys-
tem to generate the best user experience. This was achieved
through the mass invocation of a “hello world” action which
simply returns “hello user” to the user. The mass invocation
comprises 100 parallel invocation calls using JMeter, by set-
ting up a thread group with 100 users and 1 call each. The
execution of the tests ignores this environment setup and it’s
done after all containers within the invokers enter the paused
state.

Warm Sub-enviroment "W": a fully cold enviroment it’s not
entirely realistic as prewarm and warm containers contribute
heavily towards faster request execution times and are the
backbone of FaaS systems. As such for the same set of tests
as the sub-environment 1, we evaluated our system under
a warm environment where only prewarm and warm con-
tainers of the action to be invoked were present. In the same
way as the sub-environment 1 was achieved the warm envi-
ronment was made with 100 concurrent calls for the specific
action related to the test. Once again this execution time was

not taken into consideration during the test. Jmeter was set
up with 100 users with one HTTP request each.

Two different pieces of hardware were used for testing to ac-
curately determine potential system degradation caused by our
scheduler.

Hardware A: a laptop with an Intel® Core™ i7-6700HQ CPU
@ 2.60GHz processor with 4 physical cores and 8 threads on
Ubuntu 20.04.6 LTS 64-bit. Most of the testing was done in
this hardware due to its ease of access and testing environ-
ment. Important to note that only 1 data bus exists within
the hardware meaning all interaction between threads and
memory is centralized.

Hardware B: to have access to results closer to a production
environment we utilized much stronger tools with access to
more CPU cores. This hardware B uses a Intel(R) Core(TM)
i7-8700 CPU @ 3.20GHz, 3192, 8 Physical Core(s), 18 Logical
Processor(s).

6.1 Performance evaluation
A total of 6 tests were made to evaluate our newly augmented
scheduler. These tests vary in both sub-environment and hardware.
Each test is referred to by the test number, which sub-enviorment
it uses followed by which hardware it utilizes, for example, "Test
1 (W-A)" is test number 1 and uses both a Warm sub-environment
and hardware A.

Test 1 (W-A), focused on determining if our scheduler performed
similarly without the use of the new Action-Spread functionality.
Results showed that our enhanced scheduler performed slightly
better under the same circumstances so we could safely use it for
previous versions of workloads on Openwhisk.
Test 2 (C-A) and Test 6 (C-B) both seek to evaluate the use case

for our functionality. This situation was a cold environment at first
followed by the use of our new functionality to set up the warm
container finalising with a heavy amount of requests for the specific
action. We were able to confirm that our functionality was able
to benefit the system in terms of reduced latency, variance, and
total execution time for faster execution actions where the cold
start delay is more noticeable. We also were able to conclude that
hardware can indeed affect the value provided by our functionality
as we were only able to see improvements from our F4 function in
hardware B.

Test 3 (W-A), 4 (W-A), and Test 5 (W-B) were tested to check the
performance of the scheduler during less ideal circumstances, those
being in the case where a warm environment already exists for the
requested action. We were able to conclude the lack of parallelism
potential from the hardware itself was the main bottleneck as the
new scheduler would overload the Invokers leading to performance
degradation. Test 4 (W-A) specifically focused on confirming this
parallelism roadblock by independently doing the same amount of
requests as the Action-Spread functionality would do but using the
original version of the scheduler. The functionality should not be
used for already warm environments as it might lead to unnecessary
overloading of the system.
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6.2 Utility Function Evaluation
While the performance of the extended scheduler is crucial we must
also evaluate and analyze how our utility function and the final
cost to the client vary. The primary values our clients are interested
in are how much the latency, total execution time, and final cost
vary when using the new scheduling option. As for the provider,
the extra resources consumed during the operation and the 𝛼 used
for the utility function are the most important factors. The client
would generally want higher latency and total time decrease while
paying the least amount. As for the provider, he would want the
least amount of extra resources and the highest 𝛼 that the clients
would still be paying for the service. Table 1 contains all of the
previously done relevant tests and evaluations of the above factors.
The values of latency decrease, total time decrease, extra resources,
and cost are relative compared between the Base version of the
test and our enhanced schedulers, with the Base version as the
absolute value. For example, if our scheduler used a total of 10
seconds to execute and the Base version 20 seconds instead, then
there was a two times (2x) decrease in total execution time. This is
done for easier comparison between extra resources consumed and
improvement. Since using, two times the resources for two times
the speed is simpler for clients to understand instead of twice the
resources for half the time.

Table 1. Utility evaluation

Test Latency Total time Extra 𝛼 Cost
decrease decrease resources

0.8 1.06x
2 − 𝐹1 2.37x 1.44x 1.32x 0.6 1.13x

0.4 1.19x
0.8 1.07x

2 − 𝐹2 0.73x 1.03x 1.36x 0.6 1.14x
0.4 1.21x
0.8 1.07x

2 − 𝐹4 0.76x 0.92x 1.36x 0.6 1.14x
0.4 1.21x
0.8 1.4x

3 − 𝐹1 0.78x 0.80x 3x 0.6 1.8x
0.4 2.2x
0.8 1.4x

3 − 𝐹2 0.98x 0.98x 3x 0.6 1.8x
0.4 2.2x
0.8 1.06x

6 − 𝐹1 1.67x 1.12x 1.36x 0.6 1.14x
0.4 1.19x
0.8 1.08x

6 − 𝐹2 0.71x 1.05x 1.4x 0.6 1.16x
0.4 1.24x
0.8 1.08x

6 − 𝐹4 1.13x 1.03x 1.4x 0.6 1.16x
0.4 1.24x

We can observe that our new enhanced scheduler must be used
with care and awareness as it is only beneficial in certain situations.

We can see that in the case of an already warm environment such as
test 3, the performance degradation of additional invocations takes
quite a heavy toll on the system and only serves to promote worse
performance values across the board. However, we can also observe
that due to the abundance of additional resources used (3 times the
amount) the 𝛼 determined by the seller can heavily sway the final
cost. This will allow unexpected or undesired uses of our scheduler
to be mitigated should the client negotiate with the seller allowing
a more positive interaction between the two.
We can also see that depending on what hardware is used the

benefits can vary. Test 2 uses hardware A while test 6 uses hardware
B. F1’s benefit is greater in the weaker hardware A. F2 saw no change
between hardware, but we can see the latency decrease being an
issue while the total execution time remains largely untouched. On
the other hand F4 on hardware A is severely slower in all aspects
being mostly a detriment to the use of the enhanced scheduler while
in hardware B we can see some improvements. While the latency
decrease for test 6 action F4 was a small 1.13 times compared to the
real extra resources of 1.4 times more, depending on the 𝛼 employed
by the seller the trade might still be beneficial for the client. For
example, if the 𝛼 value used was 0.6 then the latency decrease would
equally match the extra cost while maintaining the overall cost of
the resources cheaper since the true cost for the seller would be 1.4
times more. If the 𝛼 used was 0.8 then it would become beneficial
as long as the client did not prioritize total execution time.
This combination of allowing the client to choose between two

options and the modification of the 𝛼 used for the seller always
provides a two-way negotiation in the case of a measuse of the
functionality. However, if the client is smart then situations such
as test 2 action F1 can arise where no matter the 𝛼 chosen by the
seller the increased performance will always outpace the extra cost,
making the extra resources effectively cheaper for the client.
In Figure 3, we can see that the knowledge of the type of envi-

ronment located within the system can heavily alter how much
control the seller has over the final cost of the request. In the cases
where the functionality is used in a cold environment, where it is
expected to be used, the leverage presented to the seller is reduced
thus making the use of the functionality more consistent during its
expected environment. In cases where the functionality is misused
such as a completely warm environment then the seller who was
probably taken by surprise by the amount of additional resources
consumed for little to no benefit is allowed a lot more leverage to
control the final cost.

7 CONCLUSION
Our work describe the current state of cloud computing’s Function-
as-a-Service technology and some of its key benefits and difficulties.
To better understand the common customer concerns and desires,
and to better assess our requirements, we also examined the cutting-
edge scheduling and pricing mechanisms utilized throughout our
cloud computing.

We created a scheduler extension architecture that considers user
preferences when adjusting scheduling to provide a higher quality
of service to the user. Apache Openwhisk was used to implement our
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Fig. 3. Cost’s behaviour depending on 𝛼 values

solution. For over-provisioned system conditions a new functional-
ity that we named "Action-Spreading" was implemented to allow
warm containers to be set up for a reduced cost in preparation for an
influx of requests. For an under-provisioned system state originally
we intended to implement a priority-aware scheduling extension,
however throughout the implementation process it exceeded our
expected architectural complexity and we deemed it outside of the
scope of this work. Finally, we evaluated our enhanced scheduler
through a series of tests.

We concluded that under over-provisioned system conditions, it
provided a substantial benefit for the client with a latency decrease
of up to 2.37 times for only a maximum of 30% additional cost.
We also were able to conclude that should the scheduler be used
under unforeseen system conditions it allows for a positive client-
seller solution through the use of the proposed utility function
management.
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